Hidden Markov Models – II

Tapas Kanungo

Language and Media Processing Lab
Center for Automation Research
University of Maryland
Web: www.cfar.umd.edu/~kanungo
Email: kanungo@cfar.umd.edu

April 6, 1998
Outline

1. Review: Markov Models, HMM, Forward
2. Backward algorithm
3. Viterbi algorithm
4. Baum-Welch estimation algorithm
Markov Models

- Observable states:

\[1, 2, \ldots, N \]

- Observed sequence:

\[q_1, q_2, \ldots, q_t, \ldots, q_T \]

- First order Markov assumption:

\[P(q_t = j|q_{t-1} = i, q_{t-2} = k, \ldots) = P(q_t = j|q_{t-1} = i) \]

- Stationarity:

\[P(q_t = j|q_{t-1} = i) = P(q_{t+l} = j|q_{t+l-1} = i) \]
Markov Models

- State transition matrix A:

$$A = \begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1N} \\
a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2N} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
a_{i1} & a_{i2} & \cdots & a_{ij} & \cdots & a_{iN} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
a_{N1} & a_{N2} & \cdots & a_{Nj} & \cdots & a_{NN}
\end{bmatrix}$$

where

$$a_{ij} = P(q_t = j|q_{t-1} = i) \quad 1 \leq i, j, \leq N$$

- Constraints on a_{ij}:

$$a_{ij} \geq 0, \quad \forall i, j$$

$$\sum_{j=1}^{N} a_{ij} = 1, \quad \forall i$$
Hidden Markov Models

- States are not observable
- Observations are probabilistic functions of state
- State transitions are still probabilistic
Urn and Ball Model

- N urns containing colored balls
- M distinct colors of balls
- Each urn has a (possibly) different distribution of colors

Sequence generation algorithm:

1. Pick initial urn according to some random process.

2. Randomly pick a ball from the urn and then replace it.

3. Select another urn according a random selection process associated with the urn.

4. Repeat steps 2 and 3.
The Trellis
Elements of Hidden Markov Models

- N – the number of hidden states
- Q – set of states $Q = \{1, 2, \ldots, N\}$
- M – the number of symbols
- V – set of symbols $V = \{1, 2, \ldots, M\}$
- A – the state-transition probability matrix.

 $$a_{ij} = P(q_{t+1} = j|q_t = i) \quad 1 \leq i, j, \leq N$$

- B – Observation probability distribution:

 $$B_j(k) = P(o_t = k|q_t = j) \quad 1 \leq k \leq M$$

- π – the initial state distribution:

 $$\pi_i = P(q_1 = i) \quad 1 \leq i \leq N$$

- λ – the entire model $\lambda = (A, B, \pi)$
Three Basic Problems

1. Given observation $O = (o_1, o_2, \ldots, o_T)$ and model $\lambda = (A, B, \pi)$, efficiently compute $P(O|\lambda)$.
 - Hidden states complicate the evaluation
 - Given two models λ_1 and λ_2, this can be used to choose the better one.

2. Given observation $O = (o_1, o_2, \ldots, o_T)$ and model λ find the optimal state sequence $q = (q_1, q_2, \ldots, q_T)$.
 - Optimality criterion has to be decided (e.g. maximum likelihood)
 - “Explanation” for the data.

3. Given $O = (o_1, o_2, \ldots, o_T)$, estimate model parameters $\lambda = (A, B, \pi)$ that maximize $P(O|\lambda)$.
Solution to Problem 1

- Problem: Compute $P(o_1, o_2, \ldots, o_T|\lambda)$

- Algorithm:

 - Let $q = (q_1, q_2, \ldots, q_T)$ be a state sequence.

 - Assume the observations are independent:

 $P(O|q, \lambda) = \prod_{i=1}^{T} P(o_t|q_t, \lambda) = b_{q_1}(o_1)b_{q_2}(o_2) \cdots b_{q_T}(o_T)$

 - Probability of a particular state sequence is:

 $P(q|\lambda) = \pi_{q_1}a_{q_1q_2}a_{q_2q_3} \cdots a_{q_{T-1}q_T}$

 - Also, $P(O, q|\lambda) = P(O|q, \lambda)P(q|\lambda)$

 - Enumerate paths and sum probabilities:

 $P(O|\lambda) = \sum_{q} P(O|q, \lambda)P(q|\lambda)$

- N^T state sequences and $O(T)$ calculations.

 Complexity: $O(TN^T)$ calculations.
Forward Algorithm: Intuition
Forward Algorithm

- Define forward variable $\alpha_t(i)$ as:

$$\alpha_t(i) = P(o_1, o_2, \ldots, o_t, q_t = i | \lambda)$$

- $\alpha_t(i)$ is the probability of observing the partial sequence (o_1, o_2, \ldots, o_t) such that the state q_t is i.

- Induction:

 1. Initialization: $\alpha_1(i) = \pi_i b_i(o_1)$

 2. Induction:

$$\alpha_{t+1}(j) = \left[\sum_{i=1}^{N} \alpha_t(i) a_{ij} \right] b_j(o_{t+1})$$

 3. Termination:

$$P(O | \lambda) = \sum_{i=1}^{N} \alpha_T(i)$$

- Complexity: $O(N^2T)$.
Backward Algorithm

\[a_{iN} \]

\[a_{i1} \]

\(N \)

\(t \)

\(o_1 \quad o_2 \quad o_{t-1} \quad o_t \quad o_{t+1} \quad o_{t+2} \quad o_{T-1} \quad o_T \)

OBSERVATION
Backward Algorithm

- Define backward variable $\beta_t(i)$ as:

$$\beta_t(i) = P(o_{t+1}, o_{t+2}, \ldots, o_T| q_t = i, \lambda)$$

- $\beta_t(i)$ is the probability of observing the partial sequence $(o_{t+1}, o_{t+2}, \ldots, o_T)$ such that the state q_t is i.

