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• Modern/Public-key cryptography started in 1976 with the
publication of the following paper.

– W. Diffie and M.E.Hellman. “New directions in
cryptography”. IEEE Transactions on Information
Theory, 22 (1976) 644-654.

• Right up to modern times all cryptosystems are based on
the elementary tools of substitution and permutation.

• Public-key algorithms are based on mathematical
functions and are asymmetric in nature, involving the use
of two keys, as opposed to conventional single key
encryption.
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• Several misconceptions are held about p-k:

1. That p-k encryption is more secure from cryptanalysis
than conventional encryption. In fact the security of
any system depends on key length and the
computational work involved in breaking the cipher.

2. That p-k encryption has superseded single key
encryption. This is unlikely due to the increased
processing power required.

3. That key management is trivial with public key
cryptography, this is not correct.
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• The concept of P-K evolved from an attempt to solve two
problems, key distribution and the development of
digital signatures.

• In 1976 Whitfield Diffie and Martin Hellman achieved
great success in developing the conceptual framework.

• For conventional encryption the same key is used for
encryption and decryption - not a necessary condition.

• Instead, possible to develop a cryptographic system that
relies on one key for encryption and a different but related
key for decryption.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 3



• These algorithms have the following important
characteristic:

It is computationally infeasible to determine the
decryption key given only knowledge of the
algorithm and the encryption key.

• In addition, some algorithms such as RSA, also exhibits
the following characteristics:

Either of the two related keys can be used for
encryption, with the other used for decryption.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 4



• Fig 1 illustrates the P-K process. The steps are:

1. Each system generates a pair of keys.

2. Each system publishes its encryption key (public key)
keeping its companion key private.

3. If A wishes to send a message to B it encrypts the
message using B’s public key.

4. When B receives the message, it decrypts the
message using its private key. No one else can decrypt
the message because only B knows its private key.
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Figure 1: Public Key Cryptography.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 6



• Considering P-K in more detail we have a source A that
produces plaintext X destined for B (figure 2).

• B generates a pair of keys KUb (a public key) and KRb (a
private key).

• With X and KUb as inputs, A forms the ciphertext Y :

Y = EKUb
(X)

• The intended receiver B is able to invert the
transformation with his private key:

X = DKRb
(Y ).
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Figure 2: Public Key Cryptography: Secrecy.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 8



Authentication

• As previously mentioned, either key may be used for
encryption with the other used for subsequent decryption.
This facilitates a different form of scheme as shown in
figure 3.

• In this case A prepares a message to B using his private

key to encrypt and B can decrypt it using A’s public key.

Y = EKRa(X)

X = DKUa(Y ).
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Figure 3: Public Key Cryptography: Authentication.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 10



Authentication

• As the message was prepared using A’s private key it
could only have come from A therefore the entire message
serves as a digital signature.

• This scheme does not provide confidentiality because
everyone has access to A’s public key.

• It is not efficient because B must maintain/store both the
ciphertext (as proof of authenticity) and the decoded
plaintext (for practical use of the document).
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• A more efficient way of achieving the same result is to
encrypt a small block of bits that are a function of the
document.

• This block, called an authenticator, must have the
property that it is infeasible to change the document
without changing the authenticator.

• If the authenticator is encrypted using the senders private
key then it serves as a signature that verifies the origin,
content and sequencing of the document.
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Confidentiality and Authentication

• If both are required, the double use of the public key
scheme (figure 4) facilitates this.

• Here we have: Z = EKUb
[EKRa(X)]

X = DKUa[DKRb
(Z)] (1)

• In this case the message is first encrypted using the
senders private key, providing the digital signature.

• Then a second encryption is performed using the receivers
public key, which delivers confidentiality.

• The disadvantage with this scheme is that the public-key
algorithm which is complex must be used four times.
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Figure 4: Public Key Cryptography: Secrecy and Authentication.
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Applications for P-K cryptosystems

• In broad terms, we can classify the use of public-key
cryptosystems into three categories:

1. Encryption/decryption: where the sender encrypts
the message with the receivers public key.

2. Digital signature: where the sender “signs” a message
with his private key.

3. Key exchange: several approaches later.
• However, not all algorithms are suitable for all three

applications. Some can only be used for say digital
signature. RSA however can be used for all three as will
be seen.
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Requirements of the algorithm

• The requirements of any P-K system were laid out by
Diffie and Hellman:

1. It is computationally easy for party B to generate a
key pair (public (KU) and private (KR)).

2. It is computationally easy for sender A knowing KUb

and the message to be encrypted to generate the
corresponding ciphertext C = EKUb

(M).

3. It is computationally easy for the receiver B to
decrypt the resulting ciphertext using his private key
(KRb) to recover the original message.
M = DKRb

(C) = DKRb
[EKUb

(M)].
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4. It is computationally infeasible for an opponent,
knowing the public key KUb, to determine the private
key KRb.

