
Chapter 8

Public Key Cryptography

Public-key cryptography is a radical departure from all that has gone before. Right up
to modern times all cryptographic systems have been based on the elementary tools of
substitution and permutation. However, public-key algorithms are based on mathemat-
ical functions and are asymmetric in nature, involving the use of two keys, as opposed
to conventional single key encryption. Several misconceptions are held about p-k:

1. That p-k encryption is more secure from cryptanalysis than conventional encryp-
tion. In fact the security of any system depends on key length and the computa-
tional work involved in breaking the cipher.

2. That p-k encryption has superseded single key encryption. This is unlikely due
to the increased processing power required.

3. That key management is trivial with public key cryptography, this is not correct.

8.1 Principles of Public-Key Cryptosystems

The concept of P-K evolved from an attempt to solve two problems,key distribution
and the development ofdigital signatures. In 1976 Whitfield Diffie and Martin Hell-
man achieved great success in developing the conceptual framework. For conventional
encryption the same key is used for encryption and decryption. This is not a necessary
condition. Instead it is possible to develop a cryptographic system that relies on one
key for encryption and a different but related key for decryption. Furthermore these
algorithms have the following important characteristic:

It is computationally infeasibleto determine the decryption key given only
knowledge of the algorithm and the encryption key.

In addition, some algorithms such as RSA, also exhibits the following characteristics:

Either of the two related keys can be used for encryption, with the other
used for decryption.

Figure 8.1 illustrates the P-K process. The steps are:
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1. Each system generates a pair of keys.

2. Each system publishes its encryption key (public key) keeping its companion
key private.

3. If A wishes to send a message toB it encrypts the message usingB’s public key.

4. WhenB receives the message, it decrypts the message using its private key. No
one else can decrypt the message because onlyB knows its private key.

Figure 8.1:Public Key Cryptography.

Considering P-K in more detail we have a sourceA that produces plaintextX destined
for B (figure 8.2).B generates a pair of keys KUb (a public key) and KRb (a private
key). WithX and KUb as inputs,A forms the ciphertextY :

Y = EKUb
(X)

The intended receiverB is able to invert the transformation with his private key:

X = DKRb
(Y ).
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Figure 8.2:Public Key Cryptography: Secrecy.

8.1.1 Authentication

As previously mentioned, either key may be used for encryption with the other used for
subsequent decryption. This facilitates a different form of scheme as shown in figure
8.3. In this caseA prepares a message toB using hisprivate keyto encrypt andB can
decrypt it usingA’s public key.

Y = EKRa(X)

X = DKUa(Y ).

As the message was prepared usingA’s private key it could only have come fromA
therefore the entire message serves as adigital signature.

It should be noted that this scheme does not provide confidentiality because everyone
has access toA’s public key. Also the scheme is not efficient becauseB must main-
tain/store both the ciphertext (as proof of authenticity) and the decoded plaintext (for
practical use of the document). A more efficient way of achieving the same result is
to encrypt a small block of bits that are a function of the document. This block, called
anauthenticator, must have the property that it is infeasible to change the document
without changing the authenticator. If the authenticator is encrypted using the senders
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Figure 8.3:Public Key Cryptography: Authentication.

private key then it serves as a signature that verifies the origin, content and sequencing
of the document.

8.1.2 Confidentiality and Authentication

If both are required, the double use of the public key scheme (figure 8.4) facilitates
this. Here

Z = EKUb
[EKRa(X)]

X = DKUa [DKRb
(Z)]

(8.1)

In this case the message is first encrypted using the senders private key, providing the
digital signature. Then a second encryption is performed using the receivers public key,
which delivers confidentiality. The disadvantage with this scheme is that the public-
key algorithm which is complex must be used four times.

8.1.3 Applications for P-K cryptosystems

In broad terms, we can classify the use of public-key cryptosystems into three cate-
gories:
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Figure 8.4:Public Key Cryptography: Secrecy and Authentication.

1. Encryption/decryption: where the sender encrypts the message with the receivers
public key.

2. Digital signature: where the sender “signs” a message with his private key.

3. Key exchange: several approaches later.

However, not all algorithms are suitable for all three applications. Some can only be
used for (say) digital signatures. RSA however can be used for all three as will be seen.

8.1.4 Requirements of the algorithm

The requirements of any P-K system were laid out by Diffie and Hellman:

1. It is computationally easy for partyB to generate a key pair (public (KU) and
private (KR)).

2. It is computationally easy for senderA knowing KUb and the message to be
encrypted to generate the corresponding ciphertextC = EKUb

(M).

