
Lecture Note 4

The Advanced Encryption Standard (AES)

Sourav Mukhopadhyay

Cryptography and Network Security - MA61027

• All of the cryptographic algorithms we have looked at so
far have some problems.

• The earlier ciphers can be broken with ease on modern
computation systems.

• The DES algorithm was broken in 1998 using a system
that costs about $250,000.

• Triple DES turned out to be too slow for efficiency as the
DES algorithm was developed for mid-1970’s hardware
and does not produce efficient software code. Triple DES
on the other hand, has three times as many rounds as
DES and is correspondingly slower.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 1

• 64 bit block size of triple DES and DES is not very
efficient and is questionable when it comes to security.

•What was required was a brand new encryption
algorithm. One that would be resistant to all known
attacks.

• The National Institute of Standards and Technology
(NIST) wanted to help in the creation of a new standard.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 2

• Instead of designing or helping to design a cipher, what
NIST did instead, was to set up a contest in which anyone
in the world could take part.

• The contest was announced on the 2nd of January 1997
and the idea was to develop a new encryption algorithm
that would be used for protecting sensitive, non-classified,
U.S. government information.

• The ciphers had to meet a lot of requirements and the
whole design had to be fully documented (unlike the DES
cipher).

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 3

• Once the candidate algorithms had been submitted,
several years of scrutinisation in the form of cryptographic
conferences took place.

• In the first round of the competition 15 algorithms were
accepted and this was narrowed to 5 in the second round.

• The algorithms were tested for efficiency and security
both by some of the worlds best publicly renowned
cryptographers and NIST itself.

• After all these investigation NIST finally choose an
algorithm known as Rijndael.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 4

• Rijndael was named after the two Belgian cryptographers
who developed and submitted it - Dr. Joan Daemen and
Dr. Vincent Rijmen.

• On the 26 November 2001, AES (which is a standardised
version of Rijndael) became a FIPS standard (FIPS 197).

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 5

• Like DES, AES is a symmetric block cipher. However,
AES is quite different from DES in a number of ways.

• The algorithm Rijndael allows for a variety of block and
key sizes and not just the 64 and 56 bits of DES’ block
and key size.

• The block and key can in fact be chosen independently
from 128, 160, 192, 224, 256 bits and need not be the same.

• However, the AES standard states that the algorithm can
only accept a block size of 128 bits and a choice of three
keys - 128, 192, 256 bits.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 6

• Depending on which version is used, the name of the
standard is modified to AES-128, AES-192 or AES-256
respectively.

• As well as these differences AES differs from DES in that
it is not a feistel structure.

• Recall that in a feistel structure, half of the data block is
used to modify the other half of the data block and then
the halves are swapped. In this case the entire data block
is processed in parallel during each round using
substitutions and permutations.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 7

• A number of AES parameters depend on the key length.
For example, if the key size used is 128 then the number
of rounds is 10 whereas it is 12 and 14 for 192 and 256
bits respectively.

• At present the most common key size likely to be used is
the 128 bit key. This description of the AES algorithm
therefore describes this particular implementation.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 8

• Rijndael was designed to have the following
characteristics:

– Resistance against all known attacks.

– Speed and code compactness on a wide range of
platforms.

– Design Simplicity.

• The input is a single 128 bit block both for decryption
and encryption and is known as the in matrix (figure 1).

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 9

• This block is copied into a state array which is modified
at each stage of the algorithm and then copied to an
output matrix (see figure 2).

• Both the plaintext and key are depicted as a 128 bit
square matrix of bytes.

• This key is then expanded into an array of key schedule
words (the w matrix).

• Ordering of bytes within the in matrix is by column. The
same applies to the w matrix.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 10

Figure 1: Overall structure of the AES algorithm.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 11

Figure 2: Data structures in the AES algorithm.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 12

High-level description of r-round AES

1. Given a plaintext X , initialize state to be X and
perform an operation Add round key, which x-ors the
round key with state.

2. For each of the first r − 1 rounds, perform a substitution
operation called SubBytes on state using an S-box;
perform a permutation ShiftRows on state; perform
an operation MixColumns on state; and perform
AddRoundKey.