5. It is computationally infeasible for an opponent,
knowing KUb and C to recover the plaintext message
M .

6. A sixth requirement that, although useful, is not
necessary for all public-key applications - the
encryption and decryption can be applied in either
order: M = EKRb

[DKRb
(M)].
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• These are formidable requirements as is evidenced by the
fact that only one algorithm (RSA) has received
widespread acceptance in over 20 years. The requirements
boil down to the need for a trapdoor one-way
function.
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• A one-way function is a function that maps a domain
into a range such that every function value has a unique
inverse, with the condition that the calculation of the
function is easy whereas the calculation of the inverse is
infeasible:

Y = f(X) easy
X = f−1(Y ) infeasible

• “Easy” is defined to mean a problem that can be solved
in polynomial time as a function of input length (n).

• For example, the time to compute is proportional to na

where a is a fixed constant.
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• “Infeasible” is not as well defined however. Generally we
can say that if the effort to solve is greater than
polynomial time the problem is infeasible, e.g. if time to
compute is proportional to 2n.

• Trapdoor one-way functions are a family of invertible
functions fk such that

– Y = fk(X) is easy if k and X known,

– X = f−1
k (Y ) is easy if k and Y are known, and

– X = f−1
k (Y ) is infeasible if Y is known but k is not

known.

• The development of a practical public-key scheme depends
on the discovery of a suitable trapdoor one-way function.
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The Knapsack Algorithm

• Many algorithms have been proposed for P-K, and have
subsequently been broken.

• The most famous of these was proposed by Merkle and
Hellman.

• The problem deals with determining which of a set of
objects are in a container, say a knapsack. Of the list of
say six objects of different weights shown below, which
subset is in the knapsack if it weighs S?
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• Given that the weight of the knapsack is S = 821 grams,
the problem is to determine which of the items are in the
knapsack.

• The problem shown here is simple but when the number
of items is increased (> 100) it becomes computationally

infeasible.

• So what we have is six different objects with six different
weights.

• The knapsack weighs nothing itself but with a selected
number of objects in it weighs (say) 821 grams. Which
objects does it contain?
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Subset Sum Problem

• Merkle-Hellman Knapsack cryptosystem is based on the
Subset Sum problem defined as follows.

• Problem Instance: I = (a1, a2, . . . , an, S), where
a1, . . . , an and S are positive integers. The ai’s are called
sizes and S is called the target sum.

• Question: Is there a 0-1 vector X = (x1, x2, . . . , xn)
such that

n
∑

i=1
aixi = S?
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• Subset sum problem is a decision problem (i.e., we are
required only to answer “yes” or “no”).

• We now rephrase the problem slightly, so that in any
instance where the answer is “yes” we are required to find
the desired vector X (which may not be unique), this is
called Subset Sum search problem.

• Subset sum problem is one of the so-called NP-complete

problems, i.e., there is no polynomial-time algorithm that
solves it.
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• But even if a problem has no polynomial-time algorithm
to solve it in general, this does not rule out the possibility
that certain special cases can be solved in polynomial
time.

• We define a list of sizes, (a1, . . . , an) to be
superincreasing if

aj >
j−1
∑

i=1
ai

for 2 ≤ j ≤ n. If the list of sizes in superincreasing, then
Subset sum search problem can be solved in time O(n),
and a solution X (if it exists) must be unique.
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Algorithm 1 for the subset sum problem
1. for i = n downto 1 do
2. if S ≥ ai then
3. S = S − ai

4. xi = 1
5. else
6. xi = 0
7. if S = 0 then
8. X = (x1, . . . , xn) is the solution
9. else
10. there is no solution
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• Merkle’s contribution was to show how to turn the
knapsack problem into a scheme for encryption and
decryption.

• In other words how to incorporate “trapdoor” information
which enabled the easy solution of the knapsack problem.
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• Suppose we wish to send messages in blocks of n bits. We
define the following:

– Cargo vector: a = (a1, a2, . . . , an), where ai is an
integer.

– Plaintext message block x = (x1, x2, . . . , xn), where xi

is a binary digit.

– Corresponding ciphertext S:

S = a · x =
n
∑

i=1
(aixi).
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• The vector a is considered to be a list of potential
elements to be put into the knapsack with each vector
element equal to each weight of the element.

• The message block x is considered to be a selection of
elements of the cargo vector in the knapsack.

• Each element is set equal to 1 if the corresponding
element is in the knapsack and 0 if it is not.

• The product S is simply the sum of the selected item’s
weights (i.e. the weight of the contents of the knapsack).
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• As an example lets take a cargo vector as follows:

a = (455,341,284,132,82,56)
x = (x1, x2, x3, x4, x5, x6) : a six bit binary number
S = 821

• For encryption a is used as the public key.

• The person sending the message x performs S = a · x
and sends S as the ciphertext. The receiving party must
recover x from S and a.
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• Two requirements are as follows:

1. That there be a unique inverse for each value of S.
For example if S = 3 and a = (1, 3, 2, 5) then the
problem would have two solutions, x = (1, 0, 1, 0) and
x = (0, 1, 0, 0). The value of a must be chosen so that
each combination of elements yields a unique value of
S.

