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Abstract 
 
 
 This thesis presents the design of a WAN simulator named SWAN and related 
utilities. SWAN is an object-oriented simulator capable of simulating large scale 
networks with a heterogeneous community of users. It has a very flexible and 
customisable design. The simulator has a generic kernel that performs the functions of 
routing, multicasting, DNS and managing the components. There is a second layer 
that hosts the classes performing specific functions. These classes can be modified to 
suit the needs of various networks. Issues like portability and compatibility with other 
simulators has been taken into account. The input and output formats are standard 
languages like GML and XML. Along with the simulator this thesis describes a 
network diagram drawing tool called NetGraph that has a sophisticated drawing 
interface. The research contribution of the project lies in a Monte Carlo scheme called 
GRAPES for generating synthetic web requests. It combines two seemingly unrelated 
distributions and generates web requests that follow both of them. It is an order of 
magnitude faster than other request generators. Along with the sequential algorithm a 
work efficient parallel algorithm for the PRAM model was also developed.  
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Chapter 1

Introduction

The Internet has pervaded every aspect of human society. The World Wide
Web (WWW) has become a major source of information, entertainment and a
medium for business and commerce. The total number of web sites has grown
from fifty in 1993 to fifty million by the year 2000. The phenomenal and ex-
plosive growth of the Web has sparked much research activity on improving
the performance of the Web. Significant improvements have been realized in
the performance of the Web due to the incorporation of newer network proto-
cols [11] and web-caching algorithms [17, 10, 8, 4, 7], leading to better service
to millions of users. For evaluation of such protocols and algorithms a real-
istic network environment must be created. Simulation is a natural scientific
method in this direction. Several simulators like NS2 [13] and REAL [14] and
artificial workload generators like ProWGen [6], SURGE [3], SpecWeb99 [15]
and WebBench [16] have been used to create and simulate Web traffic at various
levels in the network hierarchy. NS2 and REAL simulate traffic at the lower
level whereas the others simulate traffic at the application level for wide area
networks (WANs).

1.1 SWAN Simulator

This thesis describes the design of such sort of a simulator titled “SWAN” along
with its associated utilities. SWAN has been designed to function as a WAN
simulator. It simulates networks at a high level. As a consequence network
layer and transport layer details are not handled. It just tries to simulate a
network based on models of application level traffic adopting a macroscopic
view of the WAN.

SWAN has chiefly three components.

• Proxy This represents a single user or a group of users generating web
traffic. Such sort of traffic is mainly composed of http, ftp and smtp
traffic. The proxy entity in SWAN represents the user in the inernet who
continuously demands some service over the net. The behaviour of proxies
has been studied in detail [2]. Several analytic models have been proposed
to model such characteristics. The models chiefly concenterate on (i) The
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popularity of the web pages requested, (ii) properties of temporal locality
and (iii) rate of requests.

• Server This represents the web server. These entities host web pages.
Proxies continuously request pages from these servers. Servers are dis-
tributed all over the internet and serve a variable number of pages with
variable request rates. The characteristics of web servers have also been
studied and several analytical models have been proposed on the basis
of empirical observations. The key features studied in literature are (i)
geographical distribution of servers (ii) distribution of file sizes (refer to
[2]).

• Cache This entity lies between the web server and the proxy. It caches the
web pages from the server. When the proxy requests for the page again
then the request is satisfied from the cache. Thus the cache acts as an
intermediary between the proxy and the server. There are several caching
algorithms. Prominent among them are Harvest [8] and D4. There are
also different cache replacement schemes like LFU, LRU, FIFO etc. This
is probably the least studied among the three entities. The relationship of
caching schemes to overall network performance is a big research problem.

SWAN is very different from other WAN simulators. Simulators like
SURGE, ProWGen and SpecWeb either simulate the proxies or the servers,
but not both. As an example SURGE generates proxy workloads but does not
have the concept of servers that will serve the requests. SpecWeb simulates the
web server and is geared towards measuring properties like server utilization
and server load. SWAN subsumes all these functionalities and provides a holis-
tic network environment possessing all the major components. As described
in the previous paragraph it has users represented as proxies, servers and the
cache. Thus, all network properties measurable in other network simulators can
be measured in SWAN along with some extra properties of WAN’s like latency
and average cache hit ratios. Due to the holistic simulation environment of
SWAN it is amenable to use in simulation of large wide area networks having
a heterogenous community of users and web services.

During the course of the project the SWAN simulator was developed, coded,
debugged and tested. The design of the simulator is presented in chapter 2. It
is an object oriented design which is highly customisable depending upon the
specific network being simulated. The architecture is basically broken up into
two parts. One is the basic kernel that handles all the cumbersome jobs like
routing, multicasting, DNS lookups etc. The implementers are not expected
to change this code as it is common across most of the networks. But the
flexibility of SWAN is owed to the second subsytems that consists of a group
of abstract base classes. The implementers are expected to provide their own
implementations. Thus it is a plug-in type of architecture where a new class
with a well defined interface can be plugged in to change the behaviour of the
simulator. Along with SWAN default implementations are provided. So the
user just needs to change a few classes to tailor the simulator to the needs of
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his network. To summarize, SWAN is a highly customisable, flexible object
oriented simulator designed to simulate large scale networks.

During the design of SWAN certain issues like compatibility and portability
were taken into account. SWAN must be compatible with other simulators.
Along with that SWAN must be platform independent and must have hooks
that can be used by visual programs to interact with the simulator. Thus,
SWAN has functions that provide an interface to command line tools as well as
other sophisticated visual tools. It was not always possible to make it completely
platform independent due to the inherent limitations of the C++ langauge in
which SWAN was coded. In such situations specific macros and functions were
provided for different operating systems especially WIN32 and UNIX. As an
example windows uses the MFC thread library whereas UNIX uses pthreads
library. Thus two stub functions were provided such that programs could access
SWAN in a transparent manner.

Now coming to the issue raised in the earlier paragraph related with com-
patibility of SWAN with other simulators. First of all the need was realized
that probably an intelligent user would hack SWAN and other simulators and
try to create a hybrid simulator optimized for his network. Keeping such sort of
applications in mind SWAN has a very similar interface and component struc-
ture as other simulators. Since, the functionalities of most other simulators are
a subset of SWAN’s functionalities, SWAN can use them in place of its own
classes. To use those simulators certain wrapper classes need to be written
that conform to SWAN’s specification. Another issue that crops up is how in-
put/output will be handled. There is a standard format used by most network
simulators called GML (Graph Markup Language). To maintain compatibility
SWAN was made to communicate in GML. The network topology expressed in
GML is fed to SWAN and it produces output in GML.

1.2 NetGraph

It was realised during the course of the project that complicated networks with
a lot of properties need to be drawn. Thus a tool is required to facilitate drawing
of complicated networks and ultimately saving it in a standard format like GML
or XML. In response to this need a tool called NetGraph was developed in
Visual C++. It features a rich graphical development environment. It has a lot
of GUI functions as well as functions to manipulate network schemas. Thus very
complicated networks can be drawn and manipulated efficiently with minimal
effort. The final output of NetGraph is a GML file or XML page containing
the network topology. NetGraph can also read GML and XML files. NetGraph
has also been developed to have other uses. It is a general tool to draw a
network. It has facilities of printing the network thus developed and it can save
the drawing as a bitmap. NetGraph can even display the output GML file of
other simulators very seamlessly.
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1.3 GRAPES - a scheme for web request generation

As described above several utilities were required during the building of the
simulator. Some of them were so significant that they became problems in
their own right. As mentioned before analytical models of web traffic have
been proposed on the basis of certain empirical observations. Now when web
traffic is to be simulated a host of traffic generators are required that can
simulate differents aspects of web traffic. Most of these generators generate
random variables following a certain distribution. But one such generator that
generates page requests turned out to be very complicated. It tries to combine
distributions of page popularity and temporal locality. Several algorithms have
been implemented in SURGE and ProWGen. But they were observed to have
superlinear time complexity and were thus not scalable to large simulation
environments.

So, the third problem was to design an efficient and scalable algorithm
to generate web requests. This algorithm should obey the distributions of
page popularity and temporal locality. A Monte Carlo scheme called GRAPES
(Scalable Efficient Parallel Artificial Request Generator) was developed that
possessed the above mentioned properties. Along with that it is amenable to a
parallel implementation on the PRAM model that is work efficient. This scheme
produces web request streams with properties very similar to those generated
by other simulators. It is an order of magnitiude faster that other simulators
for large inputs. This makes it highly scalable. If the resources of a single
processor fall short then the parallel version can be used in a multiprocessor
machine (refer to chapter 4.

1.4 Organization of the Thesis

In chapter 2 an overview of the SWAN simulator is presented. The object
oriented design is presented in detail along with other interfacing details. Then
certain experiments are described that were conducted on the WAN simulator
for certain representative networks. The results are discussed along with proofs
of correctness.

Chapter 3 discusses the NetGraph tool and gives a broad overview of its fea-
tures. The interfacing details are discussed and some screenshots are presented.
Chapter 4 describes the GRAPES scheme for request generation. There are a
lot of intricate details that have been explained along with simulation results
and their analysis. Chapter 5 concludes the dissertation and chapter 6 discusses
the scope of future work.



Chapter 2

Simulator for a WAN - Swan

The World Wide Web is growing at an enormous rate. New strategies are re-
quired to support the growth and keep the latency of document retrieval within
limits. Many simulators have been developed to simulate the internet at great
detail (ns2 , real5 ). Our aim is to design a network simulator that simulates
the internet at a high level and depicts its usage analytically. Several analytic
models are used in building the Simulator. The simulator is used to reproduce
Internet traffic with properties closely matching with those of the empirically
observed properties. The Simulator can then be used for testing different net-
work protocols, web-caching algorithms, planning an efficient Network topology,
etc.

The Network topology of any WAN can be represented by a graph where
a node represents each machine in the network and each communication link
between two machines is represented by an edge. Each machine in the network
can be a proxy server that generates requests on behalf of a community of users
or a cache that stores some frequently referenced pages or a server that is the
host of some pages. A proxy generates requests, and these requests are sent to
the server. If on any intermediate node is a cache, and if the referenced page
is present at the cache, then the cache sends the page to the proxy that has
requested the page.

2.1 Architecture of the Simulator

This section describes the basic architecture of a WAN simulator. The design
is an object oriented design which is completely customizable depending on the
type of network being modeled. There are a set of core classes that provide
the main functionality. Then there are a group of base classes which provide
the advanced functionality. These base classes can be overridden to change
the default behavior. This is a highly adaptive architecture that can support
various types of networks, routing and caching strategies.

The top level view is described in figure 2.1.1.
The simulator has an array of nodes that emulate the network by passing

messages. The messages are stored in an event queue. Depending upon the
addressee of the message the appropriate node event handler is invoked. There



2.1 Architecture of the Simulator 7

Figure 2.1.1: Top Level Hierarchy

are also two other modules that can be plugged into this architecture.
They are :

1. Simulation Visualiser

2. Module to write to stdout

The simulator can be represented as a set of functions built upon a message
passing model (see figure 2.1.2).

2.1.1 Core Classes

There are four core subsystems that we wish to be part of every derived imple-
mentation.

