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When quantum resources (apparatus) are distributed in two or more geograph-
ically separated locations, we may not be able to implement unitary operations
without resorting to either quantum or classical communication. So, local opera-
tions and communication may be combined to achieve quantum computation. It is
therefore necessary to determine the amount of communication necessary in such
operations. Such costs may be deterministic worst case costs or even probabilistic
costs, such as average communication costs over discrete distributions. We develop
the necessary fundamentals and illustrate a few examples of analyses.

1 Shannon’s entropy

For a random source of symbols from a certain discrete distribution, we know that
(as small as) expected H(X) bits of information (on the average), can be used for
coding information coming out of X. If p(x) is the probability of x in the source
X, then this (Shannon Entropy) H(X) or H(p(x)) is

∑

x p(x) log 1
p(x)

. Once we have

two such generators X and Y on the same set of symbols, we can define H(X, Y )
as

∑

(x,y) p(x, y) log 1
p(x,y)

, where p(x, y) is the probability that x comes out of X

and y out of Y . If X and Y are independent (that is, p(x, y) = p(x)p(y)), then
H(X, Y ) = H(X) +H(Y ). Otherwise, H(X, Y ) is less than the sum of H(X) and
H(Y ). Naturally, joint entropy is less than sum of entropies if the processes are
dependent.

We may view the joint entropy H(X, Y ) of X and Y as the sum of the en-
tropy H(Y ) of Y and the conditional entropy H(X|Y ) of X given Y . In other
words H(X|Y ), called the conditional entropy of X given Y , is the difference be-
tween the joint entropy and original entropy, i.e., H(X|Y ) = H(X, Y ) − H(Y ).
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H(X|Y ) defined as H(X, Y )−H(Y ) can now be written as
∑

(x,y) p(x, y) log p(y)
p(x,y)

=
∑

(x,y) p(x, y) log 1
p(x|y)

. The conditional entropy is like the uncommon information
between X and Y , because this information is needed for X conditional over Y .
So, subtracting the conditional entropy H(X|Y ) from H(X) gives the mutual or
common information H(X : Y ) between the two sources X and Y . that is, H(X)−
H(X|Y ) = H(Y ) − H(Y |X), usually denoted as H(X : Y ) or I(X : Y ). We
may now view H(X : Y ) as H(X) − H(X|Y ) = H(X) − (H(X, Y ) − H(Y )) =
H(X) +H(Y ) −H(X, Y ), and the symmetry in its definition.

2 Density operators and von Neumann entropy

Given the density operator ρ for a quantum state, determining the von Neumann
entropy S(ρ) amounts to determining the (real) eigenvalues λx of ρ and computing
∑

x λx log 1
λx

. Indeed, the spectral decomposition of ρ is
∑

x λx|ψx〉〈ψx|, where |ψx〉
are the eigenvectors defining an orthonormal basis for the Hilbert space.

As operators on the state space

We will now see how these operators can operate on individual states. If ρ operates
on an eigenstate |ψx〉 then we get λxρx.

Postulates and traces

We already know that the expectation of a projective measurement with Hermitian
observable M of a pure state |ψ〉 is 〈ψ|M |ψ〉. Writing the state as a density operator
ρ = |ψ〉〈ψ|, this expectation is tr(Mρ) = tr(ρM) = tr(|ψ〉〈ψ|M)= 〈ψ|M |ψ〉.

For density operators of mixed states and measurements using POVM measure-
ment operators Mm for results m, see section 2.4 in [3]. Here, the measurement
elements are Em = M+

mMm, where (by definition, measurement postulate), Em are
positive,

∑

mEm = I. [M+
m is the adjoint of Mm.] Further, for a pure state |ψ〉,

p(m) = 〈ψ|Em|ψ〉. Such measurements are called POVM and Mm is written as√
Em. For a mixed state denoted by a density operator ρ, a unitary operation

would take it to state represented by the density operator ρ′ = UρU+. A mea-
surement yields m with probability p(m) = tr(M+

mMmρ). The state resulting due

to measurement of m is MmρM+
m

tr(M+
m

Mmρ)
. We use POVM measurements in applications

where the Holevo bound is used to estimate upper bounds on the mutual informa-
tion between a quantum information source at one end and a measured result at the
other end.
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Logarithms of density operators

A method for finding logA for a diagonalizable matrix A is as follows. Let V be
the matrix of eigenvectors of A (each column of V is an eigenvector of A). Find the
inverse V −1 of V . Consider AV ; observe that AV = V A′, where A′ is a diagonal
matrix whose diagonal elements are eigenvalues of A. We get logA′ by replacing each
diagonal element of A′ by its logarithm. Now, we can write logA as V logA′V −1.
[It is now easy to check that the operator elog A is identical to the operator A. In
other words, verify that elog A|ψ〉 = A|ψ〉, for all ψ〉.] So, for a density operator A,
we can write S(A) = −tr(A logA) = −tr(AV logA′V −1) = −tr(V −1AV logA′) =
−tr(A′ logA′) =

∑

x λx log 1
λx

.

