Support Vector Machines

Note to other teachers and users of
Note to other teachers and users of these slides. Andrew would be delighted
if you found this source material useful in if you found this source material useful in
giving your own lectures. Feel free to use giving your own lectures. Feel free to use these slides verbatim, or to modify th to fit your own needs. PowerPoint
originals are available. If you make use of a significant portion of these slides in
your own lecture, please include this
message, or the following link to the
source repository of Andrew's tutorials:
ttn://www.cs cmu edu/~awm/tutorials. Comments and corrections gratefully received

Andrew W. Moore

Associate Professor School of Computer Science Carnegie Mellon University
www.cs.cmu.edu/~awm
awm@cs.cmu.edu 412-268-7599

Linear Classifiers

- denotes +1
- denotes -1

Linear Classifiers

Linear Classifiers $\stackrel{q}{\mathbf{f} \longrightarrow}{ }^{\text {est }}$

- denotes +1
$\mathbf{f}(\mathbf{x}, \mathbf{w}, \mathrm{b})=\operatorname{sign}(w . \mathbf{x}-\mathrm{b})$
- denotes -1

Why Maximum Margin?

Support Vectors are those datapoints that the margin pushes up against

Specifying a line and margin

- How do we represent this mathematically?
- ...in m input dimensions?

Specifying a line and margin

- Plus-plane $=\{\mathbf{x}: \mathbf{w} \cdot \mathbf{x}+\mathrm{b}=+1\}$
- Minus-plane $=\{\mathbf{x}: \mathbf{w} \cdot \mathbf{x}+b=-1\}$

Classify as.. +1
if $\mathbf{w} \cdot \mathbf{x}+\mathrm{b}>=1$
$-1 \quad$ if $\quad \mathbf{w} . \mathbf{x}+\mathrm{b}<=-1$
Universe if $\quad-1<\mathbf{w} . \mathbf{x}+\mathrm{b}<1$
explodes

Computing the margin width

- Plus-plane $=\{\mathbf{x}: \mathbf{w} \cdot \mathbf{x}+\mathrm{b}=+1\}$
- Minus-plane $=\{\mathbf{x}: \mathbf{w} \cdot \mathbf{x}+\mathrm{b}=-1\}$

Claim: The vector \mathbf{w} is perpendicular to the Plus Plane. Why?

Computing the margin width

- Plus-plane $=\{\mathbf{x}: \mathbf{w} \cdot \mathbf{x}+b=+1\}$
- Minus-plane $=\{\mathbf{x}: \mathbf{w} \cdot \mathbf{x}+b=-1\}$

Claim: The vector \mathbf{w} is perpendicular to the Plus Plane yhy?
Let \mathbf{u} and \mathbf{v} be two vectors on the Plus Plane. What is $\mathbf{w} .(\mathbf{u}-\mathbf{v})$?

And so of course the vector \mathbf{w} is also
perpendicular to the Minus Plane

Computing the margin width

- Plus-plane $=\{\mathbf{x}: \mathbf{w} \cdot \mathbf{x}+\mathrm{b}=+1\}$
- Minus-plane $=\{\mathbf{x}: \mathbf{w} \cdot \mathbf{x}+\mathrm{b}=-1\}$
- The vector \mathbf{w} is perpendicular to the Plus Plane
- Let \mathbf{x}^{-}be any point on the minus plane
- Let \mathbf{x}^{+}be the closest plus-plane-point to \mathbf{x}^{-}.

Computing the margin width

How do we compute M in terms of \mathbf{w} and b ?

- Plus-plane $=\{\mathbf{x}: \mathbf{w} \cdot \mathbf{x}+\mathrm{b}=+1\}$
- Minus-plane $=\{\mathbf{x}: \mathbf{w} \cdot \mathbf{x}+\mathrm{b}=-1\}$
- The vector \mathbf{w} is perpendicular to the Plus Plane
- Let \mathbf{x}^{-}be any point on the minus plane
- Let \mathbf{x}^{+}be the closest plus-plane-point to \mathbf{x}^{-}.
- Claim: $\mathbf{x}^{+}=\mathbf{x}^{-}+\lambda \mathbf{w}$ for some value of λ. Why?