1. Node

2. Message

3. Event

4. Dns

1. Node

class SimItem
{
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Figure 2.1.2: Message Passing Model

/// message processing function
virtual bool processMessage(Message* msg) = 0;
};

class Node : public SimItem
{
protected:
int id;

public :
Configuration *config ;
Cache *cache ;
Network *network ;
Proxy *proxy ;
Server *server ;

Node(int id) ;
~Node() ;

bool processMessage(Message* msg) ;
NodeStat* getStat() ;
ConfigStat* getConfigStat() ;
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Figure 2.1.3: Message Passing

CacheStat* getCacheStat() ;
NetworkStat* getNetworkStat() ;
ProxyStat* getProxyStat() ;
ServerStat* getServerStat() ;
int getId();

};

As this class is the only access point for external modules like the visualiser
and the IO subsystem all its methods are public. As we don’t intend to
override the core, the functions are not virtual functions. All sub systems
must implement the interface SimItem. It has just one abstract method.
This method is the message processing function. The event queue will
invoke this method for a node when it sees a message destined for it. The
node will invoke this method for every subsystem. This allows more than
one subsystem to process the same message. The return type is a boolean
value which is true if the subsystem has completed processing the message
and no more processing is required for the message. Figure 2.1.3 shows
the message passing schema.

Each Node contains five sub systems - the Configuration, Network, Proxy,
Server and Cache (see figure 2.1.4). For advanced functionality, any of
these sub systems can be derived and plugged in to the Node. We will
come to these sub systems later on.

2. Message This is a generic class that specifies the framework of a mes-
sage. This class should be used for some simple cases as it provides a
few default fields. It should be overridden when custom messages are
required. This memo requires that the generic message type be typecast
into the derived type in a subsystem that is willing to process it. The
C++ <dynamic cast> operator can be used for this purpose.

class Message
{
protected :

int type ;
int origSourceId ;
int origDestId ;
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Figure 2.1.4: Node Class

double origTime ;

public :
void setType(int type);
void setOrigSourceId(int id);
void setOrigDestId(int id);
void setOrigTime(double time);
int field ;
long size ;
double nextTime ;
int sourceId ;
int destId ;
Message(int type,int source,int dest,long size,int field) ;
Message(int type,int source,int dest,long size,int field, double origTime);
virtual ~Message() ;
int getType() ;
int getOrigSourceId() ;
int getOrigDestId() ;
double getOrigTime() ;

};

Every message has a type. This specifies the action to be done or re-
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quested. The message types are defined in a separate header file “con-
stants”. In the current implementation there are six types of mes-
sages - PAGE REQUEST, PAGE REPLY, PROXY WAKEUP, SOCKET
WAKEUP, DNS REQUEST and DNS REPLY.

In addition the message also contains information such as the original
source of the message, the final destination of the message, the created
time, the next occurrence time, the immediate source and the immediate
destination.

The message also contains a field which contains the primary most im-
portant data. In case the message is required to carry more data,
a void pointer can be used. The only condition is that the receiver
should know what to expect and consequently typecast the data using
the <dynamic cast> operator.

3. Event Queue This is a global resource that is there in the global names-
pace Swan. There is a Event queue class that contains a priority queue
of message pointers. The queue is prioritized based upon the next time
that the message will be fired.

class EventQueue
{
public:

vector<Message *> v;
void push(Message *msg) ;
Message* top() ;
Message* pop() ;
bool empty() ;
void updateQueue(double time);
EventQueue() ;
virtual ~EventQueue() ;

private:
int bsearch(int time, int start, int finish);

};

The Event Queue contains a vector which contains the messages. The
messages in this vector are arranged according to their next occurrence
time ’nextTime’. The message which is going to occur next i.e the message
with the least next occurrence time will be at index 0 of the vector. When
a message has to be pushed into the EventQueue, the message is inserted
at the appropriate position in the vector so as not to change the order of
the EventQueue. When a message is popped, the message at index 0 in
the vector is removed.

4. Dns This class models a DNS server. The DNS server receives DNS
requests for a certain page. The DNS server then sends a DNS reply to the
node sending the DNS request the site at which the requested page can
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be found. There are two associated functions. The first function returns
the list of all the addresses and the second returns an arbitrary address
among them. This class is really helpful to support mirroring of websites
in servers etc. In the current implementation, we have taken that there is
no time lag between the node sending the request and the node receiving
the corresponding reply.

class Dns : public SimItem
{
protected:

int numPages ;
vector<int>* pages ;

public:
void addEntry(int page,int server) ;
void delEntry(int page, int server) ;
int getSite(int page) ;
vector<int>* getMultiSite(int page) ;
Dns(int numPages) ;
virtual ~Dns() ;
virtual bool processMessage(Message* msg) ;

};

2.1.2 Description of the sub systems

Each Node class contains five sub-systems. Further sub systems can be added
into the node class by deriving the node class.

Each node class consists of the five following sub systems.

1. Configuration

2. Network

3. Proxy

4. Server

5. Cache

1. Configuration Depending upon the type of the network a node might
have a lot of configuration information. This information might contain
the network addresses of the node, hardware addresses of the node etc.
Along with this we also need to know whether the node is configured
as proxy, server or cache or as a mixture of any of the three. To keep
all this information the Configuration class is used. This has the proxy,
server, cache configuration information along with the unicast id and the
multicast id’s of the node.
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class Configuration
{

protected :
bool proxy ;
bool server ;
bool cache ;
int id ;
char desc[64] ;
vector<int> multids ;

public:
Configuration(int id,char* desc,bool proxy,bool server,bool cache) ;
virtual ~Configuration() ;
bool getProxy() ;
bool getCache() ;
bool getServer() ;
int getId() ;
char* getDesc() ;
vector<int>* getMultids() ;
void addId(int id) ;
void delId(int id) ;
bool exists(int id) ;
ConfigStat* getStat() ;

};

2. Network This is by far the most important class in the simulator. It
simulates the network layer functions :

• Routing

• Link Management and revival

• Unicasting and multicasting

• Flow Control

This is an ideal situation to use the marvels of object oriented program-
ming. The Network contains the router, the socket and the adjacent links.
The router and socket implement the SimItem interface. When the net-
work receives messages to be processed, it passes on these messages to
the router and the socket for processing. The network class has the same
plug in architecture as described earlier. Its high level diagram is shown
in figure 2.1.5.

class Network : public SimItem
{

protected:
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Figure 2.1.5: Network Class

int id;

public:
Router* router ;
vector<Link*> links ;
Socket* socket ;

int getId();
virtual NetworkStat* getStat() ;
SocketStat* getSocketStat();
RouterStat* getRouterStat();
virtual bool processMessage(Message* msg) ;
Network(int id);
virtual ~Network() ;

};

Default implementations are provided for these subsystems. For the
router static shortest path min-hop routing is used.

An array of link ids is stored. These pointers to links have the bandwidth
and latency information. Useful extension to these classes can have error
information and other features.

The Socket class is a class that is used to transmit messages (unicast
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or multicast) to other nodes of the network. This is very similar to the
send system call that sends a group of bytes over the network. This
incorporates data link, network and transport layer functionality. In the
default implementation this gets the routing pathfrom the router and
unicasts or multicasts the packets to their desired destination. But more
advanced implementations like introducing errors, error control, sliding
window etc. are possible. This socket can even act like a Tcp or Udp
socket that has sliding windows and the slow start mechanism. In the
base class, the socket receives the message from the network after the
message has been processes by the router. Therefore, the destination
field of the message is already set. The socket then immediately starts
transmitting the message across the link to the destination if the link
is free. In case, the link is busy, the socket stores the message in its
internal message queue, and when the link becomes free, the socket starts
transmitting the message.

(a) Router The router is a base class that provides shortest path min-
hop routing facilities.

class Router : public SimItem
{
protected:

int id;
int *table ;
int tableSize ;

virtual int getNextNode(int dest) ;
virtual int getNextLink(int dest) ;
virtual vector<int>* getNodes(vector<int>* dest) ;
virtual vector<int>* getLinks(vector<int>* dest) ;

public :
virtual bool processMessage(Message* msg) ;
Router(int id, int tablesize) ;
Router(int id) ;
virtual ~Router() ;
RouterStat* getStat();

};

The router also derives the simItem interface. The routing subsystem
can process some messages. The messages that signal link failure and
link revival should be processed by the router. Then the router can
update its routing tables based on the new information obtained. In
the base class, when the router receives any message which has to
be routed, it sets the destination field of the message and passes it
back to the network.
The router has support for unicasting. Given the destination, the
functions getNextNode and getNextLink return the next node and
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link on the way. If the destination is the same as this node then
the next node is the id of the node and the next link is -1. If a
path does not exist then the next link and node are both -1. The
router supports multicasting. Given a vector of nodesm the methods
getNodes() and getLinks() returns a vector of next nodes or links to
take to reach the destination.

(b) Link Next the link class is described. Each link has a unique linkId.
Along with an unique id the link class stores information about its
bandwidth, delay and its present status(activated or cutoff). The
units of bandwidth and delay are in bytes per second and seconds
respectively but any other unit can be chosen.

class Link
{
protected:

int id ;
int nodeA ;
int nodeB ;
double timeBusyUntil;
void setTimeBusyUntil(double time);

public :
double bandwidth ;
double delay ;
bool status ;
long bytesAB;
long bytesBA;
int getId() ;
int getNodeA() ;
int getNodeB() ;
double getTimeBusyUntil();
void transmit(int src, double time, long size);
Link(int id,int nodeA,int nodeB,double bandwidth,double delay,

bool status= true) ;
virtual ~Link() ;
virtual LinkStat* getStat() ;

};

(c) Socket This is the subsystem that transmits data to an adjacent
node. This class is meant to emulate a generic socket class that
can transfer a group of bytes from one end to the other. In the
default implementation unicasting and multicasting are supported.
Issues like error control, congestion handling etc. are not handled
by the default implementation. For custom sockets, this class cen be
extended to provide advanced functionality. For eg. this class can
be extended to contain a sliding window and congestion handling
routines.
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In the default implementation this class looks like this:

class Socket : public SimItem
{
protected :

int id;
MessageQueue* queue ;
int maxlen ;

public :
long reqSent;
long packDropped;
virtual void unicast(Message* msg) ;
virtual void multicast(Message *msg) ;
int getAdjacentLink(int dest);
virtual bool processMessage(Message* msg) ;
Socket(int id, int maxlen = 100) ;
virtual ~Socket() ;
SocketStat* getStat();

};

The socket also contains an internal message queue. When messages
need to be buffered, the messages are stored in this message queue. In
the base class, the message queue is implemented as a FIFO message
queue.
The function unicast(Message* msg) transfers the message from the
current node to the adjacent node. The destId field of the message
gives the id of the next node.

3. Cache A node might be configured as a cache. The job of this cache
object will be to temporarily cache web objects. Older objects will be
replaced with new ones. Upon a cache miss the cache might have several
strategies of fetching the page. The cache might query the parent or
it might multicast the request to its group members. After getting the
page the cache subsystem decides whether to cache the page or not. There
might be several schemes for this LRU, LFU etc. Thus a base cache object
has been created which is extensible to embody one or more of these
schemes. The default implementation implements the LRU cache with
no caching algorithm. The class design for the cache object is presented
below :

class CacheType
{
public :

int rep;
int algo ;
CacheType() ;
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CacheType(int rep,int algo) ;
virtual ~CacheType() ;

};

class Cache : public SimItem
{
protected:

int id;
Network *net;
vector<int*> pages ;
long totHits;
long totMisses;
int getPageSize(int page);
int totPages ;
long totBytes ;
int getNumBytes();
CacheType *type ;
virtual bool checkPage(int page) ;
virtual bool accessPage(int page) ;
virtual bool fetchPage(int page) ;
virtual bool addPage(int page, int size) ;
virtual bool flushPage(int page) ;
virtual bool flush(int numpages = 1) ;

public :
virtual bool processMessage(Message* msg) ;
virtual CacheStat* getStat() ;
Cache(int id, CacheType* type, int totPages = -1, long totBytes = -1);
virtual ~Cache() ;

};

The most important attribute of the cache is its size. The size is specified
in the number of pages or in the number of bytes or both. The size in
number of pages is sometimes important for simulation purposes. The
default values for these are -1. The value of -1 signifies infinite size.
Setting -1 as the maximum number of pages means that there is no limit
on the number of pages as long as the total byte count constraints are
satisfied. Setting -1 as the maximum no of bytes in the cache means that
there is no limit on the size of the cache as long as the total no of pages
constraint is not violated.

