Indian Institute of Technology, Kharagpur

Date of Exam.: .04.15 (FN/AN) Time: 3 Hrs. Full Marks: 50 No. of Students: 300 End (Spring) Semester Examination 2015 Department: Mathematics Subject No. MA20106 Subject Name: Probability \& Stochastic Processes II yr B.Tech. EE/E\&ECE/IE/MT

Instructions:

(i) Use of calculator and Statistical tables is allowed. All the notations are standard and no query or doubts will be entertained. If any data/statement is missing, identify it in your answer script.
(ii) Answer All questions.
(iii) All parts of a question Must Be answered at One Place.

1. Write Only Answers on the First Page of your answer script against each part of question 1. Detail working may be carried out on other pages.
 function

$$
f(x, y)= \begin{cases}2 e^{-(x+2 y)} & \text { if } 0<x, y<\infty \\ 0 & \text { otherwise }\end{cases}
$$

(C)Suppose a bivariate random vector (X, Y) has the joint p.d.f. function

Find $E(X \mid Y=y)$

$$
f_{X, Y}(x, y)= \begin{cases}2 & \text { if } 0<x<y<1 \\ 0 & \text { otherwise }\end{cases}
$$

LD X, Y are jointly distributed discrete random vector with p.m.f.

$$
P(X=x, Y=y)= \begin{cases}\frac{2}{n(n+1)} & \text { if } x=1,2, \ldots, n ; y=1,2, \ldots, x . \\ 0 & \text { otherwise }\end{cases}
$$

Find $E(Y \mid X=x)$
[E] Suppose that a random vector (X, Y) has bivariate normal p.d.f with $\mu_{X}=5, \mu_{Y}=10, \sigma_{X}=$ $1, \sigma_{Y}=5$ and $\rho>0$. If $P(4<\mathrm{X}<16 \mid Y=5)=0.954$, find the constant ρ.
(F) Consider matrix

$$
P=\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{3} & \frac{2}{3}
\end{array}\right)
$$

Find $\left.\square \mathbb{T}\left|X_{n+3 \square}=\square\right| X_{n+2 \square}=\square, \boxtimes X_{n+1 \square}=\square, \boxtimes X_{n \square}=\square\right)$.

 matrix (tpm)

$$
P=\left(\begin{array}{lll}
0.6 & 0.3 & 0.1 \\
0.3 & 0.3 & 0.4 \\
0.4 & 0.1 & 0.5
\end{array}\right)
$$

If it is known that the process starts in state $X_{0}=1$, determine $P\left(X_{0}=1, X_{1}=\right.$ $0, X_{2}=2$).

2. (a) In a particular dice game, a person bets Rupees 10 and rolls 5 balanced die simultaneously. If the 5 die all show the same number, the person wins Rupees 20; if the 5 die do not all show the same number, the person losses Rupees 10. Suppose that the person plays this game 5 consecutive times. Let the random variable X be the person's gain (in rupees) based on 5 plays of this game. Find the expected gain, that is $E(X)$.
(b) The acidity of a compound X depends on the proportion Y of a certain chemical present in the compound. Suppose $X=(1+Y)^{2}$. If the density of Y can be assumed to be

$$
f(y)=\left\{\begin{array}{cl}
2 y, & 0<y<1 \\
0, & \text { otherwise }
\end{array}\right.
$$

Find the PDF of X. Also find $E(X)$ and $\operatorname{Var}(X)$.
(c) Let the random variable X has a density function

$$
f(x)=\left\{\begin{array}{cl}
c x, & 0<x<3 \\
0, & \text { otherwise }
\end{array}\right.
$$

Find the (a) value of c. (b) the CDF of X (c) mean and variance of X (d) median of X, that is find the value m such that $P(X \geq m)=P(X \leq m)$.