2. That decryption is hard in general but easy if special
knowledge is available. For large values of n the
knapsack problem is hard in general. If however we
impose the superincreasing condition then we have an
easy solution.
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• For example, consider the vector
a′ = (171, 197, 459, 1191, 2410) which satisfies the
superincreasing condition.

• Suppose we have S ′ = a′ · x′ = 3798.

• Because 3798 > 2410, a5 must be included (x5 = 1)
because without a5 all the other elements cannot
contribute enough to add up to 3798 (or 2410).

• Now consider 3798 − 2410 = 1388. The number 1388 is
bigger than 1191 so a4 must be included (x4 = 1).

• Continuing in this fashion we find that x3 = 0, x2 = 1
and x1 = 0.
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• This system would be completely insecure since anyone
(including Oscar) can decrypt a message that is encrypted
in this way.

• What Merkle and Hellman did was to tie an easy
superincreasing knapsack problem to a hard general
knapsack problem.

• The strategy therefore is to transform the list of sizes in
such a way that it is no longer superincreasing.
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• Bob (receiver) will be able to apply an inverse
transformation to restore the superincreasing list of sizes.

• On the other hand Oscar, who does not know the
transformation that was applied, is faced with what looks
like a general, apparently difficult, instance of the subset
sum problem when he tries to decrypt a ciphertext.

• One suitable type of transformation is a modular

transformation
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• Suppose we choose an easy knapsack vector a′ with n
elements. Also select two integers m and ω such that m is
greater than the sum of the elements, and ω is relatively
prime to m, that is:

m >
n
∑

i=1
a′i, gcd(ω,m) = 1

• Now, we construct a hard knapsack vector, a, by
multiplying an easy vector a′ by ω (mod m):

a = ωa′ (mod m)
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• The vector a will in general not be superincreasing and
therefore can be used to construct hard knapsack
problems.

• However, knowledge of ω and m enables the conversion of
this hard knapsack problem to an easy one.

• To see this, first observe that since ω and m are relatively
prime, there exists a unique multiplicative inverse ω−1,
modulo m. Therefore:

ω−1a = a′ (mod m).
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• We can now state the knapsack scheme. The ingredients
are as follows:

1. a′, a superincreasing vector (private, chosen).

2. m, an integer larger than the sum of all a′j’s (private,
chosen).

3. ω, an integer relatively prime to m (private, chosen).

4. ω−1, the inverse of ω, modulo m (private, calculated).

5. a, equal to ωa′ (mod m) (public, calculated).

• The private key consists of the triple (ω−1,m, a′) and the
public key consists of the value of a.
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• Suppose user A has published his public key a and that
user B wishes to send a message x to A. B calculates the
sum S = a · x.

• The determination of x given S and a is difficult so this is
a secure transmission.

• However, on receipt, user A is able to decrypt easily.
Defining S ′ = ω−1S (mod m) we have the following:

S = a · x = ωa′ · x
S ′ = ω−1S (mod m)

= ω−1ωa′ · x (mod m)
= a′ · x
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Merkle-Hellman Knapsack Cryptosystem

• Let a′ = (a′1, . . . , a
′
n) be a superincreasing list of integers.

• Let m and ω be two positive integers such that
m > ∑n

i=1 a′i and gcd(ω,m) = 1.

• For 1 ≤ i ≤ n, define ai = ωa′i mod m, and denote
a = (a1, . . . , an).

• Let P = {0, 1}n, C = {0, . . . , n(m − 1)}, and
K = {(a′, m, ω, a)}. Here a is public and a′,m, ω are
secret.
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• For k = (a′, m, ω,a), we define the encryption function:

ek(x1, . . . , xn) =
n
∑

i=1
xiai.

• For a ciphertext S ∈ C, i.e., 0 ≤ S ≤ n(m − 1), define
S ′ = ω−1S mod m and solve the subset sum problem
(a′1, . . . , a

′
n, S

′), obtaining dk(S) = (x1, . . . , xn).
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Example

• Suppose a′ = (2, 5, 9, 21, 45, 103, 215, 450, 946) is the
secret superincreasing list of sizes.

• Suppose m = 2003 and ω = 1289. Then the public list of
sizes is

a = (575, 436, 1586, 1030, 1921, 569, 721, 1183, 1570).

• Sender B wants to encrypt the plaintext
x = (1, 0, 1, 1, 0, 0, 1, 1, 1), computes

S = 575 + 1586 + 1030 + 721 + 1183 + 1570 = 6665.
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• When A receives the ciphertext S, he first computes

S ′ = ω−1S mod m
= 317 × 6665 mod 2003
= 1643

• Then A solves the instance I = (a′, S ′) of the subset sum
(easy knapsack) problem using Algorithm 1.

• The plaintext (1, 0, 1, 1, 0, 0, 1, 1, 1) is obtained.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 42



• Thus we have converted the hard problem of finding x
given S into the easy problem of finding x given S ′ and a′.

• By the early 1980’s, the Merkle-Hellman Knapsack
cryptosystem had been broken by Adi Shamir (of RSA).