A data structure called CacheType is defined. Caches have two main fea-
tures. One is the cache replacement algorithm and the other is the type
of algorithm used to fetch pages and disseminate cache information. So
CacheType has two integer fields rep and algo. rep specifies the specific re-
placement algorithm and algo the caching strategy. Generic functions are
provided to access, check and delete pages in the cache. These methods
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can be overridden to code different algorithms. The function checkPage()
checks whether a page is in the cache or not. accessPage() accesses the
page if the page is present in the cache. In the base class, accessPage
simply makes the given page the most recently used page in the cache.
fetchPage() fetches a page from a distant server if the page is not present
in the cache. In the base class, the fetchPage is empty and does not pro-
vide any functionality. Hence, in the base class, if the page is not present,
the cache will not completely process the message, and the message will be
handed over to the network which will transmit the message to its proper
destination. addPage() will add the page into the cache. flushPage will
flush a particular page or certain no of pages from the cache. In the base
class, flushPage will flush the least recently used pages from the cache.

In the base class, LRU strategy is used to replace the pages, and Harvest
diffusion is used. This class has been extended to make a class called
LFUCache. The LFUCache uses LFU for page replacement and Harvest
diffusion.

class LFUCache : public Cache
{
protected:

vector<long *> count;
virtual bool checkPage(int page) ;
virtual bool accessPage(int page) ;
virtual bool fetchPage(int page) ;
virtual bool addPage(int page, int size) ;
virtual bool flushPage(int page) ;
virtual bool flush(int numpages = 1) ;
void flushContents();
void incrCount(int page);
long getCount(int page);
bool isPageCacheable(int page, int size);

public:
LFUCache(int id, CacheType* type, int totPages = -1, long totBytes = -1) :
Cache(parent, *net, type, totPages, totBytes);
virtual bool processMessage(Message* msg) ;
virtual CacheStat* getStat() ;
virtual ~LFUCache();

}

4. Proxy This class models the proxy server in the network. This class
sends requests for pages. This request stream should be in accordance
with empirically observed distributions.

class Proxy : public SimItem
{
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protected :
int id;
double interval ;
double mean ;
double var ;
double max ;
long reqSent;
long reqRecvd;
long totBytes;
double totLatency;
vector <int *> requests;
virtual int sendNext() ;

public :
ReqGen *reqGen ;
TraffGen *traffGen ;
virtual bool processMessage(Message* msg) ;
virtual ProxyStat* getStat() ;
Proxy(int id, double interval, double mean, double var, double max);
virtual ~Proxy() ;
int getId();

};

After the Network, the Proxy class is the next most important class. This
class generates the requests and sends them to the network for transmis-
sion. The proxy sends a specific number of requests per interval. The
mean, variance and maximum number of requests generated in an inter-
val and the length of the interval are specified by the user. After getting
the number of requests from the traffic generator this class gets the re-
quests from the request generator. Then these requests are transmitted
to the network. To summarize the Proxy server generates the number of
requests to be sent in an interval, gets the specified number of requests
from the request generator and transmits them over the network. If it
is not successful in doing so then a congestion control routine should be
invoked. Such a routine is not a part of the default implementation. This
routine should also be invoked upon receiving a congestion message from
the point of congestion ie. a distant router. The two major sub systems
of the proxy class are the :

(a) Traffic generator

(b) Request generator

The architecture of the proxy server is shown in figure 2.1.6.

(a) Traffic Generator This class is responsible for generating the num-
ber of requests sent per interval by the proxy server. In the base
class, the traffic generator incorporates the code of generating the
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Figure 2.1.6: Proxy Class

fractional guassian noise which was downloaded from the Internet.
But for different situations different traffic generators can be used.
The traffic generator cen be extended to produce different varieties
of traffic.

class TraffGen
{
private:

vector<int> *buffer;

public :
double mean ;
double var ;
double max ;
virtual int getNext();
virtual void flush() ;
TraffGen(double mean,double var, double max) ;
virtual ~TraffGen() ;

};

The traffic generator uses an internal buffer. Usually traffic genera-
tors do not produce the no of requests on the fly, but generate a block
of values. These block of values are stored in the buffer. When the
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buffer empties, the traffic generator generates a new block of values.
The traffic Generator contains two virtual methods - int getNext()
- this returns the no of requests to be generated in an interval and
void flush() - this empties the buffer that is used.

(b) Request Generator This class yields the request for the next page.
The request generator must incorporate the Zipf distribution of page
popularity and some model of temporal locality. In the base class,
only Zipf distribution is obeyed and no form of temporal locality is
implemented.

class ReqGen
{
private:

vector<int>* buffer;
vector<double>* prob;
int sigma;

public :
int numPages ;
ReqGen(int numPages, int sigma) ;
virtual ~ReqGen() ;
virtual int getNext() ;
virtual void flush() ;

};

The Request Generator takes as a parameter the number of pages.
The pages are numbered from 1 to numPages. The function getNext
() returns the number of the next page to be requested. This number
lies between 1 and numPages.

5. Server This is a small class that stores the list of pages available at the
node. It answers queries about page existence and has methods to fetch
a page. It has one subsystem - the Size generator. This module generates
the sizes of the pages stored in the server. For this purpose a SizeGen
class is proposed which takes as input a page id and returns its size in
bytes. The architecture is shown in figure 2.1.7.

class Server : public SimItem
{
protected :

vector<int> pages ;
int id;
int requested;
bool fetchPage(int p) ;

public :
SizeGen* sizeGen ;
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Figure 2.1.7: Server Class

Server(int id) ;
virtual ~Server() ;
virtual bool processMessage(Message* msg) ;
virtual ServerStat* getStat() ;
int getNumPages() ;
vector<int> getPages();
void addPage(int p) ;
bool pageExists(int p) ;

};

The pages are stored in a vector. The number of pages is stored in the
variable numPages. The function fetchPage fetches a page from the server
and returns a status code. If it was successful it returns true else returns
false.

(a) Size Generator

class SizeGen
{
protected:

int numPages ;

public:
virtual int getSize(int page) ;
SizeGen(int numPages) ;
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virtual ~SizeGen() ;
};

This is a base class for the implementation of a size generator class.
This takes the page id and returns the size of the page. In the base
class, the size generator returns a constant page size which is defined
in “constants.h” as PAGE SIZE.

2.1.3 Statistics

The simulation can be seen by a visualiser as it progresses or periodically the
output can be written to standard out. The point to access this functionality is
the Node object’s getStat method. This function returns a pointer to an object
of type NodeStat which is just an aggregation of Stat objects of the component
subsystems. This class is as follows :

class Stat
{
public :

Stat() ;
virtual ~Stat() ;
virtual void print();
virtual void print(ofstream* out);

};

The class Stat is the base class for all stat objects. It has been kept empty
in this implementation but functions may be added later on. All objects that
denote some form of statistics are required to extend this class. The component
objects of the NodeStat class are described next.

class NodeStat : public Stat
{
public:

int id;
char desc[128];
ConfigStat* configStat;
NetworkStat* netStat ;
CacheStat* cacheStat ;
ProxyStat* proxyStat ;
ServerStat* serverStat ;
NodeStat() ;
virtual ~NodeStat() ;
virtual void print();
virtual void print(ofstream* out);

};

class ConfigStat : public Stat
{
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public:
int id ;
char* desc;
vector<int> multids ;
bool proxy ;
bool server ;
bool cache;
ConfigStat() ;
virtual ~ConfigStat() ;
virtual void print();
virtual void print(ofstream* out);

};

class NetworkStat : public Stat
{
public :

SocketStat* socketStat;
RouterStat* routerStat;
int numLinks ;
NetworkStat() ;
virtual ~NetworkStat() ;
virtual void print();
virtual void print(ofstream* out);

};

class ProxyStat : public Stat
{
public :

long reqSent ;
long reqRecvd ;
double avgLatency ;
long totBytes;
double mean ;
double interval ;
double var ;
ProxyStat() ;
virtual ~ProxyStat() ;
virtbual void print();
virtual void print(ofstream* out);

};

class CacheStat : public Stat
{
public :

long totHits ;
long totMisses ;
CacheStat() ;
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virtual ~CacheStat() ;
virtual void print();
virtual void print(ofstream *out);

};

class ServerStat : public Stat
{
public :

int pages ;
long requested ;
ServerStat() ;
virtual ~ServerStat() ;
virtual void print();
virtual void print(ofstream* out);

};

These Stat objects keep the full state of the simulation. Whenever the visualiser
wishes to know the state of the simulation it can get the NodeStat object and
read the simulation variables of its components objects. If the implementer
wishes to send the output to stdout then he can write a function that sends the
contents of the NodeStat object to stdout. The Stat objects discussed above
are for the Node class and its components. But we also need to keep some
statistics for the link class as well. This information will contain the number
of bytes sent on a link in each direction. The link class has an associated stat
object called LinkStat.

class LinkStat : public Stat
{
public :

int id ;
int nodeA ;
int nodeB ;
double bandwidth ;
double delay ;
long bytesAB ;
long bytesBA ;
LinkStat() ;
virtual ~LinkStat() ;
virtual void print();
virtual void print(ofstream* out);

};

2.1.4 Global Data Structures

Information about the network topology, sizes and location of pages etc. is
required by various classes all across the class hierarchy. One design option is
to have these as the static members of a class. This will encapsulate the names
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of the data structures but does not provide any other functionality. Another
option can be to use them as global data structures. Then we don’t have any
encapsulation. To solve this problem it was decided to keep all these data
structures and their associated functions in a namespace called Swan. This
provides encapsulation as well as global access.

namespace Swan
{

double haltTime;
vector<Node *> simNodes ;
vector<Link *> simLinks ;
int **simGraph ;
int simPages ;
Dns* simDns ;
MultiCastServer* multiCastServer ;
EventQueue* simMsgQueue ;
double simTime ;
simstat simStatus ;

};

The Swan namespace contains the list of nodes and links in the network. It
also contains other global information such as no of pages, the current simula-
tion time, the halt time of the simulation. The DNS server and the multicast
server are also contained in the Swan namespace.

2.2 GML File Format

The data required for a simulation will be read from a file. This Input file must
contain information about the network topology, the node parameters (cache
size, request rate etc.) and the link parameters (bandwidth, delay etc). The
data required must be specified in some format. After the simulation is over, the
results will be written on to another file. This output file contains information
about the network topology and the node statistics (total hits, total misses,
latency etc) and the link statistics (total bytes transmitted in either direction
etc).

In our simulator, the input file and the output file are specified using the
Graph Modeling language (GML). GML’s key features are portability, simple
syntax, extensibility and flexibility. A GML file consists of hierarchically orga-
nized key-value pairs. A key is a sequence of alphanumeric characters, such as
graph or id. A value is either an integer, a floating point number, a string or a
list of key-value pairs enclosed in square brackets. GML can represent arbitrary
data, and it is possible to attach additional information to every object. Graphs
are represented by the keys graph, node and edge. The topological structure is
modeled with the node’s id and the edge’s source and target attributes: the id
attributes assign numbers to nodes, which are referenced by source and target.