3. Perform SubBytes; perform ShiftRows; and perform
AddRoundKey.

4. Define the ciphertext Y to be state.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 13

• From this high-level description, we can see that structure
of the AES is very similar in many respect to the SPN
discussed earlier.

• In every round of both these cryptosystems, we have
subkey mixing, a substitution step and a permutation
step.

• AES is “larger,” and it also includes an additional linear
transformation (MixColumns) in each round.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 14

• All operations in AES are byte-oriented operations, and
all variables used are considered to be formed from an
appropriate number of bytes.

• The plaintext X consists of 16 bytes.

• state is represented as a four by four array of bytes.

•We will often use hexadecimal notation to represent the
contents of a byte. Each byte therefore consists of two
hexadecimal digits.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 15

Inner Workings of a Round

• The algorithm begins with an Add round key stage
followed by 9 rounds of four stages and a tenth round of
three stages.

• This applies for both encryption and decryption with the
exception that each stage of a round the decryption
algorithm is the inverse of its counterpart in the
encryption algorithm.

• The four stages are as follows:

1. Substitute bytes

2. Shift rows

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 16

3. Mix Columns

4. Add Round Key

• The tenth round simply leaves out the Mix Columns
stage. The first nine rounds of the decryption algorithm
consist of the following:

1. Inverse Shift rows

2. Inverse Substitute bytes

3. Inverse Add Round Key

4. Inverse Mix Columns

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 17

• Again, the tenth round simply leaves out the Inverse
Mix Columns stage. Each of these stages will now be
considered in more detail.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 18

Substitute Bytes

• This stage (known as SubBytes) is simply a table lookup
using a 16× 16 matrix of byte values called an s-box.

• This matrix consists of all the possible combinations of an
8 bit sequence (28 = 16× 16 = 256).

• However, the s-box is not just a random permutation of
these values and there is a well defined method for
creating the s-box tables.

• The designers of Rijndael showed how this was done
unlike the s-boxes in DES for which no rationale was
given.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 19

• Our concern will be how state is effected in each round.

• For this particular round each byte is mapped into a new
byte in the following way: the leftmost nibble of the byte
is used to specify a particular row of the s-box and the
rightmost nibble specifies a column.

• For example, the byte {95} (curly brackets represent hex
values in FIPS PUB 197) selects row 9 column 5 which
turns out to contain the value {2A}.

• This is then used to update the state matrix. Figure 3
depicts this idea.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 20

Figure 3: Substitute Bytes Stage of the AES algorithm.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 21

• The Inverse substitute byte transformation (known as
InvSubBytes) makes use of an inverse s-box.

• In this case what is desired is to select the value {2A}
and get the value {95}.

• Table 4 shows the two s-boxes and it can be verified that
this is in fact the case.

• The s-box is designed to be resistant to known
cryptanalytic attacks.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 22

• Specifically, the Rijndael developers sought a design that
has a low correlation between input bits and output bits,
and the property that the output cannot be described as
a simple mathematical function of the input.

• In addition, the s-box has no fixed points (s-box(a) = a)

and no opposite fixed points (s-box(a) =
−
a) where

−
a is the

bitwise compliment of a.

• The s-box must be invertible if decryption is to be
possible (Is-box[s-box(a)]= a) however it should not be its
self inverse i.e. s-box(a) 6= Is-box(a)

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 23

Figure 4: AES s-boxes both forward and inverse.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 24

Algebraic formulation of AES S-box

• In contrast to the S-boxes in DES, which are apparently
“random” substitution, the AES S-box can be defined
algebraically.

• AES S-box involves operations in the finite field:

F28 = Z2[x]/(x8 + x4 + x3 + x + 1).

• Let FieldInv denote the multiplicative inverse of a field
element.

• Let BinaryToField convert a byte to a field element; and
FieldToBinary perform the inverse conversion.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 25

• The field element
7

∑

i=0
aix

i

corresponds to the byte:

a7a6a5a4a3a2a1a0,

where ai ∈ Z2 = {0, 1} for 0 ≤ i ≤ 7.

