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The study of shapes and topologies of objectsin two- and three-dimensond Euclidean
gpace have influenced and absorbed mathematicians for centuries. The most important
and pervasive nation in shapesisthat of “convexity”. An object A is said to be convex
provided the join pq of any two points p and g of A liesentirdy in A. InFigure 1, A, B
and C are convex polygons but the union of B and C isnon-convex. For pinB and qin
C, the join pq goes outside the union of B and C.

Figure 1: Corwvex
and non-convex
ohjects

A more dgebraic characterization of convexity isasfollows. An object Cissaid to be
“convex” if for any two points (position vectors) pand qin C, gptbg dso liesin C,
where aand b are positive reals and at+b=1.



It isinteresting to note that the union of convex objects can be very rich indeed. It is not
difficult to show that the intersection of convex objectsis convex. On the other hand, the
union of convex objects may be non-convex and may also have idands or holes as we see
in Figure 2.

Figure 2: The common intersection of A4, 0 and E is convex,
The union of &, B, C. D and E is non-cornwvex and has a hole or
island.

Complex non-convex objects are often viewed as unions of convex objects. A garland is
made of spherical beads. The problem therefore of decomposing a non-convex object into
convex objects is an important computational problem, required in many gpplications

such as pattern recognition. It is interesting to know the minimum number k of convex
polygons whose union is a given non-convex polygon P. The uniting convex polygonsin
this case might have overlaps. We may aso be interested in partitioning the same non
convex polygon Pinto aminimum number k' of mutualy non-overlgoping convex
polygons. Isk=k’? Can you find a non-convex polygon P such that k is not the same as

k’? The union of the five convex polygonsin Figure 2 is not the union of any four convex

polygons.

Unions that do not involve holes are smpler to deal with. Smple polygons are non-
convex in generd and may be viewed as unions of convex polygons. A smple polygon
partitions the Euclidean planeinto three parts. the interior (which can be shrunk to a
point), the exterior, and, the polygona boundary itsdlf. The boundary of a smple polygon
isaclosad Jordan curve. An n-vertex or n-sded smple polygon is caled an n-gon. It
would be interesting to characterize the number of distinct shapes you could get for n-
gons. For n=3, thereis only one shape, that of atriangle. For n=4, you can get only two
shapes as shown in Figure 3. Oneisaconvex quadrilatera and the other is non-convex.
How many shapes can you get for n=5? Can you find the function f(n) where f(n) isthe
number of possible shapes for n-gons? Have we defined what notion of shape we are
redly interested in? Ponder and define your own problems; there may not beasingle
elegant definition!
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Figure 3: There is one 3-gon, & 4-gans and who knows how many
29-gons. One 29-gon is shown abowve

It isworthwhile looking at shapes of multiply connected sets. Sdf-intersecting closed
curves enclose multiply connected regions. Such a generd polygon with saf-intersecting
boundaries may be visuaized as a collection of severa smply connected n-gons, glued
together at sdf-intersecting points like the one in Figure 4, where x is one of the ten
intersection points of two edges of the polygon The interior of the polygon in Figure 4
has eleven connected components; the interior cannot be shrunk to a point.

In Figure 2 we have a polygon with a single hole; this polygon is the union U of the five
convex polygons. The union U has an outer boundary defined by parts of the boundaries
of A, B C, D and E, and, an inner boundary bounding the hole. U is dso multiply
connected. Itsinterior, having a hole, cannot be shrunk to a point. Note that the hole may
be non-convex aswe seein Figure 2.
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Figure 4: This seltintersecting general polygon has a
selt-intersecting boundary defining 11 n-gons. of which 7
are 3-gons (wo very small), 2 are b-gonsg, one i a 4-gon
and one is a 3-gan.

