

OP with bas	sis functions		
Maximize $\sum_{k=1}^{R} a_k + \sum_{k=1}^{R} \sum_{l=1}^{R} a_k a_l Q_k$	where $Q_{kl} = y_k y_l (\mathbf{F}(\mathbf{x}_k) \cdot \mathbf{F}(\mathbf{x}_l))$ We must do R ² /2 dot products to		
Subject to these $0 \le a_k \le$ constraints:	get this matrix ready. Each dot product requires m ² /2 additions and multiplications		
Then define:	The whole thing costs R ² m ² /4. Yeeks!		
$\mathbf{w} = \sum_{k \text{ s.t. } a_k} a_k y_k \mathbf{F} (\mathbf{x}_k)$ $b = y_K (1 - e_K) - \mathbf{x}_K \cdot \mathbf{w}$ where $K = \arg \max_k a$			
Copyright © 2001, Andrew W. Moore	Support Vector Machines: Slide 48		

OP with Quadratic	basis functions
Subject to these $0 \le a_k \le \frac{ge}{Ea}$	where $Q_{kl} = y_k y_l (\mathbf{F}(\mathbf{x}_k).\mathbf{F}(\mathbf{x}_l))$ e must do R ² /2 dot products to t this matrix ready. ch dot product now only requires additions and multiplications
Then define:	
$\mathbf{w} = \sum_{k \text{ s.t. } a_k > 0} a_k y_k \mathbf{F} (\mathbf{x}_k)$	Then classify with: f(x, w, b) = sign(w, f(x) - b)
$b = y_K (1 - e_K) - \mathbf{x}_K \cdot \mathbf{w}_K$	
where $K = \arg \max_{k} a_{k}$	
Copyright © 2001, Andrew W. Moore	Support Vector Machines: Slide 52

Higher Order Polynomials								
f (x)	Cost to build <i>Q_{k1}</i> matrix tradition ally	Cost if 100 inputs	f (a). f (b)	Cost to build <i>Q_{kI}</i> matrix sneakily	Cost if 100 inputs			
All <i>m²/2</i> terms up to degree 2	m ² R ² /4	2,500 <i>R</i> ²	(a . b +1) ²	m R ² / 2	50 <i>R</i> ²			
All <i>m³/6</i> terms up to degree 3	m ³ R ² /12	83,000 <i>R</i> ²	(a . b +1) ³	m R ² / 2	50 <i>R</i> ²			
All <i>m⁴/24</i> terms up to degree 4	m ⁴ R ² /48	1,960,000 <i>R</i> ²	(a . b +1) ⁴	m R ² / 2	50 <i>R</i> ²			
	f (x) All $m^2/2$ terms up to degree 2 All $m^3/6$ terms up to degree 3 All $m^4/24$ terms up to	$f(x)$ Cost to build Q_{kl} matrix tradition allyAll $m^2/2$ terms up to degree 2 $m^2 R^2 / 4$ All $m^3/6$ terms up to degree 3 $m^3 R^2 / 12$ All $m^4/24$ terms up to $m^4 R^2 / 48$	$f(x)$ Cost to build Q_{kl} matrix tradition allyCost if 100 inputsAll $m^2/2$ terms up to degree 2 $m^2 R^2 / 4$ $R^2 / 4$ 2,500 R^2 All $m^3/6$ terms up to degree 3 $m^3 R^2 / 12$ R^2 83,000 R^2 All $m^4/24$ terms up to $m^4 R^2 / 48$ $R^2 / 48$ 1,960,000 R^2	$f(x)$ Cost to build Q_{kl} matrix tradition allyCost if 100 inputs $f(a).f(b)$ All $m^2/2$ terms up to 	$f(x)$ Cost to build Q_{kl} matrix tradition allyCost if 100 inputs $f(a).f(b)$ Cost to build Q_{kl} matrix sneakilyAll $m^2/2$ terms up to degree 2 $m^2 R^2 / 4$ 2,500 R^2 $(a.b+1)^2$ $m R^2 / 2$ All $m^3/6$ terms up to degree 3 $m^3 R^2 / 12$ 83,000 R^2 $(a.b+1)^3$ $m R^2 / 2$ All $m^4/24$ terms up to $m^4 R^2 / 48$ 1,960,000 R^2 $(a.b+1)^4$ $m R^2 / 2$			

What You Should Know

- Linear SVMs
- The definition of a maximum margin classifier
- What QP can do for you (but, for this class, you don't need to know how it does it)
- How Maximum Margin can be turned into a QP problem
- How we deal with noisy (non-separable) data
- How we permit non-linear boundaries
- How SVM Kernel functions permit us to pretend we're working with ultra-high-dimensional basisfunction terms

Copyright © 2001, Andrew W. Moore

Support Vector Machines: Slide 65