•We now discuss SubBytes algorithm where eight input
bits a7a6a5a4a3a2a1a0 are replaced by the eight output
bits b7b6b5b4b3b2b1b0.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 26

Algorithm SubBytes(a7a6a5a4a3a2a1a0)
external: FieldInv, BinaryToField, FieldToBinary

z ← BinaryToField(a7a6a5a4a3a2a1a0)
if z 6= 0 then z ← FieldInv(z)
(a7a6a5a4a3a2a1a0)← FieldToBinary(z)
(c7c6c5c4c3c2c1c0)← (01100011)
comment: all subscripts are to be reduced modulo 8
for i← 0 to 7

do bi ← (ai + ai+4 + ai+5 + ai+6 + ai+7 + ci) mod 2
return (b7b6b5b4b3b2b1b0)

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 27

Example

• Suppose we begin with (hexadecimal) {53}, which is
01010011 in binary.

• The corresponding field element is:

x6 + x4 + x + 1.

• The multiplicative inverse (in F28) can be shown to be

x7 + x6 + x3 + x.

Therefore, in binary notation, we have

(a7a6a5a4a3a2a1a0) = (11001010).

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 28

• Next, we compute

b0 = a0 + a4 + a5 + a6 + a7 + c0 mod 2
= 0 + 0 + 0 + 1 + 1 + 1 mod 2
= 1

b1 = a1 + a5 + a6 + a7 + a0 + c1 mod 2
= 1 + 0 + 1 + 1 + 0 + 1 mod 2
= 0
...

• The result is: (b7b6b5b4b3b2b1b0) = (11101101), which is
{ED} in hexadecimal notation.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 29

•We have the following affine transformation:

b0

b1

b2

b3

b4

b5

b6

b7

=

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

a0

a1

a2

a3

a4

a5

a6

a7

⊕

1
1
0
0
0
1
1
0

•We perform addition modulo 2 (x-ors) in the above
matrix multiplication.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 30

Algorithm InvSubBytes(b7b6b5b4b3b2b1b0)
external: FieldInv, BinaryToField, FieldToBinary

(d7d6d5d4d3d2d1d0)← (00000101)
comment: all subscripts are to be reduced modulo 8
for i← 0 to 7

do b′i ← (bi+2 + bi+5 + bi+7 + di) mod 2
z ← BinaryToField(b′7b

′
6b
′
5b
′
4b
′
3b
′
2b
′
1b
′
0)

if z 6= 0 then z ← FieldInv(z)
(a7a6a5a4a3a2a1a0)← FieldToBinary(z)
return (a7a6a5a4a3a2a1a0)

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 31

•We have the following affine transformation:

b′0
b′1
b′2
b′3
b′4
b′5
b′6
b′7

=

0 0 1 0 0 1 0 1
1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1
1 0 1 0 0 1 0 0
0 1 0 1 0 0 1 0
0 0 1 0 1 0 0 1
1 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0

b0

b1

b2

b3

b4

b5

b6

b7

⊕

1
0
1
0
0
0
0
0

•We perform addition modulo 2 (x-ors) in the above
matrix multiplication.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 32

Shift Row Transformation

• This stage (known as ShiftRows) is shown in figure 5.

• Simple permutation an nothing more.

• It works as follow:

– The first row of state is not altered.

– The second row is shifted 1 bytes to the left in a
circular manner.

– The third row is shifted 2 bytes to the left in a circular
manner.

– The fourth row is shifted 3 bytes to the left in a
circular manner.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 33

Figure 5: ShiftRows stage.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 34

• The Inverse Shift Rows transformation (known as
InvShiftRows) performs these circular shifts in the
opposite direction for each of the last three rows (the first
row was unaltered to begin with).

• This operation may not appear to do much but if you
think about how the bytes are ordered within state then
it can be seen to have far more of an impact.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 35

• Remember that state is treated as an array of four byte
columns, i.e. the first column actually represents bytes
1, 2, 3 and 4.

• A one byte shift is therefore a linear distance of four bytes.

• The transformation also ensures that the four bytes of one
column are spread out to four different columns.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 36

Mix Column Transformation

• This stage (known as MixColumn) is basically a
substitution but it makes use of arithmetic of GF(28).

• Each column is operated on individually. Each byte of a
column is mapped into a new value that is a function of
all four bytes in the column.

• The transformation can be determined by the following
matrix multiplication on state (see figure 6):

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 37

• Each element of the product matrix is the sum of
products of elements of one row and one column.

• In this case the individual additions and multiplications
are performed in GF(28).

