Indian Institute of Technology, Kharagpur

Date of Exam.:.04.15 (FN/AN)Time: 3 Hrs. Full Marks: 50No. of Students: 300End (Spring) Semester Examination 2015Department: MathematicsSubject No. MA20106Subject Name : Probability & Stochastic ProcessesII yr B.Tech. EE/E&ECE/IE/MT

Instructions:

(i) Use of calculator and Statistical tables is allowed. All the notations are standard and no query or doubts will be entertained. If any data/statement is missing, identify it in your answer script.

(ii) Answer **All** questions.

(iii) All parts of a question Must Be answered at One Place.

- 1. Write **Only Answers on the First Page** of your answer script against each part of question 1. Detail working may be carried out on other pages. $[1 \times 8]$
 - (S) Suppose that a bivariate random vector (X, Y) has the joint probability density function

$$f(x,y) = \begin{cases} 2 e^{-(x+2y)} & \text{if } 0 < x, y < \infty \\ 0 & \text{otherwise} \end{cases}$$

Calculate P(X < Y).

/TfiSuppose a bivariate random vector (X, Y) has the joint p.d.f. function

$$f_{X,Y}(x,y) = \begin{cases} 2 & \text{if } 0 < x < y < 1 \\ 0 & \text{otherwise} \end{cases}$$

Find E(X|Y = y)

 $/\mathbf{fh} X$, Y are jointly distributed discrete random vector with p.m.f.

$$P(X = x, Y = y) = \begin{cases} \frac{2}{n(n+1)} & \text{if } x = 1, 2, \dots, n; y = 1, 2, \dots, x. \\ 0 & \text{otherwise} \end{cases}$$

Find E(Y|X = x)

- \mathcal{N} Suppose that a random vector (X, Y) has bivariate normal p.d.f with $\mu_X = 5$, $\mu_Y = 10$, $\sigma_X = 1$, $\sigma_Y = 5$ and $\rho > 0$. If P(4 < X < 16|Y = 5) = 0.954, find the constant ρ .
- (W Consider the following two state $\{0, 1\}$ markov chain with the transition probability matrix

$$P = \left(\begin{array}{cc} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{3} & \frac{2}{3} \end{array}\right)$$

Find $P(X_{n+3} = 0 | X_{n+2} = 1, X_{n+1} = 1, X_n = 0).$

(X) For the same markov chain in 1(W), find $P(X_{n+2} = 0, X_{n+1} = 1 | X_n = 1)$.

(Y) Consider a Markov chain with state space $S = \{0, 1, 2\}$ and transition probability matrix (tpm)

$$P = \left(\begin{array}{rrr} 0.6 & 0.3 & 0.1\\ 0.3 & 0.3 & 0.4\\ 0.4 & 0.1 & 0.5 \end{array}\right)$$

If it is known that the process starts in state $X_0 = 1$, determine $P(X_0 = 1, X_1 = 0, X_2 = 2)$.

(Z) With reference to the problem in 1(Y), determine $P(X_2 = 2)$.

- 2. (a) In a particular dice game, a person bets Rupees 10 and rolls 5 balanced die simultaneously. If the 5 die all show the same number, the person wins Rupees 20; if the 5 die do not all show the same number, the person losses Rupees 10. Suppose that the person plays this game 5 consecutive times. Let the random variable X be the person's gain (in rupees) based on 5 plays of this game. Find the expected gain, that is E(X).
 - (b) The acidity of a compound X depends on the proportion Y of a certain chemical present in the compound. Suppose $X = (1 + Y)^2$. If the density of Y can be assumed to be

$$f(y) = \begin{cases} 2y, & 0 < y < 1 \\ 0, & \text{otherwise} \end{cases}$$

Find the PDF of X. Also find E(X) and Var(X).