Computing the margin width

- Minus-plane $=\{\mathbf{x}: \mathbf{w} \cdot \mathbf{x}+b=-1\}$
- The vector \mathbf{w} is perpendicular to the Plus Plane
- Let \mathbf{x}^{-}be any point on the minus plane
- Let \mathbf{x}^{+}be the closest plus-plane-point to \mathbf{x}^{-}.
- Claim: $\mathbf{x}^{+}=\mathbf{x}^{-}+\lambda \mathbf{w}$ for some value of λ. Why?

Computing the margin width

What we know:

- $\mathbf{w} \cdot \mathbf{x}^{+}+\mathrm{b}=+1$
- w. $\mathbf{x}^{-}+b=-1$
- $\mathbf{x}^{+}=\mathbf{x}+\lambda \mathbf{w}$
- $\left|\mathbf{x}^{+}-\mathbf{x}^{-}\right|=M$

It's now easy to get M in terms of \mathbf{w} and b

Learning the Maximum Margin Classifier

Given a guess of \mathbf{w} and b we can

- Compute whether all data points in the correct half-planes
- Compute the width of the margin

So now we just need to write a program to search the space of w's and b's to find the widest margin that matches all the datapoints. How?
Gradient descent? Simulated Annealing? Matrix Inversion? EM? Newton's Method?

Learning via Quadratic Programming

- QP is a well-studied class of optimization algorithms to maximize a quadratic function of some real-valued variables subject to linear constraints.

$$
\begin{gathered}
\text { Quadratic Programming } \\
\text { Find } \underset{\mathbf{u}}{\arg \max } c+\mathbf{d}^{T} \mathbf{u}+\frac{\mathbf{u}^{T} R \mathbf{u}}{2} \\
\text { Subject to } \left.\quad \begin{array}{c}
a_{11} u_{1}+a_{12} u_{2}+\ldots+a_{1 m} u_{m} \leq b_{1} \\
a_{21} u_{1}+a_{22} u_{2}+\ldots+a_{2 m} u_{m} \leq b_{2} \\
: \\
a_{n 1} u_{1}+a_{n 2} u_{2}+\ldots+a_{n m} u_{m} \leq b_{n}
\end{array}\right\} \begin{array}{l}
\text { Quadratic criterion } \\
\begin{array}{l}
\text { nadditional linear } \\
\text { inequality } \\
\text { constraints }
\end{array}
\end{array} .
\end{gathered}
$$

And subject to

Learning the Maximum Margin Classifier

What should our quadratic optimization criterion be?

How many constraints will we have?
What should they be?

Learning Maximum Margin with Noise

What should our quadratic How many constraints will we optimization criterion be?
Minimize

$$
\frac{1}{2} \mathbf{w} \cdot \mathbf{w}+C \sum_{k=1}^{R} e_{k}
$$ have? R

What should they be?
$\mathbf{w} . \mathbf{x}_{\mathrm{k}}+\mathrm{b}>=1-\varepsilon_{\mathrm{k}}$ if $\mathrm{y}_{\mathrm{k}}=1$
w. $\mathbf{x}_{\mathrm{k}}+\mathrm{b}<=-1+\varepsilon_{\mathrm{k}}$ if $\mathrm{y}_{\mathrm{k}}=-1$

Learning Maximum Margin with Noise

What should our quadratic How many constraints will we optimization criterion be? have? 2R
Minimize

$$
\begin{array}{ll}
\frac{1}{2} \mathbf{w} \cdot \mathbf{w}+C \sum_{k=1}^{R} e_{k} & \begin{array}{l}
\text { What should they be? } \\
\mathbf{w}
\end{array} \mathbf{x}_{\mathrm{k}}+\mathrm{b}>=1-\varepsilon_{\mathrm{k}} \text { if } y_{\mathrm{k}}=1 \\
& \mathbf{w} \cdot \mathbf{x}_{\mathrm{k}}+\mathrm{b}<=-1+\varepsilon_{\mathrm{k}} \text { if } y_{\mathrm{k}}=-1 \\
& \varepsilon_{\mathrm{k}}>=0 \text { for all } k
\end{array}
$$

$$
\begin{gathered}
\text { An Equivalent QP } \\
\begin{array}{l}
\text { Maximize } \sum_{k=1}^{R} a_{k}+\sum_{k=1}^{R} \sum_{l=1}^{R} a_{k} a_{l} Q_{k l} \text { where }
\end{array} Q_{k l}=y_{k} y_{l}\left(\mathbf{x}_{k} \cdot \mathbf{x}_{l}\right) \\
\hline \begin{array}{c}
\text { Subject to these } \\
\text { constraints: }
\end{array}
\end{gathered} 0 \leq a_{k} \leq C \quad \forall k \quad \sum_{k=1}^{R} a_{k} y_{k}=0
$$