[Note also that (logA)n = V (logA′)nV −1.]

Klein’s inequality

This is from [3], Theorem 11.7, page 511. The relative entropy S(ρ||σ) is defined
as −S(ρ) − tr(ρ log σ). Using the orthonormal decomposition of ρ =

∑

i pi|i〉〈i|, the
first term is

∑

i pi log pi. Since unitary operators preserve trace, the second term can
be written as −∑

i〈i|ρ log σ|i〉. Also, 〈i|ρ = pi〈i|. Since we have the orthonormal
decompostion of σ =

∑

j qj|j〉〈j|, we know that log σ is V log σ′V −1, where σ′ is
the diagonal matrix with log qj as the jst diagonal element and V is the matrix
with columns given by the eigenvectors |j〉 of σ. So, the second term would be
−∑

i pi〈i|V log σ′V −1|i〉 = −∑

i pi

∑

j Pij log qj, where Pij = 〈i|j〉〈j|i〉. The rest of
the proof that the relative entropy is non-negative is based on the double stochas-
ticity of the matrix representaed by P ′

ijs, and the concavity of the log function.

Projective measurements and entropy change

We know that entropy changes from S(ρ) to S(ρ′) where ρ′ =
∑

i PiρPi. Here, Pi

are elements of the complete set of projectors of the Hermitian observable.
[We need to show that Pi commutes with log ρ′ = V ′ log ρ′′V ′−1, where V is the

matrix of eigenvectors of ρ′ and ρ′′ is the diagonal matrix of eigenvalues of ρ′. It is
easy to show that ρ′Pi = PiρPi = Piρ

′. Also, Pi log ρ′ = λ′i|v′i〉〈v′i| = log ρ′Pi. That
is, Pi commutes with ρ′ as well as with log ρ′. Here, λ′i and |v′i〉 are eigenvalues and
eigenvectors of ρ′.]

[We also use the facts (i)
∑

i Pi = I, and (ii) P 2
i = Pi.]

By Klein’s inequality we know that S(ρ||ρ′) is non-negative. We show that
S(ρ′) = −tr(ρ log ρ′), thereby establishing S(ρ′) ≥ S(ρ). We have

−tr(ρ log ρ′) = −tr((
∑

i

Pi)ρ log ρ′)

= −tr(
∑

i

Piρ log ρ′) = −tr(
∑

i

Piρ log ρ′Pi)
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= −tr(
∑

i

PiρPi log ρ′)

−tr(ρ′ log ρ′) = S(ρ′)

Holevo’s bound

Alice owns a state ρ =
∑n

i=0 piρi. She encodes X = 0, 1, · · · , n as states ρ0, ρ1, · · · , ρn

with probabilities p0, p1, · · · , pn, respectively. Bob performs a measurement de-
scribed by POVM elements {Ey} = {E0, E1, · · · , Em} on the (mixed) state pro-
vided by Alice and gets outcome Y . The Holevo (upper) bound on H(X : Y ) is
S(ρ) − ∑

i piS(ρi), often called the Holevo Chi quantity, χ(ρX). [The superscipt X
for ρ here is simply indicative of the probability distribution over the index set X
of messages x (with probability px), from the classical generator X.]

We consider the trio of the preparation system P , the quantum system Q, and
the measuring device M and observe that initially the entire system may be viewed
as represented by

ρPQM =
∑

x

px|x〉〈x| ⊗ ρx ⊗ |0〉〈0|

This is like the system P with Alice, providing the state ρx to Bob for measurement
into the system M through the set of POVM measurement elements {Ey} in the
quantum system Q; the subsystem QM realizes the POVM measurement operation
defined by ε(σ ⊗ |0〉〈0|) creating the state

∑

y

√

Eyσ
√

Ey ⊗ |y〉〈y|

Observe that in the combined system QM , covering all the elements of the POVM
measurement, sets the result of the measurement in M ′s register. Naturally, the
mutual information between sources X with Alice and Y with Bob, depend of on
the initial state ρ and POVM measurement.