(c) Let the random variable X has a density function

$$f(x) = \begin{cases} cx, & 0 < x < 3\\ 0, & \text{otherwise} \end{cases}$$

Find the (a) value of c. (b) the CDF of X (c) mean and variance of X (d) median of X, that is find the value m such that $P(X \ge m) = P(X \le m)$. [2+2+2]

- 3. (a) If X_i , i = 1, 2, ..., 50 are independent random variables each having Poisson distribution with mean 0.03 and Let $S_n = \sum_{i=1}^{50} X_i$. Evaluate $P(S_n \ge 3)$ using central limit theorem. Compare your answer with the exact value of the probability.
 - (b) Let the random variables X has the Poisson distribution with parameter $\lambda = 1$. Find $E\{\frac{1}{(1+X)}\}$.
 - (c) If a random variable X has a Binomial distribution with parameters n = 100 and p = 0.1, find the approximate value of P(12 < X < 14) using the normal approximation. Campare this value with the exact value of P(12 < X < 14) by applying continuity correction. [2+2+2]
- 4. (a) Let $X \sim NB(r, p)$ (negative binomial with parameters $r \ge 1$ and p, 0 .)Find the moment generating function and variance of X.
 - (b) State and prove the memoryless property of geometric distribution.
 - (c) If X is a standard normal variate then find the distribution of $Y = \frac{1}{2}X^2$.
 - (d) State the assumptions of the Poisson process and write the expression for probability distribution of number of occurrences in the interval [0,t]. [2+2+2+2]
- 5. (a) Suppose that a bivariate random vector (X, Y) has the bivariate normal distribution with parameters $\mu_X, \mu_Y, \sigma_X, \sigma_Y$ and ρ . Write the expression for the followings. (i) E(Y|X=x) and (ii) V(Y|X=x).
 - (b) A certain group of college students takes both the SAT and IQ test. Let X and Y denote the students' score on the SAT and IQ tests, respectively. Assume that X and Y have a bivariate normal distribution with parameters $\mu_x = 980, \mu_y = 117, \sigma_x = 126, \sigma_y = 7.2$, and $\rho = 0.58$. Find $P(Y \le 120|X = 1350)$.
 - (c) Let X and Y be independent random variables with common pdf $f(x) = e^{-x}$, x > 0. Find the joint pdf of $U = \frac{X}{X+Y}$ and V = X+Y. Also find the marginal density function of U and V respectively. [2+2+3]

- 6. (a) A particle moves on a circle through points which have been marked 0, 1, 2, 3, 4 (in a clockwise order). At each step it has a probability p of moving to the right (clockwise) and 1 p to the left (counterclockwise). Let X_n denote its location on the circle after the n^{th} step.
 - (i) Find the one step TPM and equivalence classes.
 - (ii) Find the stationary probability distribution.
 - (b) Three boys B₁, B₂ and B₃ are throwing a ball to each other. B₁ always throws the ball to B₂, and B₂ always throws the ball to B₃. But B₃ is just as likely to throw the ball to B₂ as to B₁. Find the one step TPM, classify the states, that is, find the equivalence classes, peroid of the states, states are recurrent or transient.
 - (c) Consider the Markov Chain having states $\{0, 1, 2, 3, 4\}$ TPM

1/4	3/4	0	0	0	
1/2	1/2	0	0	0	
0	0	1	0	0	
0	0	1/3	2/3	0	
1	0	0	0	0	

- (i) Find the equivalence classes, (ii) Find the period of the states, [3+3+3]
- (iii) Whether states are transient or recurrent.
- 7. (a) If customers arrive at a counter in accordance with a Poisson process with a mean rate of 2 per minute.
 - (i) Find the probability that exactly 3 customers will arrive during 10 minutes time period.
 - (ii) Find the probability that the interval between 2 consecutive arrivals is between 1 and 2 minutes.
 - (b) A radioactive source emits particles (either with bluish or with white light) at a rate of 6 per minute in accordance with Poissson process. Particles that are emitted with bluish light has a probability $\frac{1}{3}$ and those emitted with white light has probability $\frac{2}{3}$. Find the probability that (i) 5 particles emit in a 7 minute peroid (ii) at least 2 particles emit with bluish light in a 5 minute peroid.
 - (c) Trials are performed in sequence. If the last two trials were successes, then the next trial is a success with probability 0.8; otherwise the next trial is a success with probability 0.5. In the long run, what proportion of trials are successes?

[2+2+2]

—--The End———