A graph is defined by the keys graph, node and edge, where node and edge
are sons of graph in no particular order. Each non isolated node must have a
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unique .graph.node.id attribute. Furthermore, the end nodes of the edges are
given by the .graph.edge.source and .graph.edge.target attributes. Their values
are the the .graph.node.id values of end nodes. There are only two restrictions
for graphs:

1. The values of the .graph.node.id elements must be unique within the
graph.

2. Each edge must have .graph.edge.source and .graph.edge.target at-
tributes.

A template shown below gives the structure of this file.

graph [
directed 0
node [

id 1
<key_name> <key_value>
<key_name> <key_value>
...
...
...
<key_name> <key_value>

]
node[

...

...
]

link [
id 10
source 1
target 2
<key_name> <key_value>
<key_name> <key_value>
...
...
...
<key_name> <key_value>

]
]

There shall be as many node keys as the number of nodes in the network and
as many link keys as the number of links in the network. Attribute values
will include information such as node (or link) identifier , caching policy, proxy
request rate etc in the case of the input GML file and total hits/misses, latency
etc in the case of the output GML file.
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2.3 Simulations and Results

We have conducted several Simulations on various network topologies.
The requests generated by a Proxy for a page follows the Zipf’s law. The

Zipf’s law of relative page popularity states that the probability that the request
is for a given page is inversely proportional to its relative page popularity. The
requests do not follow any model for temporal locality.

The number of requests generated by a proxy in an interval follows the
self-similar traffic distribution.

The caching algorithm used is Perfect - LFU. In Perfect LFU, the cache
maintains an access count for every page. Every time the page is referenced
its access count is incremented. Whenever a page needs to be replaced in the
cache, the page with the least access count is replaced.

In a network topology consisting of caching servers which implement the
Perfect LFU, the caching servers in the network attain a stable state, i.e. when
the cache contents of all the caches in the network become fixed. The cache
receives requests for several pages. In the steady state, the pages which were
referenced the most at the cache will be stored.

All the pages are assumed to have a fixed page size. Routing is done using
shortest path - min hop routing.

Next we will discuss the results of our simulations on various topologies.

2.3.1 Line Topology

In this case, we assume that there are n cache servers connected in a line with a
proxy at one end and a server on another end (refer to figure 2.3.8). The server
serves as the central repository of all the pages. Since it is assumed that the
size of the pages is fixed, we can represent the size of the cache as the number
of pages it can store.

We denote the cache size at the l’th level as Cl. The proxy is at level 1 and
as we move towards the server the level increases by one. In steady state when
the cache contents tend to be static, the lowest level cache will contain the C1

most popular pages. In the second level cache, the next C2 most popular pages
will be stored. This is because when the level 1 cache gets filled up with the Cl

most popular pages, then the requests for those pages will be satisfied in the
lowest level cache only. So the requests that will traverse to level 2 cache will
be for pages whose popularity index is greater than Cl. Extending the steady
state assumptions to all levels of cache, the cache at level l will stores those
pages whose popularity index is between (Cl + C2 + . . . Cl − 1 ) and (Cl + C2

+ . . . Cl − 1 + Cl).
Simulation Results - In our simulation, we have taken a line topology

consisting of a server at one end, and 3 caches connected in a chain. There is
a proxy at the other end. We ran simulation for 100 pages in the origin server
and set the maximum average request rate to .01 requests per second. The size
of the pages was taken as 10KB. The simulation was done for a total time of
100 hours. All the caches were taken to store a maximum of 10 pages.

At the end of the simulation, the cache contents and the access counts of
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Figure 2.3.8: Line Topology

all the pages at each cache was recorded. The observed results matches closely
with the expected results.

The cache C1 cached the 10 most popular pages, cache C2 cached the next
10 most popular pages and cache C3 cached the next 10 most popular pages.

2.3.2 Complete Binary Tree Topology

In this topology, the server is at the root of a complete binary tree of caches,
terminating at the leaf nodes (refer to figure 2.3.9). Each leaf node is a proxy.
We make a set of simplifying assumptions. We assume that all the proxies
are equally active, and have the same request rate for all the pages. Based on
this assumption, we set equal cache sizes for all caches at the same level in the
binary tree. Let us denote the size of the cache at the l’th level in the binary
tree to be Cl.

When all the caches attain a steady state, the lowest level cache will be filled
with C1 most popular pages. The next higher level cache will receive requests
for pages whose popularity index is greater than Cl. So, at steady state, the
next higher level cache will get filled with the next C2 most popular pages. The
contents of the caches in the case of this tree topology, is similar to that of the
line topology. Since the cache sizes at any particular level are identical and
all the proxies have the same behavior, all caches at the same level in the tree
would have similar steady state conditions.
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Figure 2.3.9: Complete Binary Tree Topology

Simulation Results - In our simulation, we have taken a complete binary
tree with height 3. The root of the binary tree is a server which contains all
the pages. The leaf nodes are the proxies, and the remaining nodes are caches.
We ran simulations for 100 pages in the origin server and set the maximum
average request rate to .01 requests per second. The size of the pages was taken
as 10KB. The simulation was done for a total time of 100 hours. All the caches
were taken to store a maximum of 10 pages.

At the end of the simulation, the cache contents and the access counts of
all the pages at each cache was recorded. The observed results matches closely
with the expected results.

The lowest level caches C1,C2,C3 and C4 cached the 10 most popular pages.
The next 10 most popular pages were cached in the higher level caches C5 and
C6.



Chapter 3

NetGraph

During the course of making the SWAN simulator a need was felt for a tool that
facilitates drawing network topologies. There are several commercial products
that provide a visual interface for drawing networks and even save it in GML.
But all the products surveyed suffered from certain deficiencies. Mainly they
are geared for certain kinds of networks. They are not general enough to sup-
port any kind of network. Along with that they don’t have functionalities to
manipulate properties of network elements. As an example a server might have
certain properties like : number of web pages, ip address etc. For some tools
these properties were fixed and no new property could be added and for some
others this information could not be stored or used across multiple files. This
led to the development of a network drawing tool that aimed at removing all
this deficiencies and to be as generic as possible.

3.1 Overview of NetGraph

NetGraph is a network drawing tool coded in Visual C++. The next subsection
presents an overview of its basic building blocks.

3.1.1 Basic Buiding Blocks

There are two basic entities called a node and a link.

Node A node represents any network entity. It can be a proxy server generat-
ing requests, a web server, a caching server, DNS server, Multicast server,
switch, router or any other active or passive entity in a network. Depend-
ing upon what the node stands for it can have different properties. As an
example if the node is a web cache then it will have the following prop-
erties: cache size, cache replacement policy, resource reservation scheme
etc. Thus every type of node has a list of properties associated with it.
Now a network has several types of nodes. Each node has its associated
properties.

Link A link is a communication medium between two nodes. As an example
a ethernet line between two machines is a link. A fiber optical connec-
tion between two routers is a link etc. Links need not be wires or other
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hardware entities. It is possible to have wireless links eg. satellite com-
munication. As nodes can be different links can also be different. A FDDI
link has different properties as compared to an Ethernet link. Thus, each
link also has a list of properties associated with it. For a standard link like
a telephone line some properties are bandwidth, latency and error prob-
ability. For mobile links congestion and interference are very important
factors.

A network is a combination of nodes and links. Nodes and links can be
arranged in various configurations. This defines the network topology. The
nature of the network is defined by the properties of the nodes and links. In
this context two definitions are presented that differentiate between these two
facets of a network.

Schema The list of the type of nodes and links in a network along with their
properties is called a schema. The schema defines the type of a network.
For example the internet has a certain schema, LAN’s have a certain
schema and home networks on DSL have another schema. For similar
networks the schema is the same. NetGraph explicity realizes this and
there are facilities to export and import a schema.

Drawing Given a schema nodes and links can be arranged in all possible per-
mutations. Each such permutation corresponds to a drawing of a net-
work. A drawing defines the network topology. The nodes correspond to
vertices of a graph and the links correspond to directed edges.

Thus, an instance of a schema and a drawing completely specify a network
upto isomorphism. NetGraph takes care of these two entities separately. At
the outset the user creates a schema or imports one if he already has one. He
also has the option of editing the imported schema. Once the schema is built
the types of nodes and links are known and he can start drawing the network.
While drawing the network the user can edit the schema and export it such
that another user can use the schema for drawing his network. Each kind of
a network is expected to have its own schema. The format of the schema has
been designed to be compatible with GML. GML format recognizes four kind of
objects. They are int, real, string and list. The list is a linked list of key value
pairs of GML objects. Lists are not supported in this version of NetGraph.
So NetGraph supports three kinds of properties. They can be integers, real
numbers or strings. For each object the schema maintains a list of properties.
These are key value pairs. The key is the name of the property and the value is
its type (int, real or string). The collection of all these key-value pairs defines
the schema. For use in a visual environment there is another property which
specifies the colour of the node or the link when it would be drawn.

After the schema comes the drawing. The drawing interface of NetGraph
is very similar to that of popular windows softwares like MS-Word or Corel
Draw. Objects can be drawn, resized and a group of objects formatted. There
are also facilites for the standard operations of cut,clear,copy and paste across
applications. The drawing is transformed to its GML representation and is
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then sent to the clipboard. Thus if a NetGraph drawing is pasted in another
instance of a NetGraph application then the result is a drawing otherwise it is
plain text in the form of a GML file.

While the user is drawing he needs to populate the instance of the schema
associated with the drawing. That means that he must fill in the properties of
every node. As an example if there is a node of type server with two properties
ie. ip address and location. After the user draws a server node he needs to
fill in the ip address and location of the node. A drawing is complete when all
its constituent nodes and links have been drawn and their property fields have
been filled up. Thus, a specific network consists of two parts. The drawing and
the instance of the schema. The NetGraph file format (.ntg) which is a windows
binary contains three pieces of information. They are as follows :

1. Schema of the network - This can also be exported separately as a schema
file (.sch).

2. Instance of the schema - These are the values of the properties of each
node and link.

3. Drawing - This consists of the geometric positions of the nodes and links.
It contains some extra information about the links. It stores the id’s of
the two endpoints of a link and whether it is directed or undirected.

3.1.2 Basic Functionalities

The two major subsystems of NetGraph are :

• Schema Editor

• Drawing Editor

The schema editor supports entering of schemas. Along with these details
the colour of the nodes and links are also entered. This is used when the user
starts drawing the network. The schema editor uses the ActiveX control MS-
FlexGrid. The functionalities of this control are harnessed in taking a schema
as input.

After the schema is entered the user is all set to draw the network. The user
can choose to a link, a node or the empty pointer. By choosing a node or a link
he can draw a network by standard drag and drop techniques. If he chooses
the empty pointer then he can select objects or a group of objects. Then he
can move, resize or reorient them. In this mode he can change the properties
of a network entity (node or link) by double clicking on it. The two subsystems
are described in the following sections along with details of implementation and
screenshots.