• The MixColumns transformation of a single column
j (0 ≤ j ≤ 3) of state can be expressed as:

s′0,j = (2 • s0,j)⊕ (3 • s1,j)⊕ s2,j ⊕ s3,j

s′1,j = s0,j ⊕ (2 • s1,j)⊕ (3 • s2,j)⊕ s3,j

s′2,j = s0,j ⊕ s1,j ⊕ (2 • s2,j)⊕ (3 • s3,j) (1)

s′3,j = (3 • s0,j)⊕ s1,j ⊕ s2,j ⊕ (2 • s3,j)

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 38

Figure 6: MixColumns stage.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 39

Algorithm MixColumn(c)
external: FieldMult, BinaryToField, FieldToBinary

for i← 0 to 3
do ti← BinaryToField(si,c)

u0 ← FieldMult(x, t0)⊕ FieldMult(x + 1, t1)⊕ t2 ⊕ t3
u1 ← FieldMult(x, t1)⊕ FieldMult(x + 1, t2)⊕ t3 ⊕ t0
u2 ← FieldMult(x, t2)⊕ FieldMult(x + 1, t3)⊕ t0 ⊕ t1
u3 ← FieldMult(x, t3)⊕ FieldMult(x + 1, t0)⊕ t1 ⊕ t2
for i← 0 to 3

do si,c ← FieldToBinary(ui)

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 40

• As and example, lets take the first column of a matrix to
be s0,0 = {87}, s1,0 = {6E}, s2,0 = {46}, s3,0 = {A6}.

• This would mean that s0,0 = {87} gets mapped to the
value s′0,0 = {47} which can be seen by working out the
first line of equation (1) with j = 0.

• Therefore we have:

(02 • 87)⊕ (03 • 6E)⊕ 46⊕ A6 = 47

• So to show this is the case we can represent each Hex
number by a polynomial:

{02} = x; and{87} = x7 + x2 + x + 1

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 41

• Multiply these two together and we get:

x • (x7 + x2 + x + 1) = x8 + x3 + x2 + x

• The degree of this result is greater than 7 so we have to
reduce it modulo an irreducible polynomial m(x). The
designers of AES chose m(x) = x8 + x4 + x3 + x + 1. So
it can be seen that

(x8 +x3 +x2 +x) mod (x8 +x4 +x3 +x+1) = x4 +x2 +1

• This is equal to 0001 0101 in binary. This method can be
used to work out the other terms. The result is therefore:

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 42

02 • 87 = 0001 0101
03 • 6E = 1011 0010
46 = 0100 0110
A6 = 1010 0110

⊕ 0100 0111 = {47}

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 43

• There is infact an easier way to do multiplication modulo
m(x).

• If we were multiplying by {02} then all we have to do is a
1-bit left shift followed by a conditional bitwise XOR with
(00011011) if the leftmost bit of the original value (prior
to the shift) was 1.

• Multiplication by other numbers can be seen to be
repeated application of this method.

• Stallings goes into more detail on why this works but we
will not be too concerned with it here.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 44

•What is important to note however is that a
multiplication operation has been reduced to a shift and
an XOR operation.

• This is one of the reasons why AES is a very efficient
algorithm to implement.

• The InvMixColumns is defined by the following matrix
multiplication:

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 45

• This first matrix of equation can be shown to be the
inverse of the first matrix in equation .

• If we label these A and A−1 respectively and we label
state before the mix columns operation as S and after as
S′, we can see that:

AS = S′

• Therefore
A−1S′

= A−1AS = S

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 46

Add Round Key Transformation

• In this stage (known as AddRoundKey) the 128 bits of
state are bitwise XORed with the 128 bits of the round
key.

• The operation is viewed as a columnwise operation
between the 4 bytes of a state column and one word of
the round key.

• This transformation is as simple as possible which helps
in efficiency but it also effects every bit of state.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 47

• The AES key expansion algorithm takes as input a
4-word key and produces a linear array of 44 words. Each
round uses 4 of these words as shown in figure 2.

• Each word contains 32 bytes which means each subkey is
128 bits long. Figure 7 show pseudocode for generating
the expanded key from the actual key.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 48

Add Round Key Transformation

Figure 7: Key expansion pseudocode.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 49

• The key is copied into the first four words of the
expanded key.

