INTERFACING BETWEEN THE SIMULATOR AND THE VISUALIZATION TOOL
Anindya Sen

Y.S.S.K.S Kiran

Joy Dutta

Suprateem Moitra

Table of Contents

3Introduction

3Invocation

3Parameters

3Input GML File Structure

5Progress File Structure

5Output File Structure

6Note

Introduction

The Hierarchical Graph Tool consists of a graph Editor, which creates a GML file. This file is used as an input to the Simulator tool. The Simulator instantiates and runs using these values provided in the GML file and produces an output file. Also, while it is running , a temporary file is created which shows the job completion status. The names of all these files are specified as command line arguments to the simulator.

Invocation

The visualization tool shall invoke the simulator as a separate (parallel) process or a thread. The Hierarchical Graph Tool uses the Java system call Runtime.exec(“simulator <arguments>”) to achieve this.

Parameters

The simulator accepts 3 optional parameters as a part of it’s invocation.

simulator filename1 filename2 filename3

filename1 is the GML input file. Default name is input.gml

filename2 is the temporary file , indicating the progress status. Default name is prog.txt

filename3 is the final outfile name in ASCII text format. Default name is output.txt

All the filenames can have absolute paths. If relative paths are used, they will be considered with respect to the directory where the simulator runs.

Input GML File Structure

The input file, which will contain all the network parameters, including details regarding it’s topology. This will be specified in the GML format. A template shown below gives the structure of this file.

graph [

node [

attribute1
value

attribute2
value

…

attributei
value

]

node [

…

…

]

…

link [

attribute1
value

attribute2
value

…

attributei
value

]

]

global [

attribute1
value

attribute2
value

…

attributei
value

]

There shall be as many node parameters as the number of nodes. Attributes will include details such as node (or link) identifier , error probability and a host of other details. The global section of the file will contain parameters which are not applicable to any particular node/edge as such, but to the entire graph as a whole (cache size, number of pages etc)

Progress File Structure

The progress file has a very simple structure. It is a plain ASCII text in the following format :

time1 whitespace time2 CR/LF

time1
 represents the amount of time (units) elapsed since the simulator started.

time2
 represents the total simulation time (units).

Both parameters may be arbitrarily long integers (as defined in LEDA).

The progress file will be updated every few seconds.

Output File Structure

The output file will be structured in a similar way to the input file. It will be in GML format. Below gives a template of the output file.

LOGS [

node [

LABEL
“nodeid”

NUM_HITS
numhits

NUM_MISSES
nummisses

CACHE_SIZE
cachesize

PAGE_SIZE

pagesize

LATENCY

latencytime

]

node [

…

…

]

…

link [

LABEL
“nodeid”

DATA_SENT

datasent

DATA_ERROR
dataerror

ERROR_PROB
errorprob

]

link [

…

…

]

…

]

As seen, every node and link will give the raw data in the prescribed GML format.

Note

So far we have given only the structure of the files. However, it is seen that if any new attributes are to be added , we just have to let the other program know that a new attribute has been added. The list of attributes to be exchanged will be made available as soon as a rough draft is prepared.