3.2 Schema Editor

The application starts out by displaying the schema editor. This is shown in
figure 3.2.1.
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Figure 3.2.1: Schema Editor
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3.2.1 Features

The first window in figure 3.2.1 shows the node properties window. In this
window the user specifies the list of nodes. He specifies the name of the nodes
and beside the name of the node he specifies the colour of the node. He can edit
the list by adding or deleting nodes. Whenever a node is added or deleted the
serial numbers automatically readjust themselves. There is a similar interface
for entering the names and colours of links. The user can swith between the
node and link windows by the next and back buttons. This defines one hierarchy
of the schema. For the properties associated with each node or link there
is a properties button. Upon clicking it a new window pops up where the
user specifies the list of properties and their respective types. It has the same
interface as the former window supporting editing of the property list. In the
specific example the properties of the server node are being entered. In a similar
way the properties of all nodes and links can be entered in the schema editor.
This schema can be saved for use in later applications. There is a facility to
import the schema in the File menu. Then this process of entering the schema
is circumvented. Once the schema is made the user can proceed to make the
drawing. But there are several important things that he can do before that. He
can save the schema as a (.sch) file which is a windows binary or he can export
it in gml or xml format.

3.2.2 Implementation

The grid that is visible is an ActiveX control called MSFlexGrid. The data is
entered through standard methods of the ActiveX control. The data is mirrored
in data structures. The important data structures are as follows.

tuple

This consists of a key-value pair. Both of them are strings. It has these two
fields along with their getter and setter methods. The tuple class is a basic
entity and contains all the key-value pairs in the GML language. It is to be
noted that even integers and floats are represented as strings. They are stored
as strings in this tuple class.

EntInfo

The EntInfo class consists of the following four fields.

1. att - array of tuples

2. link - boolean

3. color - long int

4. name - string

The EntInfo class contains the properties for a single node or a link. The
link field is true if the entity is a link and is false if it is a node. color specifies
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the colour of the entity and name gives its name. The array att contains the
list of properties in the form of key-value pairs (tuples). For the schema these
contain pairs like <property name , property type> and for the instance of
the schema pairs like <property name , property value>. Several methods are
defined on this class. They basically add, delete and modify properties in the
att array.

Info

This class contains the schema of the full network. It has just one field att that
is an array of EntInfo classes. As each such class represents information about
one node or link, their collection is the full schema. This class maintains the
full schema and several methods are defined on it that manipulate the schemas.
The methods are very similar to those defined on any standard collections class.
There are methods to add, delete and modify entries etc.

Serialization Methods

All the above classes have three methods in common. These are as follows.

1. writeGML(file pointer) - This function writes the data in the object in
the form of a GML file and calls the same function defined in constituent
objects. Thus writeGML is called recursively. The user just needs to call
this function for the parent object. Then the parent will write its data
and call this function for each of its child objects. As an example when
writeGML is invoked for the Info object then it calls the same writeGML
for its constituent EntInfo and tuple objects.

2. writeXML(file pointer) - This is similar to the function described above.
The only difference being that instead of writing the data in GML it is
written out in XML.

3. Serialize(CArchive object) - This is an MFC function. This writes out
the data as a standard windows binary. It is invoked in exactly the same
manner as the earlier two functions. Instead of writing a text file it writes
a binary file with the file extensions (.ntg) and (.sch). (.ntg) file extension
is for the full application consisting of the schema, schema instance and
drawing. (.sch) is a file just for the schema.

3.3 Drawing Editor

After building the schema it is time to draw the network and fill in the properties
of its constituent nodes and links. The drawing editor is shown in figure 3.3.2.

3.3.1 Features

Figure 3.3.2 depicts the situation where five nodes have been drawn and they
have been interconnected with several links. These nodes were drawn by se-
lecting the drawing button on the toolbar and then drawing the node using the
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Figure 3.3.2: Drawing Editor
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mouse. The links were drawn by selecting the link button on the toolbar and
then drawing the link by clicking on the source and destination nodes. The link
automatically found its correct orientation to minimize the number of crossings.
To select the specific node or link there is a combo box in the right hand corner
of the toolbar. There the user can select the specific node or link to draw.

The other buttons on the toolbar implement the standard functions of cut,
copy, paste and clear. To the extreme left are the buttons that implement file
open, save and create. After creating the schema the user just clicks the node
or link buttons to go to node-drawing mode or link-drawing mode and keeps
drawing. Beside the node button on the toolbar there is the pointer button.
This doesn’t draw anything but is useful in selecting an object or a group of
objects. These objects can be cut or copied and pasted in a different place or
in a differnt file. They can also be moved and resized. There are also several
layout functions. They are accessible through the layout menu item. They can
make elements of the same size, align them and space them equally. In the
pointer mode it is possible to edit the properties of a node or a link by double
clicking it. This has been done for the server node in the figure. A property box
has popped up near it. It shows the properties that were entered during the
time the schema was made. Now the user puts in the values of the properties
for the corresponding node.

In this manner the drawing proceeds. The important feature of the Net-
Graph environment is that the user need not bother about how links are placed.
He just clicks the source and the destination in link mode. NetGraph finds the
best possible orientation for the link and draws the link accordingly. Whenever
objects are moved or resized links change their position such that the node does
not overlap with it and it has minimum length.

As has been mentioned earlier the drawing can be exported in XML and
GML file formats. There are two issues worth mentioning. First, what happens
if a portion of a drawing is copied from one instance of a NetGraph application
to another instance? If they have the same schema or the schema of the former
is a subset of that of the latter then there is no problem. It is like a cut and
paste operation in the same application. But if the schema is different then
there is a problem. In this case the user is prompted. He has a choice. He
can either cancel the operation or he can request NetGraph to computer an
intersection of the two schemas and paste the common part. If this is done
then some attributes and some nodes and links might not be pasted on the
latter’s drawing area.

The second issue is related with compatibility. Some GML files of other
simulators do not have position information. Thus, it is not possible to draw
the network when such a GML file is available. So in that situation instead of
discarding the GML file NetGraph guesses a drawing and draws it. This is a
very simplistic drawing and nodes are just placed in a mesh. It is up to the
user to beautify the drawing.
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3.3.2 Implementation

Unlike the schema section this section is very heavily dependent on the MFC
Document/View architecture. The document consists of the schema and the
drawing and the view encapsulates the drawing area. System events are trapped
by the document and user events like mouse-clicks are trapped by the view class.
The major data structures used to implement the drawing functionality are as
follows. The notation used to represent the prototypes of variables and methods
uses MFC data structures.

ViewOb

This is an abstract superclass. It represents a generic view object. It is inherited
by node and link objects. It just represents the common part. It has five
member variables which are as follows:

1. String caption - This is the name of the node or link object. At the
moment this is not used in NetGraph but in future versions the name of
the object will appear in the drawing.

2. int num - This is a numerical id that uniquely identifies the object. It
is to be noted that node and link ids are in separate spaces and they
are never compared with each other. So, it is possible ot identify every
drawing object by its unique id. Whenever an object is deleted or extra
objects are created the ids are readjusted to form an uniformly increasing
sequence. If the id of a node is changed then the data structures of the
links adjacent to it are modified to reflect the change.

3. CRect rect - This is a rectangle structure. For the node this gives the
top-left and bottom-right co-ordinates. For the link the first point gives
the source and the second gives the destination.

4. CRect prect - When a node or link is being adjusted it is previewed with
dotted lines. This rectangle maintains those co-ordinates.

5. EntInfo ent - This maintains the list of properties in the form of key-value
pairs.

Thus, this object stores the temporary and permanent position of the node
or link that inherits it. It also holds its unique id and a list of attributes. A
couple of methods are defined on this object. They are all pure virtual. They
are meant to be overridden in child classes. They are as follows:

• bool inOb(CPoint) - This function returns a boolean value indicating
whether the point lies inside the object or not. In the case of a node a
true value is returned if the point is within the object. In the case of a link
a true value is returned if the point of clicking is within a close proximity
of the link.

• bool contained(CRect) - This function returns a true value if the object
is contained within the rectangle that is passed as a parameter.
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• void draw() - A node or a link draws itself.

• void preview() - A node or a link draws itself in preview mode. That
means that instead of solid lines the lines are drawn as dashed ones.

• void highlight() - The object highlights itself.

• void sync(Info*) - This is a synchronization function. This is useful in
the cases when the schema is changed at runtime or a node is pasted in
another instance of NetGraph with a different schema. Then the object
needs to remove all the items in its property lists which are not part of
the target schema. This function does this synchronization. This is also
implemented in a recursive fashion. Calling the sync method of the parent
leads to the invoking of the sync method of all its children.

NodeOb

This class inherits from ViewOb and does not have any extra member vari-
ables. It provides implementations for the abstract functions. Along with the
abstract functions it provides implementations for the three standard function
writeGML, writeXML and Serialize.

LinkOb

This class inherits from LinkOb and overrides all its pure virtual functions.
It does not have any extra method of its own. But it has two extra member
variables. They are two integers source and target. They are the ids of the
source and target nodes. Every link has information about the nodes that it
connects. Whenever those nodes change position or are deleted the link needs
to modify its properties. If any of the end nodes are deleted then the link is
deleted. If the destination nodes change position or are resized then the link’s
preview field is updated with this new information. The link draws itself in
preview mode as long as the user has the left mouse button pressed. When it
is released the nodes draw themselves at the released point and set their new
locations as their permanent locations. Then the links whose end nodes have
changed positions calculate their new positions with the following optimization
criteria in mind. They try to avoid an overlay with their end nodes. They also
try to minimize the length. After getting the new position they set it as their
permanent position. Thus, in this manner nodes and links interact to maintain
consistency in the drawing.

ObjGroup

This contains an array of nodes and an array of links representing a portion of
the drawing. This is a very useful data structure. The full document can be
represented as an ObjGroup. Even parts of it like the current selection and the
data to be sent to or from the clipboard are ObjGroups. This data structure
efficiently encapsulates a group of nodes and links and is passed from function
to function for processing.
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Several methods are defined for this class. Some of them are data manipu-
lation methods that add, delete or check the existence of a node or a link. The
other methods defined on this are as follows:

• void draw() - All the objects draw themselves.

• void highlight() - All the objects highlight themselves.

• void move() - This causes all the nodes and links to move to the new
location. This is a very simple method because all this does is that it sets
the rect member equal to the prect member. This basically means that
it sets the permanent address equal to the temporary address. This is
simple for nodes. After that links must calculate their new positions and
set themselves.

• void reLocate() - This prunes of all the links that have either one or both
their end nodes missing. It relocates the rest to the top left corner of the
virtual co-ordinate space.

Selection

This represents the set of objects that have been currently selected. It just has
one member variable. It is an ObjGroup containing the nodes and links that
have been selected. There are some extra methods defined on this group of
objects. They are outlined below.

• void moved(CPoint) - This means that the pointer has moved to a new
position and the objects in the group must be relocated to the new posi-
tion. As long as the mouse is down the objects in the selection are just
previewed. When the mouse is released their permanent position is set
equal to their temporary locations.

• void align(int code) - Depending upon the type of alignment requested the
objects in the selection are aligned. This means that their new positions
are calculated as well as the links are adjusted to reflect the change in
the position of the nodes. It is assumed that links are passive and are
completely dependent on their end nodes. They cannot be moved or
resized. They find their own position.

• void spaceEvenly(int code) - This method causes the nodes in the selection
to space themselves either vertically, horizontally or in both ways.

• void makeSameSize(int code) - The nodes in the selection are made to
have the same size. Depending upon the code they set their heights,
widths or both equal to that of the average values of the whole group.

3.4 Scope of the Tool

The tool has an object oriented design that is completely embedded within
the Document/View architecture of the MFC framework. Thus, it is easily
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extensible and customisable. If later it is desired to add some extra features then
they can be added without much effort. The MFC classes that are not described
in the thesis just consist of event handlers that handle the screen events and
update the data structures. In the future we hope that more ActiveX, COM
and .Net controls will be added to provide a rich development environment.