3. It is computationally easy for the receiverB to decrypt the resulting ciphertext
using his private key (KRb) to recover the original message.M = DKRb

(C) =
DKRb

[EKUb
(M)].
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4. It is computationally infeasible for an opponent, knowing the public key KUb, to
determine the private key KRb.

5. It is computationally infeasible for an opponent, knowing KUb andC to recover
the plaintext messageM .

6. A sixth requirement that, although useful, is not necessary for all public-key
applications - the encryption and decryption can be applied in either order:M =
EKUb

[DKRb
(M)] = DKUb

[EKRb
(M)].

These are formidable requirements as is evidenced by the fact that only one algorithm
(RSA) has received widespread acceptance in over 20 years. The requirements boil
down to the need for atrapdoor one-way function.

A one-way functionis a function that maps a domain into a range such that every func-
tion value has a unique inverse, with the condition that the calculation of the function
is easy whereas the calculation of the inverse is infeasible:

Y = f(X) easy
X = f−1(Y ) infeasible

“Easy” is defined to mean a problem that can be solved inpolynomial timeas a function
of input length (n). For example, the time to compute is proportional tona wherea
is a fixed constant. “Infeasible” is not as well defined however. Generally we can say
that if the effort to solve is greater than polynomial time the problem is infeasible, e.g.
if time to compute is proportional to2n.

Trapdoor one-way functions are a family of invertible functionsfk such thatY =
fk(X) is easy ifk andX known, X = fk(Y ) is easy ifk andY are known, and
X = f−1

k (Y ) is infeasible ifY is known butk is not known. The development of a
practical public-key scheme depends on the discovery of a suitable trapdoor one-way
function.

8.1.5 The Knapsack Algorithm

Many algorithms have been proposed for P-K, and have subsequently been broken.
The most famous of these was proposed by Ralph Merkle as follows. The problem
deals with determining which of a set of objects are in a container, say a knapsack.
Of the list of say six objects of different weights shown below, which subset is in the
knapsack if it weighsS?

Object 1 455 g
Object 2 341 g
Object 3 284 g
Object 4 132 g
Object 5 82 g
Object 6 56 g
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Given that the weight of the knapsack isS = 821 grams, the problem is to determine
which of the items are in the knapsack. The problem shown here is simple but when
the number of items is increased (> 100) it becomescomputationally infeasible.

So what we have is six different objects with six different weights. The knapsack
weighs nothing itself but with a selected number of objects in it weighs (say) 821
grams. Which objects does it contain?

Merkle’s contribution was to show how to turn the knapsack problem into a scheme for
encryption and decryption. In other words how to incorporate “trapdoor” information
which enabled the easy solution of the knapsack problem. Suppose we wish to send
messages in blocks ofn bits. We define the following:

• Cargo vector:a = (a1, a2, . . . , an), whereai is an integer.

• Plaintext message blockx = (x1, x2, . . . , xn), wherexi is a binary digit.

• Corresponding ciphertextS:

S = a · x =
n∑

i=1

(aixi).

The vectora is considered to be a list of potential elements to be put into the knapsack
with each vector element equal to each weight of the element. The message blockx
is considered to be a selection of elements of the cargo vector in the knapsack. Each
element is set equal to1 if the corresponding element is in the knapsack and0 if it is
not. The productS is simply the sum of the selected item’s weights (i.e. the weight of
the contents of the knapsack).

As an example lets take a cargo vector as follows:

a = (455, 341, 284, 132, 82, 56)

x = (x1, x2, x3, x4, x5, x6) a six bit binary number

S = 821

For encryptiona is used as the public key. The person sending the messagex performs
S = a · x and sendsS as the ciphertext. The receiving party must recoverx from S
anda. Two requirements are as follows:

1. That there be a unique inverse for each value ofS. For example ifS = 3 and
a = (1, 3, 2, 5) then the problem would have two solutions,x = (1, 0, 1, 0) and
x = (0, 1, 0, 0). The value ofa must be chosen so that each combination of
elements yields a unique value ofS.

2. That decryption is hard in general but easy if special knowledge is available.
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For large values ofn the knapsack problem is hard in general. If however we impose
the condition that each element ofa is larger than the sum of the preceding elements
we have:

ai >

i−1∑
j=1

aj 1 < i < n

This is known as asuperincreasing vectorand in this case the solution is easy. For
example, consider the vectora′ = (171, 197, 459, 1191, 2410) which satisfies the con-
dition. Suppose we haveS ′ = a′ · x′ = 3798. Because3798 > 2410, a5 must be
included (x5 = 1) because withouta5 all the other elements cannot contribute enough
to add up to3798 (or 2410). Now consider3798− 2410 = 1388. The number1388 is
bigger than1191 soa4 must be included (x4 = 1). Continuing1 in this fashion we find
thatx3 = 0, x2 = 1 andx1 = 0.