Determining properties of unions of convex objects and computing unions are some of
the hardest problemsin “discrete and computationa geometry”. Unions are however of
centrd interest in many gpplications. Unions of triangles in space can represent any three-
dimensiona structure with plane faces and straight edges. Unions of convex polygons
(polyhedra) in the plane (gpace) can represent any two-dimensiond (three-dimensiond)
object. Computing decompositions of non-convex objects into convex pieces is NP-hard
in mogt cases, this hgppensif you wish to minimize the number of convex piecesinto
which you wish to partition or decompose the norconvex object. Computing unions of a
given set of convex polygons or objects may not be so hard after all, not NP-hard by any
means. Then what is S0 hard about computing unions? Well, the question is very smple:
can you compute unions optimally? If the union has a certain “output Sze' in terms of
numbers of edges and vertices, then can you compute the union in time proportiond to
the number of edges and verticesin the output union polygon(s)? In other words, you
wish to compute the union in time proportiond to the amount of “data structure’ space
required to store the union. Y ou may be given aset of k convex polygonswith atota of n
vertices (over dl the k convex polygons) asinput. The k polygons may be having very
complex intersactions between themselves but one of them may contain dl the rest of the
k-1 convex polygonsin itsinterior, in which case, the union is Smply that containing
polygon. The dgorithm might spend alot of time computing the union by considering the
interaction between dl the k polygonsin the input but the answer is so smple. (Imagine
for ingtance that a rectangle F encloses dl the five convex polygonsin Figure 2.
Computation of the intricate union of the five polygonsis not necessary to get the union

of dl thefive polygons with F; here the union istrividly the enclosng rectangle F.) The
adversary can fool the agorithm to perform more work unless the algorithm applies
drategies to vanquish the evil design in the k convex polygonsin the input. The
breakthroughs in the 80's and 90's in data structuring, dgorithms' analys's techniques,
combinatorid results in geometry, and last but not the least, randomization of dgorithms
helped to a great extent in solving some such union problems “ efficiently”.



The dert and anticipating reader would not have difficulty in observing that geometric
union problems arise in computer graphics and pattern recognition in many forms. To the
robotics enthusiast, one main concern is how to account for obstacles and determine
whether arobot can squeeze through obstacles. If the robot is not infinitesmd and in fact
comparable in dimensons to those of the obstacles, then what one normally requiresis
computing “grown” obstacles usng Minkowski’ s differences, thereby reducing the robot
to a point. For the case of a non-rotating robot, thisis quite sufficient. Although obstacles
by definition do not overlap, their grown counterparts may very wel overlap, squeezing
alowances and thereby preventing robot motion in certain regions. Computing unions of
grown obstacles is very important indeed, asimportant as computing surface areas and
volumes of microscopic macromolecules. Algorithms from combinatoria geometry are
the best and fastest solutions for such computationd problemsin chemistry where
scientists use various models for representing extents “volumes’ of atoms and molecules
or their dectron clouds. Complex dynamics of large organic molecules or inorganic
molecules and their rich geometries can keep computationa geometers and numerica
anadysts busy for severd yearsif not decades. These studies have direct consequencesin
biotechnology and biochemidtry.

So much for the applications. we have however not yet seen much about generdizations
of the very rigid definition of convexity. Can we relax convexity and till get good
shapes? We did so indeed earlier in generdizing polygons from convex polygonsto
ample polygons as we have the 29-gon in Figure 3. What was preserved was
“connectedness’; smple polygons are as “ ssimply connected” as convex polygons are.
Theinteriors of dl such polygons can be shrunk to single point. Now we introduce
another kind of generdization of convexity by usng what is known as“vishility”.
Vishility is afundamental geometric concept, dmost as much as convexity or
connectednessis. Two points p and g are said to be (mutudly) “vishble’ if the join pq
does not intersect any object or obstacle. So, indde a convex object, every point isvisble
from every other point. Thereistotd vighility in convex objects. In smple polygons,
some pairs of vertices are not mutualy visible because their respective joining segments
can intersect the polygona boundary. In the 29-gon in Figure 3, the leftmogt and the
rightmost vertices are not mutudly visble, wheress, the bottommost vertex isvisble
from the leftmost and rightmost vertices as well as from exactly four more vertices
(which ones?). As per this definition of vishility, we can say equivdently that a convex
polygon is“illuminable’ or visble or “seen” from any and every point indgde the

polygon. A smple polygon P too may be visible or illuminable or “guardable’ from some
interior point p aswe seein Fgure 5. Some polygons are not illuminable in this sense
but areilluminable by atubular source of light pq (see polygon in Figure 6).