• The remainder of the expanded key is filled in four words
at a time.

• Each added word w[i] depends on the immediately
preceding word, w[i− 1], and the word four positions
back w[i− 4].

• In three out of four cases, a simple XOR is used.

• For a word whose position in the w array is a multiple of
4, a more complex function is used.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 50

Algorithm KeyExpansion(key)
external: RotWord, SubWord

Rcon[1]← 01000000
Rcon[2]← 02000000
Rcon[3]← 04000000
Rcon[4]← 08000000
Rcon[5]← 10000000
Rcon[6]← 20000000
Rcon[7]← 40000000;
Rcon[8]← 80000000
Rcon[9]← 1B000000; Rcon[10]← 36000000

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 51

for i← 0 to 3
do w[i]← (key[4i], key[4i + 1], key[4i + 2], key[4i + 3])

for i← 4 to 43 do
temp← w[i− 1]
if i ≡ 0 (mod 4)
then temp← SubWord(RotWord(temp))⊕Rcon[i/4]

w[i]← w[i− 4]⊕ temp
end do
return (w[0], w[1], · · · , w[43])

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 52

• Figure 8 illustrates the generation of the first eight words
of the expanded key using the symbol g to represent that
complex function.

• The function g consists of the following subfunctions:

1. RotWord performs a one-byte circular left shift on
a word. This means that an input word [b0, b1, b2, b3]
is transformed into [b1, b2, b3, b0].

2. SubWord performs a byte substitution on each byte
of its input word, using the s-box described earlier.

3. The result of steps 1 and 2 is XORed with round
constant, Rcon[j].

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 53

• The round constant is a word in which the three
rightmost bytes are always 0.

• Thus the effect of an XOR of a word with Rcon is to only
perform an XOR on the leftmost byte of the word.

• The round constant is different for each round and is
defined as Rcon[j] = (RC[J], 0,0,0), with RC[1]= 1,
RC[j]= 2• RC[j − 1] and with multiplication defined over
the field GF(28).

• The key expansion was designed to be resistant to know
cryptanalytic attacks.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 54

• The inclusion of a round-dependent round constant
eliminates the symmetry, or similarity, between the way
in which round keys are generated in different rounds.

• Figure 9 give a summary of each of the rounds.

• The ShiftRows column is depicted here as a linear shift
which gives a better idea how this section helps in the
encryption.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 55

Figure 8: AES key expansion.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 56

Figure 9: AES encryption round.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 57

Analysis of AES

• Obviously, the AES is secure against all known attacks.
Various aspects of its design incorporate specific features
that help provide security against specific attacks.

• For example, the use of the finite field inversion operation
in the construction of the S-box yields linear
approximation and difference distribution tables in which
the entries are close to uniform. This provides security
against differential and linear attacks.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 58

• As well, the linear transformation, MixColumns, makes it
impossible to find differential and linear attacks that
involve “few” active S-boxes (the designers refer to this
feature as the wide trail strategy).

• There are apparently no known attacks on AES that are
faster than exhaustive search.

• The “best” attacks on AES apply to variants of the cipher
in which the number of rounds is reduced, and are not
effective for 10-round AES.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 59

Equivalent Inverse Cipher

• As can be seen from figure 1 the decryption ciphers is not
identical to the encryption ciphers.

• However the form of the key schedules is the same for
both.

• This has the disadvantage that two separate software or
firmware modules are needed for applications that require
both encryption and decryption.

• As well as that, decryption is slightly less efficient to
implement.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 60

• However, encryption was deemed more important than
decryption for two reasons:

1. For the CFB and OFB cipher mode (which we have
seen before but will study in more detail next) only
encryption is used.

2. As with any block cipher, AES can be used to
construct a message authentication code (to be
described later), and for this only encryption is used.

• However, if desired it is possible to create an equivalent
inverse cipher.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 61

• This means that decryption has the same structure as the
encryption algorithms.

• However, to achieve this, a change of key schedule is
needed.

•We will not be concerned with this alternate form but you
should be aware that is exists.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 62

Electronic Codebook Mode (ECB)

• This first mode is the simplest of all five modes.

• Figure 10 shows the scheme where it can be seen that a
block of plaintext (which is the same size in each case) is
encrypted with the same key K.