• All of the various knapsack systems have been shown to
be insecure except the Chor-Rivest cryptosystem.
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Some important public-key cryptosystems

Several public-key systems have been proposed, whose
security rests on different computational problems and we
study the computational security of public-key
cryptosystem.

• RSA: The security is based on the difficulty of factoring
large integers.

• Merkle-Hellman Knapsack: Security is based on the
difficulty of the subset sum problem (which is
NP-complete).
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• McEliece: This is based on algebraic coding theory and
the security is based on the problem of decoding a linear
code (which is NP-complete).

• ElGamal: The security is based on the difficulty of discrete
logarithm problem for finite field.

• Chor-Rivest: This also a “knapsack” type system.

• Elliptic Curve: Elliptic Curve Crytosystems (ECC) work
in the domain of elliptic curves rather than finite fields.
The ECC appears to remain secure for smaller keys than
other public-key crytosystems.
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RSA

• The RSA algorithm was developed by Ron Rivest, Adi
Shamir and Len Adleman at MIT in 1978. Since this
time it has recognised supreme as the most widely
accepted and implemented general-purpose approach to
public-key encryption.

• The scheme makes use of an expression with exponential.

• For some plaintext M < n and ciphertext C < n we have:

C = M e (mod n)
M = Cd (mod n) = (M e)d (mod n)
M = M ed (mod n)
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• Both sender and receiver know n. Sender knows the value
of e and only receiver knows the value of d. To restate:

KU = {e, n} (1)

KR = {d}
• For this algorithm to be satisfactory for public-key

encryption, the following requirements must be met:

1. It is possible to find values of e, d and n such that
M ed = M (mod n) for all M < n.

2. It is relatively easy to calculate M e and Cd for all
values of M < n.

3. It is infeasible to determine d given e and n.
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• Focusing initially on the first question we need to find a
relationship of the form: M ed = M (mod n).

• If we recall that Euler’s theorem states that

aφ(m) ≡ 1 (mod m) gcd(a,m) = 1 (2)

• There is a corollary to this theorem that can be used to
produce the required relationship. Given two prime
numbers p and q and integers n = pq and m, with
0 < m < n, the following relationship holds:

mφ(n)+1 ≡ m(p−1)(q−1)+1 ≡ m (mod n) (3)
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• If gcd(m, n) = 1 then this holds by Euler’s theorem.

• Suppose however gcd(m, n) 6= 1. What does this mean?

• Well, because n = pq, the equality gcd(m, n) = 1 is
equivalent to the logical expression (m is not a multiple of
p) AND (m is not a multiple of q).

• If m is a multiple of p then n and m share the prime
factor p and are not relatively prime (the same can be
said for q).

• Therefore, the expression gcd(m, n) 6= 1 must be
equivalent to the negation of the foregoing logical
expression.
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• Hence, gcd(m, n) 6= 1 is equivalent to logical expression
(m is a multiple of p) OR (m is a multiple of q).

• Looking at the case in which m is a multiple of p, so that
the relationship m = cp holds for some positive integer c.

• In this case we must have gcd(m, q) = 1. Otherwise, we
have m a multiple of p and m a multiple of q and yet
m < pq.

• If gcd(m, q) = 1 then Euler’s theorem holds and

mφ(q) ≡ 1 (mod q)
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• But then, by the rules of modular arithmetic,

[mφ(q)]φ(p) ≡ 1 (mod q)

mφ(n) ≡ 1 (mod q)

• Therefore, there is some integer k such that

mφ(n) = 1 + kq

• Multiplying each side by m = cp,

mφ(n)+1 = m + kcpq = m + kcn

mφ(n)+1 ≡ m (mod n)
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• A similar line of reasoning is used for the case in which m
is a multiple of q. Thus, equation 3 is proven.

• An alternative form of this corollary is directly relevant to
RSA:

mkφ(n)+1 ≡ [(mφ(n))k × m)] (mod n)

≡ [(1)k × m)] (mod n) by Euler’s theorem

≡ m (mod n) (4)

• This can be achieved with ed = kφ(n) + 1 ≡ 1(modφ(n))

• i.e. d ≡ e−1 (mod φ(n))
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• We can now state the RSA scheme. The ingredients are
the following:

p, q, two primes (private, chosen)

n = pq (public, calculated)

e, with gcd(φ(n), e) = 1; 1 < e < φ(n) (public, chosen)

d ≡ e−1 (mod φ(n)) (private, calculated)
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• The private key consists of {d} and public key is {e, n}.
• Suppose that user A has published his public key and

that user B wishes to send the message M to A.

• B calculates C = M e (mod n) and transmits C.