Figure 5: The topmost and bottommost interior
points can notilluminate P. All the three others
inluding p can see orilluminate P

Figure B: Guards at A B, Cand C suffice to see each
paintinside 0. Howewer, even justthree verex guards
sufficel

The polygon in Figure 6 isilluminable using “guards’ sationed at some three vertices.
Which three? Guarding or illuminating a polygon with point light sources restricted to the
verticesis an academic exercise of some significance and smplicity. The polygonin
Figure 6 has been purposaly triangulated using edges connecting vertex pairs so that no
triangul ation edge intersects another. Being n-sided, there can be exactly n-2 trianglesin
any of the exponentidly many possible triangulations of an n-sided smple polygon. So,
there are exactly n-3 triangulation edges. Y ou could triangulate the same polygon in so
many ways. For instance, instead of connecting A to alower vertex, you could have



“flipped” that edge with an edge connecting the two boundary neighbors of A, again
getting avdid triangulation. It is not tough to show that /3 vertex guards suffice to

guard an n-sded smple polygon. Y ou may not need so many guards for every n-gon and
computing the minimum number of vertex guards required to guard agiven n-gonisan
NP-hard problem. Is the corresponding decision version NP-complete? Yes, indeed. The
proofs are not very hard, just some geometric constructions!

Even though an n-gon may require /3 vertex guards, just one mobile guard or tubular
light source may be sufficient for “seeing” or guarding the whole interior as we observe

in Figure 6. The segment pg can see the whole polygon. Can you imagine or construct
smple n-gons where one may require alarge number of mobile guards, asymptoticaly
increadng with the number n of vertices? Is the problem of computing the minimum
number of mobile guards necessary for a given n-gon (the mobile guards may petral in

the interior of the n-gon), aproblem in NP?Isit dso in P or isit NP-complete? Wdll, this
IS not quite an easy question!

Can convexity help in guarding? For indance, isit eeser to find the minimum number of
vertex guardsin an nrgon if it is“weskly visble’” from an internad segment? Here, we use
the terminology “weskly vishle’ from a segment to mean that the n-gon can be guarded
by amobile guard moving aong the stretch of the segment. So, our question is whether
computing the minimum number of vertex guardsisin P (instead of being NP-hard), for
n-gons that can be guarded by asingle interna mobile guard. The answver unfortunatdly is
in the negative!

Convexity may not help in “guarding” but it does certainly help in “hiding” peoplein
gons. Consider the NP-hard problem of determining the maximum cardindity set of
vertices of an n-gon that are not mutudly visible, pair wise. A set of vertices where eech
par ismutudly invisbleis cdled a“hidden s&t”. Thisis somewhat like the independent
set problem on graphs. If the n-gon has certain “good convexity” properties then it
succumbs to adynamic programming goproach, yieding a polynomid time dgorithm for
computing the maximum hidden set. The good convexity property we are dluding to is
grosdly the property that the (internal) shortest path between any pair of verticesin the
polygon is*convex”, ether dwaysright turning or always left turning. See Figure 7 and
get afeding that the shortest path between any pair of verticesisindeed “convex”.
Simple polygons that satisfy this convexity property of shortest paths can be
“characterized” as smple polygons where the entire polygon is guardable by a“mobile
guard” patrolling on an edge of the polygon. In other words, such polygons are weakly
vigble from an edge of the polygon, edge vw in Figure 7.



Figure 7: This pokygon is weakly visible from ww. In ather words, the
polygon can be guarded by one mokile guard on the boundary
edgeww. The bhold marked werdices farm a large hidden set. Is there
a larger hidden set?