The tool has been made compatible with standard graph markup languages
like GML and XML. The output can be fed to parsers and the output of other
programs can be fed as an input to NetGraph. NetGraph can also print the
drawing to standard printers or to virtual printers. There is also a facility to
export the drawing as a bitmap image. Once the bitmap image is obtained
it can be converted to any other image format and it can become an input to
technical documents that show the network topology.



Chapter 4

GRAPES - request generation
scheme

4.1 Introduction

In this section we focus on generation of web workloads required for simulation
studies of WAN traffic. Several analytic models and invariants have been pro-
posed based on extensive studies of WAN traffic [2, 1]. Some of these analytic
models are used by web workload generators like SURGE [3] and ProWGen
[6]. They generate artificial workloads whose statistical properties conform to
the analytic models and obey certain invariants as stated in [2]. SURGE is a
very popular workload generator for synthesizing the workload generated by an
individual user. ProWGen has been used to investigate the sensitivity of proxy
cache replacement policies to selected workload characteristics [6]. SPECweb99
and WebBench are popular benchmarking software for web servers and proxies.

A workload generator generates requests for web pages and times them. It
deals with four main concerns. These are (i) generating web request streams
obeying the empirically observed popularity and temporal locality distributions,
(ii) generating embedded requests, (iii) accounting for the correlations between
file size and file popularity and (iv) timing the requests. Generation of em-
bedded requests and timing of requests can be done on the fly as requests are
generated [3]. Information about embedded pages can be stored apriori and pro-
cessed at run time [3]. Normally a table of embedded references is maintained.
Whenever there is a request for the main page requests for the embedded objects
are inserted into the request stream. Inter-request times are calculated from a
probability distribution or by any other scheme resulting in a constant overhead
per request. Correlations between file sizes and file popularity can also be taken
care of as in SURGE. We observe that the most expensive operation is that of
combining temporal locality of web page access with page popularity distribu-
tions. The other concerns in the generation of request streams are settled; they
are either handled in a pre-processing step or they add only a constant overhead
to the step that generates the subsequent request. Therefore, we concentrate
only on the problem of generating a request stream with the desired properties
of temporal locality and page popularity and we keep the rest out of the scope
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of this paper. Both SURGE and ProWGen explicitly use stacks and certain
stack-distance distributions to realize temporal locality of web page accesses.
The time complexity of this step in the SURGE generator is O(mn) in the worst
case, where m is the number of pages and n is the number of requests generated.
Similarly, the time complexity of this step in ProWGen is O(sn) where s is the
size of the stack and n is the number of requests. The plots of running times
versus the number of generated requests (see Figure 4.6.5) show a super linear
trend. This trend is due to the stack manipulation step which is executed for
every newly generated request. In this paper we propose an efficient algorithm
GRAPES (Scalable Efficient Parallel Artificial Request Generator), for gener-
ating web page request streams satisfying the empirically observed Zipf page
popularity distribution and a temporal locality property in the form of log-
normal stack-distance distribution. We avoid explicit use of the stack as done
in previous generators like SURGE and ProWGen. At the outset we compute
a set of coefficients representing a discrete probability distribution that acts as
a signature of the desired stack-distance distribution. This discrete probabil-
ity distribution is computed apriori and used for generating request streams
of any length in time proportional to the number of generated requests; the
precomputed probability distribution essentially models stack-distance distri-
bution and enables us to do away with the stack. Our algorithm GRAPES can
replace the corresponding algorithm in the SURGE generator keeping the rest
of SURGE intact to provide a much faster package for generating web work-
loads. In contrast to known workload generators that certainly run in super
linear time, the use of our algorithm in a classical workload generator would
allow it to generate requests in linear time.

Our work is motivated by the need to simulate a WAN environment having
millions of pages and web-page requests. For this purpose we require a scalable
and efficient web workload generator. Our algorithm runs an order of magni-
tude faster than the corresponding algorithms in existing simulators/workload
generators and hence it is scalable for use in very large simulations. The time
complexity of our algorithm is independent of the number of pages whereas
the time complexities of the earlier workload generators in [3, 6] depend on
the number of pages. For a large number of pages, our algorithm can give a
tremendous performance advantage. However, the resources of a single proces-
sor machine might prove to be inadequate for running very large simulations.
We may need to resort to using multiprocessor machines for performing very
large simulations. The other stack based algorithms do not seem to admit a
parallel solution because of the stack manipulation step. In contrast, our algo-
rithm admits a very simple parallel solution that runs in O(n/p) time in the
CRCW PRAM model with p < m/ log m processors, where n is the number
of requests generated and m is the number of pages. Thus, our algorithm can
be used for generating request streams for very large simulations. Along with
the observed superior speed, scalability and parallelizability, the plots of the
statistical properties match very well with empirically observed distributions
(see section 4.6).

The novelty of our approach is that we do away with the explicit use of the
stack for generating each subsequent request. Instead, we develop a signature of
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a predetermined number (say 800) of coefficients representing a discrete proba-
bility distribution from the distribution obeyed by stack-distances (see section
4.3). This signature is used in our request generation algorithm presented in
section 4.4. Since this signature is a property of log-normal stack-distance dis-
tributions, it is like a table which can be generated once and stored away so
that any number of request streams of arbitrarily large lengths can be generated
using this table. We quantitatively compare the performance of our algorithm
with respect to existing request generators and analytical models in section 4.6.
In section 4.5 we parallelize our request generation algorithm. We start by
summarizing the previous work done in this area.

4.2 Summary of Previous Work

Several studies have been carried out on web request streams and their sta-
tistical properties. Our paper will concentrate chiefly on two of them - page
popularity and temporal locality.

Page Popularity Page popularity refers to the relative number of requests
made to individual pages. Several studies have been carried out on pop-
ularity distributions. Page popularity has been observed to follow Zipf’s
law (see [5]). Zipf’s law states that the popularity of the ith most popular
page varies inversely with i. Stated mathematically the probability mass
function p is given by:

p(i) =
Ω
i

Temporal Locality This property refers to the probability that if a page has
been requested, it will be requested again in the future. To characterize
this the stack-distance model has been proposed (see [3, 1]).

The stack-distance model is as follows. Let the pages be organized in the
form of a stack < p1, p2, . . . , pn > with p1 at the top of the stack. Suppose
the next request is for the page pi. Then the stack-distance d for this
request is i. Stack-distance measures the depth within the stack where
the next request is found. Page i is moved to the top of the stack. The new
stack configuration is as follows < pi, p1, p2, . . . pi−1, pi+1, . . . , pn >. Thus
given the configuration of the initial stack, a stream of stack-distances
is sufficient to describe the request stream. The information contained
by both the representations is the same. The stack-distance method is a
better representation of the request stream as it is an ordered sequence of
numbers and not pages. Stack-distance distribution serves to characterize
temporal locality. A small stack-distance implies more temporal locality.
The stack-distance has been observed to follow the log-normal distribution
(see [3, 1]). The log-normal distribution is given by:

lgn(x) =
1

2.3x
∗ 1

σ
√

2π
e
−(log(x)−µ)2

2σ2

The logs are to the base 10.
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The mean and variance of the log-normal distribution for stack-distances
have been calculated for various traces (see [1]). The mean values are
shown to lie between 1.5 and 2.0 and the standard deviation between 0.8
and 0.9.

Several web request stream generators have been built which try to incor-
porate the above mentioned properties. Two of these generators are SURGE
and ProWGen. SURGE starts with a stack of web pages. In every iteration
it generates a stack-distance d obeying the log-normal distribution. The page
at depth d in the stack is removed and pushed to the stack top. This page is
added to the request stream. To ensure homogeneity and adherence to the Zipf
distribution of page popularity, there are some extra steps in the algorithm.
After generating the stack-distance a window is defined around the requested
page within the stack. Pages within this window are assigned weights depend-
ing upon the number of requests left. The page with the maximum weight is
moved to the top of the stack and added to the request stream. Let n be the
number of requests to be generated and m be the number of pages. Since for
each request generated the stack of size m is updated, the worst case complexity
is O(mn).

ProWGen is another web request stream generator. ProWGen incorporates
only those characteristics that are relevant to web caching. In addition, ProW-
Gen models only the aggregate client workloads seen by a typical proxy server,
rather than individual clients. ProWGen also uses a LRU stack to model the
temporal locality. But ProWGen generates a stack-distance from a uniform
distribution rather than the log-normal distribution used in SURGE. Let n be
the number of requests to be generated and s be the size of the stack. As in
the case with SURGE, the asymptotic worst case complexity of this algorithm
is O(ns). While the stack size of SURGE was equal to the number of pages,
the stack size of ProWGen is meant to be set by the user.

Due to the explicit use of the stack, both the above algorithms have time
complexity proportional to the product of the stack size and the length of the
generated request stream. Our algorithm GRAPES in section 4.4 does away
with the stack and uses the signature developed in the next section to achieve an
asymptotic worst case time complexity that is linear in the number of requests
and independent of the number of pages. In the next section we show how to
generate the short signature used in section 4.4.

4.3 Generating the Signature

As observed in earlier workload generators like SURGE [3] and ProWGen [6],
the step implementing temporal locality uses the inherently expensive stack ma-
nipulation step. The stack is used to incorporate temporal locality of web page
references by realizing the empirically observed and hitherto widely accepted
log-normal stack-distance distribution [1]. SURGE uses log-normal distribu-
tions and ProWGen uses an uniform distribution for stack-distances. However,
the stack manipulation step necessary for generating every subsequent page re-
quest is expensive and is proportional to the size of the stack in the worst case.
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Larger stack sizes would be necessitated by the increase in the number of web
pages. Moreover, the number of generated requests in meaningful simulations
would have to rise in proportion to the number of pages. The workload genera-
tor would therefore suffer from a quadratic time complexity with respect to the
number of generated requests (see Figure 4.6.5). In this section we show how to
get rid of stack operations in the generation of web page request streams. We
generate a short but useful signature apriori from the log-normal distribution
for stack-distances. This signature is then used to generate web page request
streams of arbitrary lengths for an arbitrary number of web pages. The signa-
ture generation step uses a novel dynamic programming technique to generate
the first k first-return probabilities for a page. The first-return probability is the
probability with which the distance between two consecutive requests to the
same page takes a certain value. In particular, we define the term inter-request
distance as the number of requests between two consecutive requests to the
same page plus 1. We propose to obtain the first k first-return probabilities for
an arbitrary page in an artificial request stream as the signature in this section.

Now we develop the procedure for computing the discrete distribution of
the first k first-return probabilities for pages. We found that it suffices to set
k equal to 800, irrespective of the number of requests we need to generate.
We assume that the distributions of all pages are i.i.d. This was observed by
Williamson et al. (see [2]). So, it suffices to concentrate on one page and
study how its request instances are distributed in the long run, at steady state.
We assume that the number of pages is finite, however large. The first-return
probabilities computed apriori in this section are used to generate web page
request streams of arbitrary lengths using the algorithm of the next section
in time proportional to the number of generated requests. The inter-request
distance distribution generated in this section is used for generating long request
streams with page requests following the same distribution as derived here. We
claim that the generated request stream closely obeys the log-normal stack-
distance distribution and a few additional desirable properties. This claim is
substantiated in section 4.6.