• The term codebook is used because, for a given key, there
is a unique ciphertext for every block of plaintext.

• Therefore we can imagine a gigantic codebook in which
there is an entry for every possible plaintext pattern
showing its corresponding ciphertext.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 63

• If the message is longer than the block length then the
procedure is to break the message into blocks of the
required length padding the last block if necessary. As
with encryption, decryption is performed one block at a
time, always using the same key.

• The ECB method is ideal for small amounts of data such
as an encryption key however for larger messages if the
same plaintext block appears more than once then the
same ciphertext is produced.

• This may assist an attacker.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 64

Figure 10: Electronic Codebook Mode (ECB)

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 65

Cipher Block Chaining (CBC) Mode

•We would like that same plaintext blocks produce
different ciphertext blocks.

• Cipher Block Chaining (see figure 11) allows this by
XORing each plaintext with the ciphertext from the
previous round (the first round using an Initialisation
Vector (IV)).

• As before, the same key is used for each block.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 66

• Decryption works as shown in the figure because of the
properties of the XOR operation, i.e. IV ⊕ IV ⊕ P = P
where IV is the Initialisation Vector and P is the
plaintext.

• Obviously the IV needs to be known by both sender and
received and it should be kept secret along with the key
for maximum security.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 67

Figure 11: Cipher Block Chaining (CBC) Mode

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 68

Cipher Feedback (CFB) Mode

• The Cipher Feedback and Output Feedback allows a
block cipher to be converted into a stream cipher.

• This eliminates the need to pad a message to be an
integral number of blocks. It also can operate in real time.

• Figure 12 shows the CFB scheme.

• In this figure it assumed that the unit of transmission is s
bits; a common value is s = 8.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 69

• As with CBC, the units of plaintext are chained together,
so that the ciphertext of any plaintext unit is a function
of all the preceding plaintext (which is split into s bit
segments).

• The input to the encryption function is a shift register
equal in length to the block cipher of the algorithm
(although the diagram shows 64 bits, which is block size
used by DES, this can be extended to other block sizes
such as the 128 bits of AES).

• This is initially set to some Initialisation Vector (IV).

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 70

• The leftmost s bits of the output of the encryption
function are XORed with the first segment of plaintext P1

(also s bits) to produce the first unit of ciphertext C1

which is then transmitted.

• In addition, the contents of the shift register are shifted
left by s bits and C1 is placed in the rightmost (least
significant) s bits of the shift register.

• This process continues until all plaintext units have been
encrypted. Decryption is similar.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 71

Figure 12: Cipher Feedback (CFB)

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 72

Output Feedback (OFB) Mode

• The Output Feedback Mode is similar in structure to that
of CFB, as seen in figure 13.

• As can be seen, it is the output of the encryption function
that is fed back to the shift register in OFB, whereas in
CFB the ciphertext unit is fed back to the shift register.

• One advantage of the OFB method is that bit errors in
transmission do not propagate.

• For example, if a bit error occurs in C1 only the recovered
value of P1 is affected; subsequent plaintext units are not
corrupted.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 73

•With CFB, C1 also serves as input to the shift register
and therefore causes additional corruption downstream.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 74

Figure 13: Output Feedback (OFB)

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 75

Counter (CTR)

• This is a newer mode that was not listed initially with the
above four.

• Interest in this mode has increased a good deal lately.

• A counter, equal to the plaintext block size is used.

• The only requirement stated in the standard is that the
counter value must be different for each plaintext block
that is encrypted.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 76

• Typically, this counter is initialised to some value and
then incremented by 1 for each subsequent block (modulo
2b where b is the block size).

• For encryption, the counter is encrypted and then XORed
with the plaintext to produce the ciphertext block; there
is no chaining.

• For decryption, the same sequence of counter values is
used, with each encrypted counter XORed with a
ciphertext block to recover the corresponding plaintext
block.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 77

• This mode contains a number of advantages including
hardware efficiency, software efficiency, provable security
(in the sense that it is at least as secure as the other
modes discussed) and simplicity.

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 78

Figure 14: Counter (CTR) Mode

Cryptography and Network Security - MA61027 (Sourav Mukhopadhyay, IIT-KGP, 2010) 79