Figure 8: The dark regions
are notilluminated after one
reflection on the edges ofthe
enclosing simple palygon.



Weakly visble polygonsinteract interestingly ingde smple polygons. The smple
connectedness of the enclosing n-gon imparts cute properties to weekly visible polygons
generated ingde the n-gon. See for ingtance the smple polygon in Figure 8 with g
illuminated edgesm1, m2, ... , mq. Notice that most of the enclosing smple polygon P
(an n-gon), isflooded dueto light reflected (“diffuse’ reflection) from various edges. The
only source of light isa point source stationed at the interior point s. The point sdirectly
illuminates only asmdl portion, certainly not the triangular pinhole components pl, p2,
..., pr. See how carefully sis hidden from the pinhole components. Edgesm1, m2, ...,
mq however are flooded with light from the point source a s and these edgesin turn, by
virtue of diffuse reflection, illuminate portions of the pinhole components and other
regions of the enclosng polygon P. The walls (edges) of the polygon P are opague but
reflecting. (For a change, the reflections here are not Newtonian but Lambertian or
“diffuse’; this means (as you have dready rightly guessed), the reflecting edges scatter
back incident light in dl possible directions). The congtruction is cleverly done so only
edgesm1, m2, ..., mg and no other edges illuminate the pinhole components p1, p2, ...,
pr. Each of the q edges send light into each of the r pinhole components, creating
dternatdy illuminated and dark regions. Note that we entertain only one reflection after
light emanates from s. Also note in that other edges gppearing between in the chain of the
g reflecting edges m1, m2, ..., mq, are 0o tilted that light reflected back by them missdl
ther pinholes. In summary, we get r*g=0(n"2) dark regionsand thus the boundary of
the region V1(s), visble from s after one diffuse reflection, has O(n*2) edges. We could
chose the enclosing n-gon P to be such that g=n/c and r=n/d for constants ¢ and d
independent of n. So, for asymptotic n, the number of edges on the boundary of the
region V1(s), visble from s after one diffuse reflection is O('2). Thisisinteresting
because V1(s) has quadratic combinatorial complexity, wheregs, the region V(9), directly
visible from s, can have a most O(n) edges. The linearity of V(s) isnot hard to prove. It
is aso not hard to show that V(s) is Smply connected. (Note that V(s) and V1(s) are by
definition contained ingde the enclosing n-gon P because P has opague but internaly
diffusdly reflecting edges.) However, the proof that V1(s) is aso smply connected is not
aurprising but certainly non-trivia! After al, diffuse reflection floods light dl around
points of reflection and therefore invisble regions are tough to create, particularly those
dark regionsthat are totaly surrounded by illuminated regions.

Y ou might have been wondering how there can be holes insde visible regions. We have
not seen any so far. V(s) and V1(s) above do not have holes. The dark regionsin Figure 8
are not holes; those dark regions are peripherd and if you land up insde one of the
O(M2) dark regions of P, you can exit P without having to pass through any point of
V1(s). So, you can escape radiation from s even if the radiation is after one reflection!
You are smply not trapped. Having ahole ingde avisible region, as mentioned in the
previous paragraph isinteresting because once you are insde such ahole or idand of
darkness, escaping to the exterior of P requires you to drive through some portion of the
vigble region, irrespective of which way you take a continuous drive out of the hole to

the exterior of P. This would have happened for holes of V1(s), if there were any.
Fortunately, thisis not possible. What about V2(s)? We define V2(s) to be the sub-region
of Pthet isvigble from safter a most two diffuse reflections on thewadl of P. All walls



(edges) of P are diffuse reflectors. So, for any point g in V2(s), thereisa polygona path
from sto q suffering a most two reflections on edges of P. (Remember that every point p
of Pindgde V1(s) is such thet there is a polygond path from sto p with a most one
reflection on an edge of P asyou seein Figure 8.) It turns out that V2(s) is not smply
connected, has holes, and quite plenty of them and therefore we say that V2(s) is multiply
connected. Thisisabit surprising, indeed true, but not quite easy to show. We omit our
discussion on diffuse reflections here and get to Newtonian reflections below to show
you holesin visble regions

Figure 9: Specular or Newtonian reflections create

horizantal beams %1, YE, and verical beams Y3 and V4,
creating a dark hale labelled 1 and peripheral dark regions
labelled 2. 5ee how nicely the hole is surrounded by regions
wisible from s after one specular reflection.