What Merkle did was to tie an easy superincreasing knapsack problem to a hard general
knapsack problem. Suppose we choose an easy knapsack vectora′ with n elements.
Also select two integersm andω such thatm is greater than the sum of the elements,
andω is relatively prime tom, that is:

m >
n∑

i=1

ai gcd(w,m) = 1

Now, we construct a hard knapsack vector,a, by multiplying an easy vectora′ by ω
(mod m):

a = ωa′ (mod m)

The vectora will in general not be superincreasing and therefore can be used to con-
struct hard knapsack problems. However, knowledge ofω andm enables the conver-
sion of this hard knapsack problem to an easy one. To see this, first observe that since
ω andm are relatively prime, there exists a unique multiplicative inverseω−1, modulo
m. Therefore:

ω−1a = a′ (mod m).

We can now state the knapsack scheme. The ingredients are as follows:

1. a′, a superincreasing vector (private, chosen).

2. m, an integer larger than the sum of allaj ’s (private, chosen).

3. ω, an integer relatively prime tom (private, chosen).

4. ω−1, the inverse ofω, modulom (private, calculated).

5. a, equal toωa′ (mod m) (public, calculated).

1If there exists a solution the value will eventually end up being zero. If no solution exists then the
value will not go to zero.
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The private key consists of the triple (ω−1, m, a′) and the public key consists of the
value ofa.

Suppose userA has published his public keya and that userB wishes to send a mes-
sagex to A. B calculates the sumS = a · x. The determination ofx givenS anda is
difficult so this is a secure transmission. However, on receipt, userA is able to decrypt
easily. DefiningS ′ = ω−1S (mod m) we have the following:

S = a · x = ωa′ · x
S ′ = ω−1S (mod m)

= ω−1ωa′ · x (mod m)

= a′ · x

Thus we have converted the hard problem of findingx givenS into the easy problem
of findingx givenS ′ anda′.

For example, given the plaintext messagex = (0, 1, 0, 0, 1, 0, 1, 1), userB computes
a · x = 818. UserA first computesS ′ = ω−1S (mod m) = 415, and then solves the
easy knapsack problem to recoverx = (0, 1, 0, 0, 1, 0, 1, 1).

Merkle put up$100 for anyone who broke the algorithm. Within 4 years Adi Shamir
(of RSA) collected the money.

8.2 RSA

The RSA algorithm was developed by RonRivest, Adi Shamir and LenAdleman at
MIT in 1978. Since this time it has reigned supreme as the most widely accepted and
implemented general-purpose approach to public-key encryption.

The RSA scheme is ablock cipherin which the plaintext and ciphertext are integers
between0 andn − 1 for somen. The scheme makes use of an expression with expo-
nentials. Plaintext is encrypted in blocks having a binary value less than some number
n. For some plaintext blockM and ciphertext blockC we have:

C = M e (mod n)

M = Cd (mod n) = (M e)d (mod n)

M = M ed (mod n)

(8.2)

Both sender and receiver known. The sender knows the value ofe and only the
receiver knows the value ofd. To restate:

KU = {e, n}
KR = {d, n}

(8.3)

For this algorithm to be satisfactory for public-key encryption, the following require-
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ments must be met:

1. It is possible to find values ofe, d andn such thatM ed = M (mod n) for all
M < n.

2. It is relatively easy to calculateM e andCd for all values ofM < n.

3. It is infeasible to determined givene andn.

Focusing initially on the first question we need to find a relationship of the form:
M ed = M (mod n).

If we recall that Euler’s theorem states that

aφ(m) ≡ 1 (mod m) gcd(a, m) = 1 (8.4)

There is a corollary to this theorem that can be used to produce the required relation-
ship. Given two prime numbersp andq and integersn = pq andm, with 0 < m < n,
the following relationship holds:

mφ(n)+1 ≡ m(p−1)(q−1)+1 ≡ m (mod n) (8.5)

If gcd(m, n) = 1 then this holds by virtue of Euler’s theorem. Suppose however
that gcd(m, n) 6= 1. What does this mean? Well, becausen = pq, the equality
gcd(m,n) = 1 is equivalent to the logical expression (m is not a multiple ofp) AND
(m is not a multiple ofq). If m is a multiple ofp thenn andm share the prime factor
p and are not relatively prime (the same can be said forq). Therefore, the expression
gcd(m,n) 6= 1 must be equivalent to the negation of the foregoing logical expression.
Therefore, gcd(m, n) 6= 1 is equivalent to the logical expression (m is a multiple ofp)
OR (m is a multiple ofq).