• On receipt of the ciphertext C user A decrypts by
calculating the following: M = Cd (mod n). Figure 7
summarises the algorithm.
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Figure 5: The RSA algorithm
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Example

a) Select p=7 ,q=17

b) Calculate n = pq = 7 × 17 = 119

c) Calculate φ(n) = (p − 1)(q − 1) = 96.

d) Select e, relatively prime to and less than φ(n), say e = 5.

e) Determine d such that de = 1 (mod 96) and d < 96.

f) The correct value for d is 77 because
77 × 5 = 385 = 4 × 96 + 1 (can be calculated using the
extended version of Euclid’s algorithm).
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g) The resulting public key is KU= {5, 119} and private key
is KR= {77}. Say the plaintext is M = 19. For
encryption 19 is raised to the 5th power, yielding
2, 476, 099. Upon division by 119, the remainder is 66,
hence ciphertext sent is 66. For decryption it is
determined using KR that 6677 ≡ 19 (mod 119) so the
recovered plaintext is 19.
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Computational Aspects

• The complexity of the computation required boils down
to two aspects:

1. The actual encryption/decryption process.

2. The key generation process.
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Encryption and Decryption

• Both involve raising a (large) integer to a (large) integer
power modulo n.

• If the exponentiation was done over the integers and then
reduced modulo n, the intermediate values would be
gigantic.

• Fortunately we can make use of a property of modular
arithmetic:

[(a mod n).(b mod n)] mod n = (a.b) mod n (5)
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• Thus, intermediate results may be reduced modulo n.
This makes the calculation more practical.

• Another consideration is the efficiency of exponentiation,
since with RSA we are dealing with large exponents.

• To see how efficiency might be improved consider
calculating x16.

• A straightforward approach is to perform 15
multiplications,
x16 = x · x · x · x · x · x · x · x · x · x · x · x · x · x · x · x.
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• However we can receive the same result with just four
multiplications if we repeatedly take the square of each
partial result successively forming x2, x4, x8 and x16.

• Note that even utilising shortcuts etc. there is a
requirement for arithmetic operations with arbitrarily
large integers and most computers are restricted in this
capability.
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• More generally, suppose we wish to find the value am,
with a,m positive integers. If we express m as a binary
number bkbk−1 . . . b0, then we have the following:

m =
k
∑

i=0
bi2

i =
∑

bi 6=0
2i

• Therefore,

am = a(
∑

bi 6=0 2i) =
∏

bi 6=0
a(2i)

am mod n =









∏

bi 6=0
a(2i)








mod n =









∏

bi 6=0
[a(2i) mod n]








mod n

• Which can be done using a square an multiply algorithm.
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• The square-and-multiply algorithm to compute
am mod n:

1. z = 1

2. for i = k downto 0 do

3. z = z2 mod n

4. if bi = 1 then z = z × a mod n
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• Let n = 11413, m = 3533 and a = 9726. We now
compute 97263533 mod 11413 using squre-and-multiply
algorithm.

i bi z

11 1 12
× 9726 = 9726

10 1 97262
× 9726 = 2659

9 0 26592 = 5634

8 1 5634
2
× 9726 = 9167

7 1 9167
2
× 9726 = 4958

6 1 49582
× 9726 = 7783

5 0 77832 = 6298

4 0 62982 = 4629

3 1 4629
2
× 9726 = 10185

2 1 10185
2
× 9726 = 105

1 0 1052 = 11025

0 1 110252
× 9726 = 5761

• 97263533 mod 11413 = 5761
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Key Generation

• Before two parties can use a public key system, each must
generate a pair of keys. This involves the following tasks:

– Determining two prime numbers p, q.

– Selecting either e or d and calculating the other.

• Firstly, considering selection of p and q.

• Because the value n = pq will be known to any opponent,
to prevent the discovery of p, q through exhaustive
methods, these primes must be chosen from a sufficiently
large set (must be large numbers).
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• On the other hand the method used for finding large
primes must be reasonably efficient.

• At present there are no useful techniques that yield
arbitrarily large primes.

• The procedure is to pick at random an odd number of the
desired magnitude and test that it is prime. If not, repeat
until a prime is found.

• A variety of tests for primality have been developed, all of
which are statistical in nature.
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• The tests however may be run in such a way as to attain
a probability, of as near 1 as is desired, that a particular
number is prime.

• One of the more efficient algorithms is the
Miller-Rabin scheme, which performs calculations on
n, the candidate prime and a randomly chosen integer a.
This procedure may be repeated as required.
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Summary of Key Generation

• In summary the procedure for picking a prime is as
follows:

1. Pick an odd integer n at random (e.g., using a
pseudorandom number generator).

2. Pick an integer a < n at random.

3. Perform the probabilistic primality test, (such as
Miller-Rabin). If n fails the test then go to step 1.

4. If n passes a sufficient number of tests then accept it,
otherwise go to step 2.
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The Security of RSA

• RSA gets its security from the difficulty of factoring large
numbers.

• The public and private keys are functions of a pair of
large (100 to 200 digits) prime numbers.

• Recovering the plaintext from one key and the ciphertext
is equivalent to factoring the product of two primes.
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• Taking a first look at cryptographic considerations. Three
possible approaches include:

1. Brute Force

2. Mathematical attacks

3. Timing attacks
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1. Brute Force

• Try all possible keys. Standard defense is a large key
space.