Then define:
$\mathbf{w}=\sum_{k=1}^{R} a_{k} y_{k} \mathbf{x}_{k}$
$b=y_{K}\left(1-e_{K}\right)-\mathbf{x}_{K} \cdot \mathbf{w}_{K}$
where $K=\arg \max a_{k}$

Then classify with:
$\mathbf{f}(\mathbf{x}, \mathbf{w}, \mathrm{b})=\operatorname{sign}(w . \mathbf{x}-\mathrm{b})$

An Equivalent QP
Maximize $\sum_{k=1}^{R} a_{k}+\sum_{k=1}^{R} \sum_{l=1}^{R} a_{k} a_{l} Q_{k l}$ where $Q_{k l}=y_{k} y_{l}\left(\mathbf{x}_{k} \cdot \mathbf{x}_{l}\right)$

Harder 1-dimensional dataset

 smirk off SVM's face.

What can be done about this?

Common SVM basis functions

$\mathbf{z}_{\mathrm{k}}=\left(\right.$ polynomial terms of \mathbf{x}_{k} of degree 1 to q$)$
$\mathbf{z}_{\mathrm{k}}=\left(\right.$ radial basis functions of $\left.\mathbf{x}_{\mathrm{k}}\right)$

$$
\mathbf{z}_{k}[j]=f_{j}\left(\mathbf{x}_{k}\right)=\operatorname{KernelFn}\left(\frac{\left|\mathbf{x}_{k}-\mathbf{c}_{j}\right|}{\mathrm{KW}}\right)
$$

$$
\mathbf{z}_{\mathrm{k}}=\left(\text { sigmoid functions of } \mathbf{x}_{\mathrm{k}}\right)
$$

This is sensible.
Is that the end of the story?
No...there's one more trick!

QP with basis functions

Maximize $\sum_{k=1}^{R} a_{k}+\sum_{k=1}^{R} \sum_{l=1}^{R} a_{k} a_{l} Q_{k l}$ where $Q_{k l}=y_{k} y_{l}\left(\mathbf{F}\left(\mathbf{x}_{k}\right) \cdot \mathbf{F}\left(\mathbf{x}_{l}\right)\right)$
Subject to these constraints:

Then define:

$$
\begin{aligned}
& \mathbf{w}=\sum_{k \text { s.t. } a_{k}>0} a_{k} y_{k} \mathbf{F}\left(\mathbf{x}_{k}\right) \\
& b=y_{K}\left(1-e_{K}\right)-\mathbf{x}_{K} \cdot \mathbf{w}_{K} \\
& \text { where } K=\arg \max a_{k}
\end{aligned}
$$

Then classify with:
$\mathbf{f}(\mathbf{x}, \mathrm{w}, \mathrm{b})=\operatorname{sign}(\mathrm{w} . \phi(\mathbf{x})-\mathrm{b})$

$\mathbf{F}(\mathbf{a}) \cdot \mathbf{F}(\mathbf{b})=$ Copyright © 2001,	$\stackrel{1}{\sqrt{2} a_{1}}$ $\sqrt{2} a_{2}$ $\sqrt{2} a_{m}$ a_{1}^{2} a_{2}^{2} a_{m}^{2} $\sqrt{2} a_{1}, a_{2}$ $\sqrt{2} a_{1} a_{3}$ $\sqrt{2} a_{1} a_{m}$ $\sqrt{2} a_{2} a_{3}$ $\sqrt{2}, a_{1} a_{m}$ $\sqrt{2} a_{n-1} a_{n}$	$\left.\begin{array}{c}1 \\ \sqrt{2} b_{1} \\ \sqrt{2} b_{2} \\ \vdots \\ \sqrt{2} b_{m} \\ b_{1}^{\prime} \\ b_{2}^{2} \\ \vdots \\ b_{m}^{2} \\ \sqrt{2} b_{2} b_{2} \\ \sqrt{2} b_{1} b_{3} \\ \vdots \\ \sqrt{2} b_{p_{m}} \\ \sqrt{2} b_{2} b_{3} \\ \vdots \\ \sqrt{2} b_{2} b_{m} \\ \vdots \\ \sqrt{2} b_{m-} b_{m}\end{array}\right)$	$\left\{\begin{array}{l} \left\{\begin{array}{l} 1 \\ + \\ \sum_{m=1}^{m} 2 a b_{i} \\ + \\ + \\ \sum_{i=1}^{m} a_{i}^{2} b_{i}^{2} \\ + \\ \sum_{i=1}^{m} \sum_{=+1}^{m} 2 a, a b b_{j} \end{array}\right. \\ \end{array}\right.$