- Induction:
 1. Initialization: $\beta_T(i) = 1$
 2. Induction:

$$\beta_t(i) = \sum_{j=1}^{N} a_{ij} b_j(o_{t+1}) \beta_{t+1}(i),$$

$$1 \leq i \leq N,$$

$$t = T - 1, \ldots, 1$$
Solution to Problem 2

• Choose the most likely path

• Find the path \((q_1, q_t, \ldots, q_T)\) that maximizes the likelihood:

\[
P(q_1, q_2, \ldots, q_T|O, \lambda)
\]

• Solution by Dynamic Programming

• Define:

\[
\delta_t(i) = \max_{q_1, q_2, \ldots, q_{t-1}} P(q_1, q_2, \ldots, q_t = i, o_1, o_2, \ldots, o_t|\lambda)
\]

• \(\delta_t(i)\) is the highest prob. path ending in state \(i\)

• By induction we have:

\[
\delta_{t+1}(j) = \max_i [\delta_t(i) a_{ij}] \cdot b_j(o_{t+1})
\]
Viterbi Algorithm

\[\begin{align*}
\text{STATES} \\
1 & \quad 2 & \quad t-1 & \quad t & \quad t+1 & \quad t+2 & \quad T-1 & \quad T \\
\text{OBSERVATION} \\
O_1 & \quad O_2 & \quad O_{t-1} & \quad O_t & \quad O_{t+1} & \quad O_{t+2} & \quad O_{T-1} & \quad O_T
\end{align*} \]
Viterbi Algorithm

- Initialization:

\[\delta_1(i) = \pi_i b_i(o_1), \quad 1 \leq i \leq N \]
\[\psi_1(i) = 0 \]

- Recursion:

\[\delta_t(j) = \max_{1 \leq i \leq N} [\delta_{t-1}(i) a_{i,j}] b_j(o_t) \]
\[\psi_t(j) = \text{arg max}_{1 \leq i \leq N} [\delta_{t-1}(i) a_{i,j}] \quad 2 \leq t \leq T, 1 \leq j \leq N \]

- Termination:

\[P^* = \max_{1 \leq i \leq N} [\delta_T(i)] \]
\[q_T^* = \text{arg max}_{1 \leq i \leq N} [\delta_T(i)] \]

- Path (state sequence) backtracking:

\[q_t^* = \psi_{t+1}(q_{t+1}^*), \quad t = T - 1, T - 2, \ldots, 1 \]
Solution to Problem 3

- Estimate $\lambda = (A, B, \pi)$ to maximize $P(O|\lambda)$

- No analytic method because of complexity – iterative solution.

- $\xi(i, j)$ is the probability of being in state i at time t and in state j at time $t + 1$.

$$
\xi(i, j) = \frac{\alpha_t(i)\alpha_{ij}b_j(o_{t+1})\beta_{t+1}(j)}{P(O|\lambda)}
= \frac{\alpha_t(i)\alpha_{ij}b_j(o_{t+1})\beta_{t+1}(j)}{\sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_t(i)\alpha_{ij}b_j(o_{t+1})\beta_{t+1}(j)}
$$
Baum-Welch Algorithm

\[a_{ij} b_j (o_{t+1}) \]

```
    N
  4   3   2   1
  4   3   2   1
 t-1  t   t+1 t+2 T-1 T
  1   2   T   T
```

OBSERVATION

\[o_1 \quad o_2 \quad o_{t-1} \quad o_t \quad o_{t+1} \quad o_{t+2} \quad o_{T-1} \quad o_T \]
Baum-Welch Algorithm

- Define $\gamma_t(i)$ as prob. of being in state i at time t, given the observation sequence.
 \[
 \gamma_t(i) = \sum_{j=1}^{N} \xi_t(i, j)
 \]
- $\sum_{t=1}^{T} \gamma_t(i)$ is the expected number of times state i is visited.
- $\sum_{t=1}^{T-1} \xi_t(i, j)$ is the expected number of transitions from state i to state j.
- $\pi_i = \text{expected frequency in state } i \text{ at time } (t = 1) = \gamma_1(i)$.
- $a_{ij} =$ (expected number of transition from state i to state j)/ (expected number of transitions from state i):
 \[
 a_{ij} = \frac{\sum \xi_t(i, j)}{\sum \gamma_t(i)}
 \]
\[b_j(k) = \frac{\text{(expected number of times in state } j \text{ and observing symbol } k)}{\text{(expected number of times in state } j)} = \frac{\sum_{t,o_t=k} \gamma_t(i)}{\sum_t \gamma(i)} \]
Properties

- Covariance of the estimated parameters
- Convergence rates
Types of HMM

- Continuous density
- Ergodic
- State duration
Implementation Issues

- Scaling
- Initial parameters
- Multiple observation
Comparison of HMMs

• What is a natural distance function?

• If $\rho(\lambda_1, \lambda_2)$ is large, does it mean that the models are really different?