• The larger e and d are the better, so we have the
following:

5 years ago Today
Casual use 384 bits 768 bits

Commercial use 512 bits 1024

Military Spec. 1024 bits 4096 bits

• Where the military specification is only an estimate due
to this information being classified. For comparison, 512
bits is about 150 decimal digits.
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2. Mathematical attacks

• Factor n into its 2 primes thus enabling calculation of
φ(n) and the private key e ≡ d−1 (mod φ(n)). The best
known algorithm used in factoring an integer n is time
proportional to:

e
√

ln(n).ln(ln(n)) (6)

• For a 200 digit number this would take about 1000 years
on a large machine. However, there has been a lot of
progress made in factorisation over the last number of
years.
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• Determining φ(n), given n or determining d given n and
e.

• These are at least as time consuming as factoring n so the
factorising performance of algorithms is used as the
benchmark to evaluate the security of RSA.

• In addition to specifying n of order 150 − 200 decimal
digits, some other recommendations are that p and q
should differ in length by only a few digits.

• Other constraints are also specified to ensure the difficulty
of factorising is maintained.
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3. Timing attacks

• These are an implementation attack that depends on the
running time of an algorithm. We will look at them in
more detail when we study attacks on cryptosystems.
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Diffie Hellman Key Exchange

• The first published P-K algorithm appeared in the paper
by Diffie and Hellman that defined public key
cryptography however it is limited to the secure exchange
of a secret key and not of a message.

• The security of the scheme depends on the difficulty of
computing discrete logarithms.

• The Diffie-Hellman key exchange consists of two publicly
known numbers: a prime number p and an integer α that
is a primitive root of q.
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• Suppose the users A and B wish to exchange a key.

• User A selects a random integer XA < q and computes
YA = αXA mod q.

• Similarly user B independently selects a random integer
XB < q and computes YB = αXB mod q.

• Each side keeps the X values private and makes the Y
value available publicly to the other side.

• User A computes the key as K = (YB)XA mod q and user
B computes the key as K = (YA)XB mod q.

• These two calculations produce identical results and the
result is that the two sides have exchanged a secret key.
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• This can be seen because:

K = (YB)XA mod q
= (αXB mod q)XA mod q
= (αXB)XA mod q
= (αXA)XB mod q
= (αXA mod q)XB mod q
= (YA)XB mod q

• Furthermore because XA and XB are private, an
opponent is forced to take a discrete logarithm to
determine the key.
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• For example, attacking the secret key of user B the
opponent must compute:

XB = indα,q(YB)

• Where indα,q(YB) is the discrete logarithm, or index, of
YB for the base α mod q.

• The scheme can be summarised as shown in figure 6
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Figure 6: The Diffie Hellman Key Exchange Algorithm.
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• For example lets say we have the values q = 353 and a
primitive root α = 3.

• We can see that α = 3 is a primitive root of q = 353 due
to the following reasoning.

• If α is a primitive root of a prime q then the set of
numbers {α, α2, . . . , αφ(q)} are distinct modulo q and
hence form the set {1, 2, . . . (q − 1)} in some order.

• In this case α = 3 and it can be seen to be a primitive
root of q = 353 as
{3 mod 353, 32 mod 353, . . . , 3353 mod 353, } which
contains all the elements of {1, 2, . . . 352}.
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• Suppose A and B select the private keys XA = 97 and
XB = 233 respectively.

• To calculate the secret key K user A calculates:

YA = αXA mod q = 397 mod 353 = 40

• Similarly user B calculates

YB = αXB mod q = 3233 mod 353 = 248

• Then we have
K = 24897 mod 353 = 40233 mod 353 = 160.
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• We assume the attacker would have q, α, YA, YB which for
this example might be enough using a brute force
approach. However with large numbers this becomes
impractical.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 82



ElGamal Cryptosystem

• The ElGamal Cryptosystem is based on Discreate
Logarithm problem

• The ElGamal Cryptosystem is non-deterministic, since
the ciphertext depends on both the plaintext x and on
the random value k chosen by encryptor. So there will be
many ciphertexts that are encryptions of the same
plaintext.
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The discrete logarithm problem in Zp

• Problem Instance: I = (p, α, β), where p is prime,
α ∈ Zp is a primitive element, and β ∈ Z∗

p .

• Objective: Find the unique integer a, 0 ≤ a ≤ p − 2,
such that

αa ≡ β (mod p).

We will denote this integer a by logα β.
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ElGamal Public-key Cryptosystem in Z∗
p

• Let p be a prime such that the discrete log problem in Zp

is intractable, and let α ∈ Z∗
p be a primitive element.

• Let P = Z∗
p , C = Z∗

p × Z∗
p , and define

K = {(p, α, a, β) : β ≡ αa (mod p)}.

• The values p, α and β are public, and a is secret.
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• K = (p, α, a, β), for a (secret) random number k ∈ Zp−1,
define

eK(x, k) = (y1, y2),

where
y1 = αk mod p

and
y2 = xβk mod p.

• For y1, y2 ∈ Z∗
p , define

dK(y1, y2) = y2(y
a
1)

−1 mod p.
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• The plaintext x is “masked” by multiplying it by βk,
yielding y2. The value αk is also transmitted as part of
the ciphertext. The decryptor, who knows the secret
exponent a, can compute βk from αk. Then he can
“remove the mask” by dividing y2 by βk to obtain the
plaintext x.
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Example

• Suppose p = 2579, α = 2, a = 765, and hence

β = 2765 mod 2579 = 949.