$\begin{aligned} & \mathbf{F}(\mathbf{a}) \bullet \mathbf{F}(\mathbf{b})= \\ & 1+2 \sum_{i=1}^{m} a_{i} b_{i}+\sum_{i=1}^{m} a_{i}^{2} b_{i}^{2}+\sum_{i=1}^{m} \sum_{j=i+1}^{m} 2 a_{i} a_{j} b_{i} b_{j} \end{aligned}$	Just out of casual, innocent, interest, let's look at another function of a and b: $\begin{aligned} & =(\mathbf{a . b})^{2}+2 \mathbf{a . b}+1 \\ & =\left(\sum_{i=1}^{m} a_{i} b_{i}\right)^{2}+2 \sum_{i=1}^{m} a_{i} b_{i}+1 \\ & =\sum_{i=1}^{m} \sum_{j=1}^{m} a_{i} b_{i} a_{j} b_{j}+2 \sum_{i=1}^{m} a_{i} b_{i}+1 \\ & \left.=\sum_{i=1}^{m}\left(a_{i} b_{i}\right)^{2}+2 \sum_{i=1}^{m} \sum_{j=i+1}^{m} a_{i} b_{i} a_{j} b_{j}+2 \sum_{i=1}^{m} a_{i} b_{i}+1\right) \\ & \quad \text { They're the same! } \\ & \text { And this is only O(m) to } \\ & \text { compute! } \end{aligned}$

Then define:

$$
\begin{aligned}
& \mathbf{w}=\sum_{k \text { s.t. } a_{k}>0} a_{k} y_{k} \mathbf{F}\left(\mathbf{x}_{k}\right) \\
& b=y_{K}\left(1-e_{K}\right)-\mathbf{x}_{K} \cdot \mathbf{w}_{K} \\
& \text { where } K=\arg \max a_{k}
\end{aligned}
$$

Then classify with:
$f(x, w, b)=\operatorname{sign}(w, \phi(x)-b)$

Higher Order Polynomials

Poly- nomial	$\phi(\mathbf{x})$	Cost to build $Q_{k l}$ matrix tradition ally	Cost if 100 inputs	$\phi(\mathbf{a}) . \phi(\mathbf{b})$	Cost to build $Q_{k l}$ matrix sneakily	Cost if 100 inputs
Quadratic	All $m^{2} / 2$ terms up to degree 2	$m^{2} R^{2} / 4$	$2,500 R^{2}$	$(\mathbf{a . b + 1})^{2}$	$m R^{2} / 2$	$50 R^{2}$
Cubic	All $m^{3} / 6$ terms up to degree 3	$m^{3} R^{2} / 12$	$83,000 R^{2}$	$\left(\mathbf{a . b + 1) ^ { 3 }}\right.$	$m R^{2} / 2$	$50 R^{2}$
Quartic	All $m^{4} / 24$ terms up to degree 4	$m^{4} R^{2} / 48$	$1,960,000 R^{2}$	$\left(\mathbf{a . b + 1) ^ { 4 }}\right.$	$m R^{2} / 2$	$50 R^{2}$

OP with Owintir hasis functions

We must do $\mathrm{R}^{2} / 2$ dot products to get this matrix ready.
In 100-d, each dot product now needs 103 operations instead of 75 million
But there are still worrying things lurking away. What are they? constraints:
$Q_{k l}=y_{k} y_{l}\left(\mathbf{F}\left(\mathbf{x}_{k}\right) \cdot \mathbf{F}\left(\mathbf{x}_{l}\right)\right)$