$$
[2+2+2]
$$

3. (a).If $X_{i}, i=1,2, \ldots, 50$ are independent random variables each having Poisson distribution with mean 0.03 and Let $S_{n}=\sum_{i=1}^{50} X_{i}$. Evaluate $P\left(S_{n} \geq 3\right)$ using central limit theorem. Compare your answer with the exact value of the probability.
(b) Let the random variables X has the Poisson distribution with parameter $\lambda=1$. Find $E\left\{\frac{1}{(1+X)}\right\}$.
(c) If a random variable X has a Binomial distribution with parameters $n=100$ and $p=$ 0.1 , find the approximate value of $P(12<X<14)$ using the normal approximation. Campare this value with the exact value of $P(12<X<14)$ by applying continuity correction.
4. (a) Let $X \sim N B(r, p)$ (negative binomial with parameters $r \geq 1$ and $p, 0<p<1$.) Find the moment generating function and variance of X.
(b) State and prove the memoryless property of geometric distribution.
(c) If X is a standard normal variate then find the distribution of $Y=\frac{1}{2} X^{2}$.
(d) State the assumptions of the Poisson process and write the expression for probability distribution of number of occurrences in the interval $[0, \mathrm{t}]$.
$[2+2+2+2]$
5. (a) Suppose that a bivariate random vector (X, Y) has the bivariate normal distribution with parameters $\mu_{X}, \mu_{Y}, \sigma_{X}, \sigma_{Y}$ and ρ. Write the expression for the followings. (i) $E(Y \mid X=x)$ and (ii) $V(Y \mid X=x)$.
(b) A certain group of college students takes both the SAT and IQ test. Let X and Y denote the students' score on the SAT and IQ tests, respectively. Assume that X and Y have a bivariate normal distribution with parameters $\mu_{x}=980, \mu_{y}=$ $117, \sigma_{x}=126, \sigma_{y}=7.2$, and $\rho=0.58$. Find $P(Y \leq 120 \mid X=1350)$.
(c) Let X and Y be independent random variables with common pdf $f(x)=e^{-x}, x>$ 0 . Find the joint pdf of $U=\frac{X}{X+Y}$ and $V=X+Y$. Also find the marginal density function of U and V respectively.
$[2+2+3]$
6. (a) A particle moves on a circle through points which have been marked $0,1,2,3,4$ (in a clockwise order). At each step it has a probability p of moving to the right (clockwise) and $1-p$ to the left (counterclockwise). Let X_{n} denote its location on the circle after the $n^{\text {th }}$ step.
(i) Find the one step TPM and equivalence classes.
(ii) Find the stationary probability distribution.
(b) Three boys B_{1}, B_{2} and B_{3} are throwing a ball to each other. B_{1} always throws the ball to B_{2}, and B_{2} always throws the ball to B_{3}. But B_{3} is just as likely to throw the ball to B_{2} as to B_{1}. Find the one step TPM, classify the states, that is, find the equivalence classes, peroid of the states, states are recurrent or transient.
(c) Consider the Markov Chain having states $\{0,1,2,3,4\}$ TPM

$$
\left[\begin{array}{ccccc}
1 / 4 & 3 / 4 & 0 & 0 & 0 \\
1 / 2 & 1 / 2 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 / 3 & 2 / 3 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(i) Find the equivalence classes, (ii) Find the period of the states,
(iii) Whether states are transient or recurrent.
7. (a) If customers arrive at a counter in accordance with a Poisson process with a mean rate of 2 per minute.
(i) Find the probability that exactly 3 customers will arrive during 10 minutes time period.
(ii) Find the probability that the interval between 2 consecutive arrivals is between 1 and 2 minutes.
(b) A radioactive source emits particles (either with bluish or with white light) at a rate of 6 per minute in accordance with Poissson process. Particles that are emitted with bluish light has a probability $\frac{1}{3}$ and those emitted with white light has probability $\frac{2}{3}$. Find the probability that (i) 5 particles emit in a 7 minute peroid (ii) at least 2 particles emit with bluish light in a 5 minute peroid.
(c) Trials are performed in sequence. If the last two trials were successes, then the next trial is a success with probability 0.8 ; otherwise the next trial is a success with probability 0.5 . In the long run, what proportion of trials are successes?

$$
[2+2+2]
$$