• Now, suppose that Alice wishes to send the message
x = 1299 to Bob. Say k = 853 is the random integer she
chooses. Then she compute

y1 = 2853 mod 2579 = 435

and
y2 = 1299 × 949853 mod 2579 = 2396.
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• When Bob receives the ciphertext y = (435, 2396), he
compute

x = 2396 × (435765)
−1

mod 2579 = 1299,

which was the plaintext that Alice encrypted.
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Algorithm for the Discrete Log Problem

• Given β ∈ Z∗
p , find the unique exponent

a, 0 ≤ a ≤ p − 1, such that αa ≡ β (mod p).

• Clearly, the discrete logarithm (DL) problem can be
solved by exhaustive search in O(p) time.

• Other algorithms to the solve the DL problem.

–Shanks’ algorithm

–Pohlig-Hellman algorithm

–Index Calculus method

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 90



The discrete logarithm problem in (G, ◦)
• Problem Instance: I = (G,α, β), where G is a finite

group with group operation ◦, α ∈ G and β ∈ H , where
H = {αi : i ≥ 0} is the subgroup generated by α.

• Objective: Find the unique integer a such that
0 ≤ a ≤ |H| − 1 and αa = β, where the notation αa

means
α ◦ α ◦ . . . ◦ α (a times)
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Generalized ElGamal Public-key Cryptosystem

• Let G be a finite group with group operation ◦, and let
α ∈ G be an element such that the discrete log problem
in H is intractable, where H = {αi : i ≥ 0} is the
subgroup generated by α.

• Let P = G, C = G × G, and define

K = {(G, α, a, β) : β = αa}.

• The values α and β are public, and a is secret.
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• K = (G, α, a, β), for a (secret) random number k ∈ Z|H|,
define

eK(x, k) = (y1, y2),

where
y1 = αk

and
y2 = x ◦ βk.

• For a ciphertext y = (y1, y2), define

dK(y1, y2) = y2 ◦ (ya
1)

−1.
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Elliptic Curves over the Reals

• Definition: Let a, b ∈ R be constants such that
4a3 + 27b2 6= 0. A non-singular elliptic curve is the set E
of solutions (x, y) ∈ R × R to the equation

y2 = x3 + ax + b,

together with a special point O called the point at infinity.
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• It can be shown that the condition 4a3 + 27b2 6= 0 is
necessary and sufficient to ensure that the equation
x3 + ax + b = 0 has three distinct roots (which may be
real or complex numbers).

• If 4a3 + 27b2 = 0 then the corresponding elliptic curve is
called a singular elliptic curve.

• Suppose E is a non-singular elliptic curve. We will define
“+” operation over E which makes E into an abelian
group.

• Identity element: The point at infinity, O is the identity
element, so P + O = O + P = P for all P ∈ E
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Addition operation

• Suppose P,Q ∈ E, where P = (x1, y1) and Q = (x2, y2).
We consider three cases:

1. x1 6= x2

2. x1 = x2 and y1 = −y2

3. x1 = x2 and y1 = y2
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Case 1: x1 6= x2

• We define L to be line through P and Q. L intersects E
in the two points P and Q, and it is easy to see that L
will intersect E in one futher point, which we call R′. If
we reflect R in the x-axis, then we get a point which we
name R. We define P + Q = R.

• R = (x3, y3), where x3 = λ2 − x1 − x2,
y3 = λ(x1 − x3) − y1, and λ = y2−y1

x2−x1
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R

− R = P + Q

Q
P

Figure 7: Chord and Tangent law
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Case 2: x1 = x2 and y1 = −y2

• We define (x, y) + (x,−y) = O for all (x, y) ∈ E.

• Q = −P , then P + Q = O, i.e. O is the third point of
intersection of any vertical line through P (or Q) with the
curve E. Any vertical line through P (or Q) meets the
curve E at infinity. This is why O is called point at
infinity. O serves as the identity of the abelian group E.

• Therefore P = (x, y) and −P = (x,−y) are inverses with
respect to the elliptic curve addition operation.
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Case 3: x1 = x2 and y1 = y2

• Here we are adding a point P = (x1, y1) to itself. We can
assume that y1 6= 0, for then we would be in case 2. Case
3 is handled much like case 1, expect that we define L to
be tangent to E at the point P .