Now note that S(P : Q) = S(P : Q,M) since M is initially isolated and therefore
uncorrelated with P and Q. Applying the quantum operation ε to subsystem QM

cannot increase mutual information between P and Q. So, S(P : Q,M) ≥ S(P ′ :
Q′,M ′). Finally, discarding M ′ does not increase mutual information, i.e., S(P ′ :
Q′,M ′) ≥ S(P ′ : M ′). So, we have

S(P ′ : M ′) ≤ S(P : Q)

The quantity S(P : Q) is easily shown to be the expression of the Holevo chi quantity
by using the definition of S(ρ) and the Joint Entropy Thoerem. So, all we need to
do now is to show that

H(X : Y ) = S(P ′ : M ′)

This is done by tracing out Q′ from P ′Q′M ′ and showing that

ρP ′M ′

=
∑

x,y

p(x, y)|x〉〈x| ⊗ |y〉〈y|
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where
ρP ′Q′M ′

=
∑

xy

px|x〉〈x| ⊗
√

Eyρx

√

Ey ⊗ |y〉〈y|

To see this, recall the definition of POVM measurements and the expression for

the probability of the result y as tr(ρxEy), so that p(y|x) = tr(ρxEy) = tr(
√

Eyρx

√

Ey)).

So, tracing out Q′ results in the above state ρP ′M ′

, whose mutual information comes
out directly from the joint entropy S(ρP ′M ′

) = S(P ′,M ′) = H(X, Y ) and the two
traced out systems’ von Neumann entropies S(P ) = H(X) and S(M ′) = H(Y ).
These von Neumann entropies are identical to the Shannon entropies, yielding
H(X : Y ) = H(X, Y ) −H(X) −H(Y ) for S(P ′ : M ′).

Qubit communication complexity results: Application of Holevo’s

bound

We present the following results as in [1]. Alice and Bob run a quantum protocol
exchanging qubits. However, they do not exploit any pre-shared quantum entangle-
ment resource. We show that at least dn

2
e qubits must be sent from Alice to Bob if

Alice wishes to convey n bits of (classical) information to Bob.
Bob wishes to extract n bits of information. What matters is the Holevo chi

quantity at the end of the protocol in the quantum system with Bob. Let ρi be the
density operator representing the state defined by the collection of qubits with Bob
at the end of the ist step. Clearly, the information generator provides the state ρx

i ,
from the mixed state ρi = Σxpxρ

x
i . The upper bound on the mutual information on

measurements by Bob is the Holevo chi quantity χ(ρX
i ) = S(ρi) − ΣxpxS(ρx

i ). It is
easy to see that Alice’s unitary operations on its own qubits do not alter this chi
quantity; the qubits in Bob’s system are not tampered with in such operations at
Alice’s end. That is, it does not alter ρX

i , and therefore does not alter either S(ρi)
or χ(ρX

i ). Moreover, χ and S are invariant under unitary transformations at Bob’s
site. So, we consider only two non-trivial cases (i) when Alice sends a qubit to Bob,
and (ii) when Bob sends a qubit to Alice. In case (i), let B denote the subsystem
of qubits after i steps with Bob and Q the single new qubit obtained from Alice in
the (i+1)st step. We know that S(Q) ≤ 1 (a single qubit !). Also, by subadditivity
property,

S(BQ) ≤ S(B) + S(Q) ≤ S(B) + 1

We can also show (Araki-Lieb inequality [3]) that

S(BQ) ≥ S(B) − S(Q) ≥ S(B) − 1

Clearly therefore,
S(ρi+1) ≤ S(ρi) + 1

(due to subadditivity as shown above), and

χ(ρX
i+1) = S(ρi+1) − ΣxpxS(ρx

i+1)
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≤ (S(ρi) + 1) − Σxpx(S(ρx
i ) − 1)

= χ(ρX
i ) + 2

(due to the Araki-Lieb inequality as shown above)
In case (ii), χ cannot increase [3]; we are tracing out a single qubit from Bob’s

site. So,
χ(ρX

i+1) ≤ χ(ρX
i )

Further, by the Araki-Lieb inequality, we have

S(ρi+1) ≤ S(ρi) + 1

We therefore conclude that the chi quantity goes up (by 2 units), only when a
qubit is sent from Alice to Bob. It is now clear that Alice would have to send at
least dn

2
e qubits to Bob to raise the chi quantity at Bob’s end to at least n, so that

Bob may extract n bits of information.
Further, observe that whenever a qubit is communicated (either way), the von

Neumann entropy does not decrease at Bob’s end. The entropy may rise by at most
one unit. So, the total rise in entropy at Bob’s end is less that the total number of
qubits comunicated either way. Since the entropy was initially zero and second term
in the chi quantity is also initially zero and finally non-zero, we can say that the rise
in entropy exceeds the rise in the chi quantity, or equivalently, exceeds the final chi
quantity. This chi quantity clearly must be larger than n, the number of classical
bits conveyed from Alice to Bob. Since the total number of qubits communicated
exceeds the net rise in entropy, we can say that this also exceeds the total number
of classical bits conveyed. So, although at least dn

2
e qubits need to be comminicated

from Alice to Bob, a total of at least n qubits need to be communicated in order to
transfer n bits of classical information from Alice to Bob.
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