In order to compute the signature for the stack-distance distribution, let
us consider a stack of m pages where m > k. Let us consider the situation
when the page starts from the top of the stack to begin with. The page can
move down the stack by at most one position for each generated page request.
Finally the page jumps to the top of the stack. The movement of the page
from depth i is governed by the next stack-distance generated (by say, the log-
normal distribution). If the distance generated is greater than i, the page shifts
to depth i + 1. If distance i is generated, page i returns to the top of the
stack. Otherwise, the page remains at position i. Each of these three cases are
executed with finite probability. Our main aim is to find the probability that
the page returns to the top after j steps, 1 ≤ j ≤ k without returning to the
stack top in less than j steps. This would be the jth first-return probability, fj .
Returning to the top of the stack for the first time in j +1 steps is equivalent to
reaching some depth i in the stack in j ≥ i− 1 steps (without returning to the
top) with probability say qi,j and, then making one jump to the top of the stack
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with probability pi. Note that pi is the normalized 1 log-normal probability for
stack-distance i. Hence,

fj+1 =
j+1∑
i=1

qi,j pi

We do not need to add more than j +1 terms because the stack-distance model
prevents a page from visiting positions below depth j + 1 in j steps if the page
starts at the top of the stack. In particular, note that f1 is identical to p1.

Now we consider qi,j , 1 ≤ i, j ≤ k, the probability with which the page
reaches stack depth i in j steps, given that the page started at the top of
the stack and never reached the top of the stack in l steps where 0 < l ≤ j.
Since the page starts at the top of the stack, we set q1,0 = 1 and qi,0 = 0,
1 < i ≤ k. Surely, the page must move down to depth 2 in the first step,
implying q1,1 = 0. It must also not return to the top in j steps, rather it should
keep moving down, at most one step each time a page request is generated– so
we fix q1,j = 0, 1 ≤ j ≤ k.

Now consider how the page reaches depth i in j steps. Since the page can
move at most one step down each time, it could reach depth i after j ≥ i − 1
steps in only two ways (i) remaining at depth i after it reaches depth i in j − 1
steps with probability qi,j−1 or (ii) moving down from depth i − 1 to depth i
after reaching depth i − 1 in j − 1 steps with probability qi−1.j−1. The page
can transit from depth i to the same depth with probability ai =

∑i−1
j=1 pj . The

probability that the page moves down one step is bi = 1− ai. So, we can write
qi,j = qi−1,j−1bi + qi,j−1ai, 2 ≤ i ≤ k

We summarize the above discussion in the following theorem.

Theorem 4.3.1 Let qi,j be the probability that a page starts at the top of the
stack and moves to stack depth i in j steps without reaching the stack top in
between, where 1 ≤ i ≤ k and 0 ≤ j ≤ k − 1. Then,

q1,0 = 1

qi,0 = 0 , 1 < i ≤ k

q1,j = 0 , 1 ≤ j ≤ k − 1

qi,j = qi−1,j−1bi + qi,j−1ai , 2 ≤ i ≤ k , 1 ≤ j ≤ k − 1

The computation of qi,j ’s and hence fj ’s can be done using dynamic pro-
gramming in O(k2) steps. Thus we can determine the small signature consisting
of the first k first-return probabilities. Note that the k first return probabil-
ities may not add up to unity. The deficiency is distributed over the next k
pages to obtain a tail in the discrete probability distribution with a total of 2k
coefficients. We observe that if the number of pages is sufficiently large then

1The log-normal probabilities for the m stack-distances are added up and normalized to
obtain the values of pi, 1 ≤ i ≤ m, so that

∑m

i=1
pi = 1.
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these coefficients are independent of the number of pages. This claim is sub-
stantiated by exhaustive experimentation. Let us consider an example. Let the
log-normal parameters µ and σ be 1.75 and 0.85 respectively. We generated
800 coefficients for a large number of pages. It was observed that after 5000
pages the maximum difference between corresponding coefficients did not ex-
ceed 0.001. Similar results were obtained with different log-normal parameters.
Thus it suffices to generate the coefficients for n0 pages where n0 is sufficiently
large and use it for any n ≥ n0 pages.

Note that the recursive definition did not assume the log-normal stack-
distance distribution at any stage. Our scheme therefore permits any statistical
distribution for stack-distances.

4.4 Request Generation Algorithm

We state our request generation algorithm GRAPES in this section. The inputs
to the algorithm are the number n of requests to be generated and, the number
m of pages for which we require to generate requests. The pages are assumed
to be numbered from 1 through m. GRAPES fills up an array arr with page
requests. Each position of the array contains an integer i between 1 and m,
representing a request for the ith page.

GRAPES aims to generate a request stream with the following properties:

1. Zipf page popularity distribution (see section 4.2).

2. Inter-request distance distribution for each page equal to that derived in
section 4.3.

3. Uniformly and randomly distributed page requests.

The request stream’s page popularity distribution follows Zipf’s law. We claim
that log-normal stack-distance distribution is achieved for generated requests
streams. This claim is further substantiated by the plots in section 4.6. The
third condition implies that the request stream generated is not predictable
and all the requests to a page are not temporally close by. They are sufficiently
spread out in time. Indeed, the techniques we use to achieve the third condition
above also have a remarkable off-shoot in enabling us to design a very simple
parallel implementation of our algorithm GRAPES (see section 4.5).

Now we outline our algorithm. The algorithm applies the Zipf distribution to
determine the number of requests to be generated for each page. It repeatedly
selects a random page p and generates a random number of requests for the
selected page p. For each page, it maintains the remaining number of requests
to be generated.

Now consider the generation of a set of requests for a page p. These requests
are placed at appropriate positions in the request array following the inter-
request distance distribution derived in section 4.3. While attempting to place
a request for p at a position x in the array, we may encounter a clash; a request
for another page q might have been placed at position x already. This clash
is resolved by placing a request for p at x and relocating the request to the
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other page q to another position in the array. The relocation of q is done in
accordance with the second condition, not violating the inter-request distance
distribution for page q. The position where we wish to relocate q may also be
occupied by another page request, allocated earlier to say page r. In this case
we repeat the relocation step (as done for page p earlier); we force page q in the
location and evict r to relocate it. This chain of relocations due to clashes is
continued for a constant number of steps, thereby limiting the time complexity
of the algorithm at the minor cost of not being able to relocate the last evicted
page in any such chain of relocations.

Next, we delve into the minutiae of the algorithm. At the outset each
position of the array arr is initialized to −1. In each iteration of the main
loop we generate a random page p and a random number numRequests of
requests for the page p. These requests are added to the array by the function
addToArray stated below. This function takes the page p and numRequests as
inputs.

Line 1 initializes a static variable pos that remembers the position of the last
request placed in the array. The main for loop iterates over all the requests to
be generated. If the array is ninety percent full then the function isMostlyFull
returns true. Then lines 4-12 find the next free position in the array within a
window of size FREE SEARCH LIMIT. If such a position is found then the
request is placed in the array; otherwise, the request is not placed and ignored.
If the array is less than ninety percent full then the request is tried to be
placed at the position pos. If this position is occupied by a request for another
page then the routine force is invoked. Finally the value of pos is updated.
A random number idist is generated that follows the inter-request distance
distribution derived in section 4.3. This random number idist is added to pos
giving the position where the next request for page p is intended to be placed.
This is in accordance with condition 2.

addToArray(p,numRequests)
1 static int pos = 0
2 for (i=1;i <=numRequests; i++)
3 if(isMostlyFull())
4 flag = false
5 k = 0
6 while (k<FREE_SEARCH_LIMIT)
7 pos = (pos+1) % n
8 if(free(arr[pos]))
9 flag = true
10 break
11 k++
12 if(flag) arr[pos] = p
13 else
14 if(free(arr[pos])) then arr[pos] = p
15 else force(pos,p)
16 idist = getInterRequestDistance()
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17 pos += idist
18 pos = pos % n

The function force takes as parameters the clashed position origpos and
the page p that could not be placed at origpos. Lines 1-2 place p at origpos and
evict the previous request to another page. The number of this page is stored
in the variable t. Line 7 finds a new position pos for t. Then t is placed at
pos and the previous request at pos is evicted and placed in t. This procedure
continues until an empty position is found or until the number of iterations is
greater than or equal to ITER LIMIT .

force(origpos,p)
/* evict the existing request */

1 t = arr[origpos]
2 arr[origpos] = p
3 limit = 0
4 pos = origpos
5 while(limit < ITER_LIMIT)
6 limit ++
7 pos = getNewPos(pos,t)
8 swap(arr[pos],t)
9 if(t == -1) return

The function getNewPos takes as its parameters the position pos and the
evicted request for the page t. This function tries to relocate t to a new position
such that the distribution of inter-request distances is maintained. Line 1 tries
to determine the position lower of another request for page t in the array within
a reasonable sized window(SPAN) around pos such that:

(arr[lower] = t) ∧ (|pos− lower| < SPAN) ∧ (∀i ∈ (lower, pos) arr[i] 6= t)

Similarly upper is the position of another request for page t such that :

(arr[upper] = t) ∧ (|pos− upper| < SPAN) ∧ (∀i ∈ (pos, upper) arr[i] 6= t)

First we consider the case where we discover valid values for lower and upper.
Since t is being evicted from position pos, a suitable new position for t would be
newpos as determined in Line 6; this position has the same set of distances from
lower and upper as pos with the distances simply swapped. In other words,
newpos−lower = upper−pos and upper−newpos = pos−lower. This crucial
distance swapping step helps preserve the inter-request distance distribution.
This maintenance of the inter-request distance distribution ensures log-normal
stack-distance distribution for the generated request stream. Lines 7-8 handle
the special cases where pos = newpos.

Now consider the case where either of lower or upper does not exist. In this
case a new position is searched in a smaller window of size WIN SIZE around
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pos. The function searchWithinWindow returns a random empty position in
such a window and, if such a position does not exist then it returns a random
filled position.

getNewPos(pos,t)
1 lower = getNextLowerPage(pos,SPAN)
2 upper = getNextUpperPage(pos,SPAN)
3 if(!valid(lower) || !valid(upper))
4 newpos = searchWithinWindow(pos,WIN\_SIZE)
5 else

/* relocate to a new position */
6 newpos = lower + upper - pos

/* correction for the midpoint */
7 if(newpos == pos) newpos ++ ;
8 if(newpos == upper) newpos = (newpos + 1)%n
9 return newpos

In this manner GRAPES generates requests for pages. Now, we discuss
some intricacies of the algorithm. Due to the random choice of the next page to
be allocated in the array and the wraparound strategy adopted in the function
addToArray, a request for a page might be allocated in an area of the array
where requests for the same page might already have been allocated earlier.
This would violate the inter-request distance distribution. We have chosen to
ignore this as such aberrations do not change the nature of the final stack-
distance plot as seen in section 4.6. Note that the function force and the
linear search phase in the function addToArray might sometimes fail to add a
request. The percentage of requests lost depends upon the constants used in
the algorithm. This leads to a tradeoff between the running time and the loss
percentage. We propose heuristics that ensure a fairly fast running time and
less than 0.1% loss. These heuristics are derived from exhaustive experimenta-
tion and hold for a varied number of input sizes and log-normal parameters. To
state these heuristics we need to define the mean λ of the inter-request distance
distribution. This mean turns out to be between 100-150 when the signature
distribution determined in section 4.3 has 800 coefficients (first-return probabil-
ities) and the log-normal parameters are within the ranges specified in section
4.2. The choice of the constants realizing our heuristic are as follows.

• FREE SEARCH LIMIT = 5λ

• ITER LIMIT = λ
3

• SPAN = λ

• WIN SIZE = λ
10

Now we are in a position to calculate the asymptotic complexity of the al-
gorithm. The function getNewPos takes O(1) time. force invokes getNewPos
at most ITER LIMIT times. Thus force also runs in O(1) time. Now for each
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request added addToArray either searches at most FREE SEARCH LIMIT po-
sitions or calls the force function. Both take O(1) time. Since there is a
constant overhead per each request generated, the worst case asymptotic run-
ning time complexity is O(n) where n is the number of requests generated.

