
Fourth Week

Instructor: Prof. S. P. Pal

TA: Rahul Gokhale

In order to prove dense hierarchies, we need newer techniques because the
hierarchy theorems on time and space established so far cannot fathom examples
such as that in Example 12.5 [HU79]. Also, our space hierarchy theorem was for
deterministic case; for non-deterministic cases too, as in Example 12.6, one can
show separations easily using a new technique. We develop the notion of trans-
lational lemmas as in Section 12.5 in [HU79]. Note that the tape compression
theorem and the linear speedup theorem were extendible to non-deterministic
computations as well, unlike what we saw for deterministic hierarchy theorems.

Now consider the proof of Lemma 12.2 [HU79]. The first issue is to show that
L2 ∈ NSPACE(S1(n)) (and therefore by the premise, also in NSPACE(S2(n))).

Exercise 1 Show that L2 ∈ NSPACE(S1(n)).

[Hint: Since L1 ∈ NSPACE(S1(f(n))), M1 would require no more than S1(f(n))
space to decide the membership of input string x of length n in L1. Let i be
f(n)− n. Then, the space required is S1(n + i), where as, the input of M2 is of
length n + i.]

Next we have M3 accepting L2 and we require M4 to accept L1 finally in
S2(f(n)) space. We can use nondeterminism here to guess the length i required
for padding dollars after input x so that M3 can successfully be simulated for
accepting L2, thereby helping M4 to accept x in S2(f(n)) space if M1 accepts
x in S1(f(n)) space.

Instead of guessing i, M4 may also simply increase dollar padding length i

upto a maximum of f(n)−n (until M3 accepts), accepting its own input x, and
rejecting otherwise.

This translation lemma can be used to establish non-trivial hierarchies as in
Example 12.6 and Theorem 12.12 [HU79]. Take these as study exercises.

Next we study how we can keep blowing up the resource and still not ac-
cept any new languages. It turns out that even g(S(n)) space does not add
any languages that S(n) space cannot accept, for any total recursive function
g(n) ≥ n; here, S(n) depends on the choice of g(n). See Theorem 12.13 [HU79].
This result is therefore called the gap theorem, where the resource gap can be
increased as much as one wishes without accepting any new languages. The
proof shows that given g(n), we can find S(n) for all n ≥ 1. In order to con-
struct S(n) we consider only machines M1, ..., Mn in the enumeration of TM’s.
Essentially, we choose a value for S(n) so that for no i from 1 through n, Si(n)
lies between S(n) and g(S(n)). Before we see how to do such assignments to
S(n), we show that this condition establishes the equality of DSPACE(S(n))
and DSPACE(g(S(n))). For the sake of contradiction, suppose the equality
does not hold due to membership of some language L. Then, L = L(Mk) for

1



some (fixed) k where Sk(n) ≤ g(S(n)) space suffices for Lk, for all n. So, L

is in the bigger space class but not in the smaller one. However, recall that
we defined S(n) such that for all n ≥ k, S(n) ≥ Sk(n). So, Sk(n) ≤ S(n)
almost everywhere. Therefore L = Lk is in DSPACE(S(n)) by Lemma 12.3, a
contradiction.

Now we get into the details of constructing S(n)). To keep all Si(n) below
S(n), we simply need to find the largest Si(n), 1 ≤ i ≤ n and set S(n) to that
largest value. However, some Si(n) may be undefined (infinite). So, maximizing
is absurd. Therefore we do the following iteration:

(1) j=1
(2) if there is an Mi, 1 ≤ i ≤ n so that Si(n) is in between j + 1 and g(j)
(3) then j = Si(n); go to (2)
(4) else S(n) = j

Exercise 2 Why and how can we do step (2)? [Hint: Use Lemma 12.4 [HU79])

Exercise 3 Do Exercise 12.7 and study Lemmas 12.3 and 12.4.

2