Then define:

$$
\begin{aligned}
& \mathbf{w}=\sum_{k \text { s.t. } a_{k}>0} a_{k} y_{k} \mathbf{F}\left(\mathbf{x}_{k}\right) \\
& b=y_{K}\left(1-e_{K}\right)-\mathbf{x}_{K} \cdot \mathbf{w}_{K} \\
& \text { where } \quad K=\arg \max a_{k}
\end{aligned}
$$

Then classify with:
$f(\mathbf{x}, w, b)=\operatorname{sign}(w, \phi(\mathbf{x})-b)$
Support Vector Machines: Slide 54

QP with Quintic basis functions

We must do $\mathrm{R}^{2} / 2$ dot products to get this matrix ready.
In 100-d, each dot product now needs 103 operations instead of 75 million
But there are still worrying things lurking away. What are they?
$\rangle Q_{k l}=y_{k} y_{l}\left(\mathbf{F}\left(\mathbf{x}_{k}\right) \cdot \mathbf{F}\left(\mathbf{x}_{l}\right)\right)$

-The	-The fear of overfitting with this enormous number of terms
Then define:	-The evaluation phase (doing a set of predictions on a test set) will be very expensive (why?)
$\mathbf{w}=\sum_{k \text { s.t. } a_{k}>0} a_{k} y_{k} \mathbf{F}\left(\mathbf{x}_{k}\right)$	
$b=y_{K}\left(1-e_{K}\right)-\mathbf{x}_{K} \cdot \mathbf{W}_{K}$	
where $K=\arg \max a_{k}$	Then classify with:
k	$\mathbf{f}(\mathbf{x}, \mathrm{w}, \mathrm{b})=\operatorname{sign}(\mathrm{w} . \boldsymbol{\phi}(\mathbf{x})-\mathrm{b})$

OP with Owintic hasis functions

We must do $\mathrm{R}^{2} / 2$ dot products to get this matrix ready.
In 100-d, each dot product now needs 103 operations instead of 75 million
But there are still worrying things lurking away.

QP with Quintic basis functions

We must do $\mathrm{R}^{2} / 2$ dot products to get this matrix ready.
$Q_{.,}=v, v .(\mathbf{F}(\mathbf{x}.) \mathbf{F}(\mathbf{x})$.
The use of Maximum Margin
magically makes this not a
problem
operations instead of 75 million
But there are still worrying things lurking away. What are they?
$k>a_{2} y_{t}=0$

Copyright © 2001, Andrew W. Moore

OP with Owintic hasis functions

We must do $\mathrm{R}^{2} / 2$ dot products to get this matrix ready.
In 100-d, each dot product now needs 103 operations instead of 75 million
But there are still worrying things lurking away.

Then define:

$$
\begin{array}{r}
\mathbf{w}=\sum_{k=1} a_{k} y_{k} \mathbf{F}(\mathbf{x}_{k} \overbrace{0}^{\text {expt }} \\
\mathbf{w} \cdot \mathbf{F}(\mathbf{x})= \\
=\sum_{k \text { s.t. } a_{k}>0} a_{k} y_{k} \mathbf{F}\left(\mathbf{x}_{k}\right) \cdot \mathbf{F}(\mathbf{x} \\
\sum_{k \text { s.t. } a_{k}>0} a_{k} y_{k}\left(\mathbf{x}_{k} \cdot \mathbf{x}+1\right)^{5}
\end{array}
$$

-The evaluation phase (doing a set of
predictions on a test set) will be very
expensive (why?)
-The evaluation phase (doing a set of
predictions on a test set) will be very
expensive (why?) expensive (why?)
The fear of overfitting with this enormous number of terms
 needs 75 million operations. What