4.5 Parallel Request Generation Algorithm

The algorithm presented in the previous section permits a simple parallel imple-
mentation. We state the parallel version in this section. The key to the parallel
implementation is in the probabilistic approach; randomly select a page and
randomly choose a number of requests to be generated for the selected page.

We assign pages to processors, partition the requests to be generated and
give each processor its share. Then the processors can start at different positions
in the array and just place the requests as if they were isolated. Each processor
would independently run the sequential algorithm. While explaining this idea
we assume the PRAM model. The details about this model can be found in
references [9, 12].

Let us assume that we want to generate n requests for m pages with p
processors. Without loss of generality let us assume that n and m are multiples
of p and n > m. Let us assume that the number of processors p < m/ lg(m)
which will be the case in all practical scenarios. Let us consider a priority
based CRCW model. This condition will be relaxed later. At the outset each
processor obtains the list of pages and the number of requests for each page it
will generate. This can be done as follows.

• Create an m element array whose ith element has the number of requests
to be generated for the ith page. This is calculated from the Zipf distri-
bution (see section 4.2). This takes O(m

p ) time and can be executed on
an EREW PRAM.

• Calculate the prefix sum in O(m
p ) time. This can also be executed on an

EREW PRAM.

• Each processor with id j searches for the position of the ((j − 1) ∗ n
p )th

request and the (j∗n
p−1)th request in the array. This can be accomplished

in O(lg(m)) time on a CREW PRAM. Now each processor knows the list
of pages and the number of requests for each page it has to generate. The
total number of requests each processor generates is equal to n

p .

Subsequently each processor with id j starts at the ((j−1)∗ n
p )th location in the

request array and runs the sequential algorithm for the subset of requests that it
has to generate. If more than two processors want to write to the same location
then the one with highest processor id succeeds. The rest of the processors
try to relocate the request that they couldn’t place in the array (see function
getNewPos in section 4.4). In this manner a request stream is generated.

A special situation might arise when a request for page p gets evicted by
one processor and the next request to p in the array gets evicted by another
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processor. This will cause the method getNewPos to function anomalously and
will disturb the inter-request distance distribution. By exhaustive experimen-
tation and probabilistic analysis of some representative cases, the probability
of such an error was found to be very low. Hence, we chose to ignore it.

Thus, the request generation process takes O(n
p ) time because the sequential

algorithm is linear in the number of requests. Summing up all the running times
the net worst case asymptotic complexity becomes O(n

p ). Now, let us try to
generalize our result to CREW and EREW PRAMS. We would like to refer to
the following result from Jaja’s book (see Corollary 10.1 in [12]).

Lemma 4.5.1 Given an algorithm that can be implemented to run in time T
on a p processor priority CRCW PRAM, this algorithm can be implemented
on a p processor EREW PRAM to run in O(T lg(p)) time.

The scheme adopted in this book can be used to transform our algorithm to
run on CREW and EREW PRAMs. Thus the worst case time complexity on
such architectures is O(n

p ∗ lg(p)).

4.6 Results

GRAPES was coded in C++ and request streams were generated for different
numbers of pages and log-normal parameters. We compare the performance
of GRAPES with two popular workload generators SURGE and ProWGen.
We compare the speeds of execution and the stack-distance distributions for
different numbers of requests. To compare these three generators we have made
certain assumptions.

1. Since GRAPES takes into consideration only page popularity and tem-
poral locality in generating request streams, we have considered only the
same subsystems in the other generators.

2. The number of requests generated in a single run of these algorithms must
scale with the number of pages. We observed that setting the number of
requests to ten times the number of pages allows us to generate request
streams with the desired statistical properties.

3. In the case of ProWGen the stack size is meant to be set by the user
whereas in SURGE it is always equal to the number of pages. For ProW-
Gen the prescribed value of stack size is 1000. We observe that the stack
size should scale with the number of pages and requests. This is necessary
to meaningfully realize temporal locality. Hence, we vary the stack size of
ProWGen proportionately with the number of pages. We make the stack
size equal to 0.02 times the number of pages.

We have tried to model two characteristics of request streams (i) Zipf page
popularity and (ii) log-normal stack-distance distribution. The former is ex-
plicitly guaranteed by the algorithm (see section 4.4). The plots in figures
4.6.1-4.6.4 depict the probability distributions of stack-distances for two differ-
ent log-normal parameters and numbers of pages. The ideal distribution and
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the values obtained by the SURGE generator are also plotted for the sake of
comparison. Here the number of requests generated is ten times the number of
pages as assumed above. The plots show that the stack-distance distribution
generated by our algorithm matches very closely with the ideal distribution and
that generated by the popular workload generator SURGE.

Next we come to the performance of GRAPES. GRAPES was run on a
variety of machines. We present the results for Intel P-III 866 MHz running
RedHat Linux 7.1. The program was compiled under g++ with maximum
optimization.

pages requests time (sec)
5,000 50,000 0.110
10,000 100,000 0.280
25,000 250,000 0.730
50,000 500,000 1.148
100,000 1,000,000 3.05

The execution time grows linearly with the number of requests and is inde-
pendent of the number of pages. This makes the algorithm pretty scalable. It
can generate a million requests just in 3.05 seconds. We compare the perfor-
mance of GRAPES with two popular workload generators SURGE and ProW-
Gen. The values are plotted in figure 4.6.5. We plot the execution time as a
function of the number of requests generated. The number of pages are one-
tenth the number of requests.

The performance plots clearly indicate the super-linear time complexity
of the algorithms used by SURGE and ProWGen. In contrast the execution
time of GRAPES has a linear time complexity. This leads to a tremendous
performance advantage when the number of pages and requests are large. For
a million requests GRAPES is about 25 times faster than both of them. Since
GRAPES is independent of the number of pages it is an order of magnitude
faster than other popular workload generators for big simulations. Figures
4.6.1-4.6.5 prove that GRAPES produces request streams having the desired
statistical properties and has a significantly faster execution time as compared
to others.

4.7 Conclusion

We have presented an algorithm GRAPES for generating web request streams
that obey Zipf page popularity distribution and log-normal stack-distance dis-
tribution. Our algorithm is based on analytical models proposed by researchers
who have meticulously observed web traffic statistics. The request streams gen-
erated therefore obey empirically observed distributions of page popularity and
temporal locality. The algorithm guarantees Zipf distribution for page popular-
ity. The plots in section 4.6 show that the stack-distance distribution generated
by GRAPES closely matches the ideal log-normal distribution as well as the
stack-distance distribution generated by SURGE.
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Figure 4.6.1: 10,000 pages (µ = 1.5 and σ = 0.8)
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Figure 4.6.2: 50,000 pages (µ = 1.5 and σ = 0.8)
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Figure 4.6.3: 10,000 pages (µ = 1.75 and σ = 0.85)
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Figure 4.6.5: Performance of different request stream generators

We have used a novel approach to generate web request streams; instead of
using the stack (as in earlier workload generators) we have demonstrated how
to generate a set of coefficients apriori representing stack-distance distribution
so that a request stream can be generated in time proportional to the number
of requests, irrespective of the number of web pages being considered. Our
algorithm does not assume the log-normal stack-distance distribution. Any
distribution for stack-distance can be used in our algorithm; the signature must
be generated apriori for the particular distribution being used.

GRAPES is a general Monte Carlo scheme for generating request streams
given a stack-distance distribution. The randomization step makes the request
stream unpredictable and ensures that requests to popular pages are fairly well
distributed. The randomization in the algorithm has made way for a very
simple parallel implementation. The parallel algorithm can be made to run
on any system that can simulate or run algorithms designed for the abstract
shared-memory PRAM model [12, 9].

The plots in section 4.6 show the superior performance of GRAPES as
compared to other popular workload generators. GRAPES has a worst case
linear time complexity as compared to the super-linear time complexity of other
generators. This results in a speedup of an order of magnitude for a large
number of pages and requests. These performance figures attest the suitability
of GRAPES for use in large scale WAN traffic simulations.
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Conclusion

This thesis described the architecture of a wide area network simulator and
related utilities. The simulator SWAN was coded, debugged and tested through
the course of the project. Several shortcomings of other simulators were taken
care of and all efforts were made to make a generic, flexible and customisable
object oriented architecture. As a result the SWAN simulator can easily change
its behaviour by plugging some new classes and removing the old ones. A
very consistent and robust interface has been defined such that implementers
can write their own classes and incorporate it into the existing framework.
Provisions have also been made to incorporate the results and sub components
of other simulators and workload generators.

During the course of the project two other related problems were solved that
arose during the construction of the SWAN simulator. The first one was the
NetGraph tool that facilitates drawing network diagrams and exporting them
in various formats. This was developed in MS Visual C++. It features a very
sophisticated development environment and various tools to export and import
data in various formats.

Secondly, a new web request generation scheme called GRAPES was de-
veloped. This is the research contribution of the project. It combines two
seemingly unrelated distributions and generates web requests conforming to
both of them. There are tremendous performance advantages as compared to
other web workload generators. A parallel algorithm for the PRAM model has
also been presented that is work efficient.

To summarize, the project has created an environment for running large
scale simulations and coducting experiments on web traffic. Associated utilites
shall aid the implementer in carrying out the studies. The work done during
the course of this project represents a humble beginning of a long sequence of
research activities that will be carried out on WAN traffic in the future.



Chapter 6

Scope for Further Work

There were several problems that arose during the course of the project that
could not be solved or were solved partially. These are outlined in this section
such that they could be solved in future endeavours.

• The GRAPES algorithm combines temporal locality and popularity. But
self-similar spatial locality is also a very important property of web re-
quest streams. Some self-similarity was observed in the GRAPES request
stream. But values sometimes tended to differ between the R/S plots
and variance time plot. This points at the non-stationarity stream. Most
probably the approach followed by Huang and Devetsikiotis can solve the
problem. They have proposed a method to combine short range and long
range distributions.

• Studies need to be conducted on the efficiency of caching schemes. The
experiments just concenterated on perfect LFU. The caching scheme used
by caches are LRU and imperfect LFU. They need to be studied most
probably using transforms. Then only caching performance can be accu-
rately characterized and its relationships with latency need to be studied.

• We worked on a fuzzy logic algorithm that couldn’t be completed. It basi-
cally revolved around the idea that there are certain caching servers that
have other servers under their control. Such servers that act as leaders
can trade other caching servers between them. Now when a request comes
to any caching server it first multicasts it to members of its group and
if it does not succeed then only it sends the request to its parent. Thus,
caches are managed in groups and grouops can dynamically reconfigure.
In this framework we tried to incorporate resource reservation and trad-
ing of some amount of cache of a server with another. Fuzzy logic was
deemed most appropriate for managing such sort of a situation. The fuzzy
variables were bandwidth, cache size, latency, average hit ratio and cache
contents. The cache contents are compressed as a digest using bloom fil-
ters. To simulate bloom filters we had an idea that the rand function can
be used as a URL hashing function with the page number as the seed.
This algorithm should be developed and tested on a simulator.
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• The proof of self-similarity([18, 19, 21]) in the web is very interesting.
Please refer to Willinger and Taqqu’s paper ([20]) that proves that su-
perimposition of the traffic generated by individual users leads to overall
self-similar traffic. The proof uses properties of Fractional Gaussian Noise
and Fractional Brownian Motion. Theoretical studies on such functions
and how they add up to generate self-similar traffic is a novel research
direction.
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