In Figure 9, reflections are specular; the angle of incidence is equd to the angle of
reflection. Thisis different from the case of diffuse reflections. (Specular reflections
happen on mirrors you use to see your face. Diffuse reflections happen anywhere and
everywhere you have partly rough surfaces like walls and furniture,) The point sin

Figure 9 isagain nicely hidden from the region having the dark regions marked 1 and 2.
Theregion hidden from s gets light after one reflection only acrossbeamsV1, V2, V3
and V4. Other edges reflect light coming from the only point source s but the rays so
resulting have to suffer one more reflection to reach anywhere; aswe are interested in
only one reflection now, we ignore such rays. If you had n/c beamslike V1 and V2 and
n/d beams like V3 and V4, then you would have got O(n"*2) holes like the region marked
1. So, we can now see plenty of holesin the region visible from s after a most one
gpecular reflection. We say that V1(s) (for specular reflections) is multiply connected, as
was V2(s) in the case of diffuse reflections. It turns out that the number of holes increases
exponentidly (in the case of gpecular reflections) with the number k of permitted
reflections. We have so far been looking at union problems, unions of convex polygons
and unions of regions visble from edges and points, asin the last few paragraphs. The



richnessin these problems is due to the combination of convexity, connectedness and
vighility.

We now try to take alook at some elegant intersection properties of convex sets. Suppose
n people attend a party as per the following rule: each person enters the party exactly
once and leaves the party exactly once. To determine whether dl the n persons were
smultaneoudy at the party a some moment of time, it suffices to show that each
person’ s party vist timeinterva overlgpped with each other person’s party vigt time
interva. In other words, we have an O(7*2) time check and do not need to actudly
compute the complex intersection of dl the n timeintervals to check its nornemptiness.
(It is quite easy though to compute the actud intersection of dl the n time intervasin
O(nlog n) time!) Now get down to two dimensions: take three rectangles A, B and C
and place them on your table. Try placing them so A intersects B, B intersects C and C
intersects A. Do al of A, B and C have a common intersection? May not be, unless you
keep the three rectangles oriented in such away that their edges are pardld to the X- and
Y- axes. Suppose you had n convex objects in the plane. These could include triangles,
circles, rectangles or any kind of convex objects. Suppose you place them on the plane.
How do you know that dl the n intersect at acommon point? Aswe have aready seen,
checking pair wise does not help. Can we check dl triplets? Try verifying the following
result: if every triplet of the given n convex objects have acommon intersection, then al
the n objects have a common intersection. Bdlieve it or nat, this result is very easy to
prove as much asits d—-dimensond counterpart is. given n>d+1 convex objectsin d-
dimensiond space, the n objects have acommon intersection if each of the (d+1)-szed
subsets of the n objects have common intersections. So, you can see how degenerate
matters become as we asymptoticaly increase the number n of objects, keeping the
dimengonfixed a d. However, note that this result is very fundamenta and significant
indeed with very far reaching implications. For instance, this result helpsin one way of
proving the famous and heavily used Lipton Tarjan separator theorem for planar graphs.

Another consequence of the above result isthat in order to determine whether a set of n
points in the plane can be covered by some unit disc, al you need to do is check that each
triplet of n points can be covered by some unit disc. So, an O(\3) agorithm can decide
if n pointsin the plane can be covered by aunit disc. Try showing that checking each pair
of points does not help.

Intersection and union problems are fundamenta to geometry and the study of their
combinatorial and computational aspects give us ingghts into how the whole is made out
of its parts. Convexity, connectedness and visbility are important geometric festures that
guide our way through the study of shapes.