• If P = (x1, y1) ∈ E then P + P = (x3, y3), where

x3 = λ2 − 2x1, y3 = λ(x1 − x3) − y1, and λ = 3x2
1+a

2y1
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• If P = (x1, y1) ∈ E, Q = (x2, y2) ∈ E, P 6= −Q, then
P + Q = (x3, y3), where x3 = λ2 − x1 − x2,
y3 = λ(x1 − x3) − y1, and

λ = y2−y1
x2−x1

if P 6= Q;

λ = 3x2
1+a

2y1
if P = Q.
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(E, +) is an abelian group

• At this point the following properties of the addition
operation, as defined above, should be clear:

1. addition is closed on the set E

2. addition is commutative

3. O is an identity with respect to addition, and

4. every point on E has an inverse with respect to
addition

• The proof of assiociativity is quite messy by algebric
method. But this proof can be made simpler by using
some results from geometry.
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Elliptic Curves Modulo a Prime

• Definition: Let p > 3 be prime. The elliptic curve
y2 = x3 + ax + b over Zp is the set of solutions
(x, y) ∈ Zp × Zp to the congruence

y2 ≡ x3 + ax + b (mod p),

where a, b ∈ Zp are constants such that 4a3 + 27b2 6≡ 0
(mod p), together with a special point O called the point
at infinity.
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• If P = (x1, y1) ∈ E, Q = (x2, y2) ∈ E, P 6= −Q, then
P + Q = (x3, y3), where x3 = λ2 − x1 − x2,
y3 = λ(x1 − x3) − y1, and

λ = (y2 − y1)(x2 − x1)
−1 if P 6= Q;

λ = (3x2
1 + a)(2y1)

−1 if P = Q.

• To determine points on E we look at each possible
x ∈ Zp and compute x3 + ax + b (mod p) which is y2

and then need to check whether this is a quadratic residue
module p.
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Quadratic Residue Modulo p

• Definition: Let p be an odd prime and x is an integer,
1 ≤ x ≤ p− 1. x is defined to a quadratic residue modulo
p if the congruence y2 ≡ x (mod p) has a solution
y ∈ Zp.

• Example: The quadratic residues modulo 11 are 1, 3, 4, 5
and 9. Note that
(±1)2 = 1, (±5)2 = 3, (±2)2 = 4, (±4)2 = 5 and
(±3)2 = 9 (where all arithmetic is in Z11).
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• Problem: An add prime p, and an integer x such that
1 ≤ x ≤ p − 1. Is x is a quadratic residue modulo p?

• Eular’s Criterion: x is a quadratic residue modulo p if

and only if

x
(p−1)

2 ≡ 1 (mod p).

• Suppose z is a quadratic residue and p ≡ 3 (mod 4).
Then, the two square roots of z modulo p are
±z(p+1)/4 mod p.
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Example

• Let E be the elliptic curve y2 = x3 + x + 6 over Z11.

• For each possible x ∈ Z11, compute x3 + x + 6 mod 11.

• For a given x, we can test to see if z = x3 + x + 6 mod 11
is a quadratic residue by applying Eular’s criterion.

• We have that the square roots of a quadratic residue z are

±z(11+1)/4 mod 11 = ±z3 mod 11.

• Points on the elliptic curve y2 = x3 + x + 6 over Z11:
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x x3 + x + 6 mod 11 quadratic residue? y
0 6 no
1 8 no
2 5 yes 4, 7
3 3 yes 5, 6
4 8 no
5 4 yes 2, 9
6 8 no
7 4 yes 2, 9
8 9 yes 3, 8
9 7 no
10 4 yes 2, 9
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• E has 13 points on it including O
• We take a point α = (2, 7) and compute the “power” of α

(which we will write as multiples of α, since the group
operation is additive).

• To compute 2α = (2, 7) + (2, 7), we first compute

λ = (3 × 22 + 1)(2 × 7)−1 mod 11 = 2 × 3−1 mod 11

= 2 × 4 mod 11 = 8.

• Then we have x3 = 82 − 2 − 2 mod 11 = 5 and
y3 = 8(2 − 5) − 7 mod 11 = 2, so 2α = (5, 2).
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• The next multiple would be 3α = 2α + α = (5, 2) + (2, 7).

α = (2, 7) 2α = (5, 2) 3α = (8, 3)
4α = (10, 2) 5α = (3, 6) 6α = (7, 9)
7α = (7, 2) 8α = (3, 5) 9α = (10, 9)
10α = (8, 8) 11α = (5, 9) 12α = (2, 4)

• α = (2, 7) is a primitive element.

• We now look at an example of ElGamal encryption and
decryption using elliptic curve of this example.
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• α = (2, 7) and Bob’s (the receiver) private key is 7, so

β = 7α = (7, 2).

Thus the encryption operation is

eK(x, k) = (k(2, 7), x + k(7, 2)),

where x ∈ E and 0 ≤ k ≤ 12, and the decryption
operation is

dK(y1, y2) = y2 − 7y1.
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• Suppose Alice (the sender) wishes to encrypt the
plaintext x = (10, 9) (which is a point on E). If she
chooses the random value k = 3, then she will compute

y1 = 3(2, 7) = (8, 3)

and

y2 = (10, 9) + 3(7, 2) = (10, 9) + (3, 5) = (10, 2).
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• Hence y = ((8, 3), (10, 2)). Now if Bob receives the
ciphertext y, he decrypts it as follows:

x = (10, 2) − 7(8, 3) = (10, 2) − (3, 5)

= (10, 2) + (3, 6) = (10, 9).

• Hence, the decryption yields the correct plaintext.
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