QP with Quintic basis functions	
$\text { Maximize } \sum_{k=1}^{R} a_{k}+\sum_{k=1}^{R} \sum_{l=1}^{R} a_{k} a_{l} Q_{k l} \mathrm{wh}$	Andrew's opinion of why SVMs don't overfit as much as you'd think:
$\begin{aligned} & \text { Subject to these } \\ & \text { constraints: }\end{aligned} \quad 0 \leq a_{k} \leq C$	No matter what the basis function, there are really only up to R parameters: $\alpha_{1}, \alpha_{2} . . \alpha_{R^{\prime}}$, and usually most are set to zero by the Maximum Margin.
Then define: $\mathbf{w}=\sum_{k \text { s.t. } a_{k}>0} a_{k} y_{k} \mathbf{F}\left(\mathbf{x}_{k}\right)$	Asking for small w.w is like "weight decay" in Neural Nets and like Ridge Regression parameters in Linear regression and like the use of Priors in Bayesian Regression---all designed to smooth the function and reduce
$\begin{aligned} \mathbf{w} \cdot \mathbf{F}(\mathbf{x}) & =\sum_{k} a_{k} y_{k} \mathbf{F}\left(\mathbf{x}_{k}\right) \cdot \mathbf{F}(\mathbf{x}) \\ & =\sum_{k \text { s.s. }}^{k a_{k}>a_{k}>a_{k}} a_{k} y_{k}\left(\mathbf{x}_{k} \cdot \mathbf{x}+1\right)^{5} \end{aligned}$ Only Sm operations (S=\#support vectors)	verfitting. Then classify with: $f(\mathbf{x}, \mathrm{w}, \mathrm{~b})=\operatorname{sign}(\mathrm{w} . \phi(\mathbf{x})-\mathrm{b})$
Copyright 8 2001, Andiew W. More	Suport vector Machines:

SVM Kernel Functions

- $K(\mathbf{a}, \mathbf{b})=(\mathbf{a} \cdot \mathbf{b}+1)^{d}$ is an example of an SVM Kernel Function
- Beyond polynomials there are other very high dimensional basis functions that can be made practical by finding the right Kernel Function
- Radial-Basis-style Kernel Function:

$$
K(\mathbf{a}, \mathbf{b})=\exp \left(-\frac{(\mathbf{a}-\mathbf{b})^{2}}{2 \sigma^{2}}\right)
$$

- Neural-net-style Kernel Function:

$$
K(\mathbf{a}, \mathbf{b})=\tanh (\kappa \mathbf{a} \cdot \mathbf{b}-\delta)
$$

σ, κ and δ are magic parameters that must be chosen by a model selection method such as CV or VCSRM*
*see last lecture

VC-dimension of an SVM

- Very very very loosely speaking there is some theory which under some different assumptions puts an upper bound on the VC dimension as

$$
\left\lceil\frac{\text { Diameter }}{\text { Margin }}\right\rceil
$$

- where
- Diameter is the diameter of the smallest sphere that can enclose all the high-dimensional term-vectors derived from the training set.
- Margin is the smallest margin we'll let the SVM use
- This can be used in SRM (Structural Risk Minimization) for choosing the polynomial degree, RBF σ, etc.
- But most people just use Cross-Validation

SVM Performance

- Anecdotally they work very very well indeed.
- Example: They are currently the best-known classifier on a well-studied hand-written-character recognition benchmark
- Another Example: Andrew knows several reliable people doing practical real-world work who claim that SVMs have saved them when their other favorite classifiers did poorly.
- There is a lot of excitement and religious fervor about SVMs as of 2001.
- Despite this, some practitioners (including your lecturer) are a little skeptical.

Doing multi-class classification

- SVMs can only handle two-class outputs (i.e. a categorical output variable with arity 2).
- What can be done?
- Answer: with output arity N, learn N SVM's
- SVM 1 learns "Output==1" vs "Output != 1"
- SVM 2 learns "Output==2" vs "Output != 2"
- :
- SVM N learns "Output==N" vs "Output != N"
- Then to predict the output for a new input, just predict with each SVM and find out which one puts the prediction the furthest into the positive region.

References

- An excellent tutorial on VC-dimension and Support Vector Machines:
C.J.C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2):955-974, 1998.
http://citeseer.nj.nec.com/burges98tutorial.html
- The VC/SRM/SVM Bible:

Statistical Learning Theory by Vladimir Vapnik, WileyInterscience; 1998

What You Should Know

- Linear SVMs
- The definition of a maximum margin classifier
- What QP can do for you (but, for this class, you don't need to know how it does it)
- How Maximum Margin can be turned into a QP problem
- How we deal with noisy (non-separable) data
- How we permit non-linear boundaries
- How SVM Kernel functions permit us to pretend we're working with ultra-high-dimensional basisfunction terms