Looking at the case in whichm is a multiple ofp, so that the realtionshipm = cp holds
for some positive integerc. In this case we must have gcd(m, q) = 1. Otherwise, we
havem a multiple ofp andm a multiple ofq and yetm < pq. If gcd(m, q) = 1 then
Euler’s theorem holds and

mφ(q) ≡ 1 (mod q)

But then, by the rules of modular arithmetic,

[mφ(q)]φ(p) ≡ 1 (mod q)

mφ(n) ≡ 1 (mod q)

Therefore, there is some integerk such that

mφ(n) = 1 + kq
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Multiplying each side bym = cp,

mφ(n)+1 = m + kcpq = m + kcn

mφ(n)+1 ≡ m (mod n)

A similar line of reasoning is used for the case in whichm is a multiple ofq. Thus,
equation 8.5 is proven. An alternative form of this corollary is directly relevant to
RSA:

mkφ(n)+1 ≡ [(mφ(n))k ×m)] (mod n)

≡ [(1)k ×m)] (mod n) by Euler’s theorem

≡ m (mod n)

(8.6)

We can now state the RSA scheme. The ingredients are the following:

p, q, two primes (private, chosen)

n = pq (public, calculated)

e, with gcd(φ(n), e) = 1; 1 < e < φ(n) (public, chosen)

d ≡ e−1 (mod φ(n)) (private, calculated)

The private key consists of{d, n} and public key is{e, n}. Suppose that userA has
published his public key and that userB wishes to send the messageM to A. B
calculatesC = M e (mod n) and transmitsC. On receipt of the ciphertextC userA
decrypts by calculating the following:M = Cd (mod n). Figure 8.5 summarises the
algorithm.

Example:

a) Select p=7 ,q=17

b) Calculaten = pq = 7× 17 = 11

c) Calculateφ(n) = (p− 1)(q − 1) = 96.

d) Selecte, relatively prime to and less thanφ(n), saye = 5.

e) Determined such thatde = 1 (mod 96) andd < 96.

f) The correct value ford is 77 because77 × 5 = 385 = 4 × 96 + 1 (can be
calculated using the extended version of Euclid’s algorithm).
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Figure 8.5: The RSA algorithm

g) The resulting public key is KU= {5, 119} and private key is KR{77, 119}. Say
the plaintext isM = 19. For encryption194 is raised to the5th power, yielding
2, 476, 099. Upon division by119, the remainder is66, hence ciphertext sent is
66. For decryption it is determined using KR that6677 ≡ 19 (mod 119) so the
recovered plaintext is19.

8.3 Computational Aspects

The complexity of the computation required boils down to two aspects, the actual
encryption/decryption process and the key generation process.

1. Encryption and Decryption: Both involve raising a (large) integer to a (large)
integer power modulon. If the exponentiation was done over the integers and
then reduced modulon, the intermediate values would be gigantic. Fortunately
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we can make use of a property of modular arithmetic:

[(a mod n).(b mod n)] mod n = (a.b) mod n (8.7)

Thus, intermediate results may be reduced modulon. This makes the calculation
more practical. Another consideration is the efficiency of exponentiation, since
with RSA we are dealing with large exponents.

To see how efficiency might be improved consider calculatingx16. A straight-
forward approach is to perform15 multiplications,x16 = x · x · x · x · x · x ·
x · x · x · x · x · x · x · x · x · x. However we can receive the same result with
just four multiplications if we repeatedly take the square of each partial result
successively formingx2, x4, x8 andx16. Note that even utilising shortcuts etc.
there is a requirement for arithmetic operations with arbitrarily large integers
and most computers are restricted in this capability. More generally, suppose
we wish to find the valueam, with a, m positive integers. If we expressm as a
binary numberbkbk−1 . . . b0, then we have the following:

m =
∑
bi 6=0

2i

therefore,
am = a(

∑
bi 6=0 2i) =

∏
bi 6=0

a(2i)

am mod n =

[∏
bi 6=0

a(2i)

]
mod n =

(∏
bi 6=0

[a(2i) mod n]

)
mod n

which can be done using a square an multiply algorithm.

Generally the values ofa, m andn are of the order 1024 bits and larger and are
therefore implemented on specially designed crypto ASICs utilising algorithms
such as theMontgomery exponentiation scheme.

2. Key Generation: Before two parties can use a public key system, each must
generate a pair of keys. This involves the following tasks:

• Determining two prime numbersp, q.

• Selecting eithere or d and calculating the other.

Firstly, considering selection ofp andq. Because the valuen = pq will be known
to any opponent, to prevent the discovery ofp, q through exhaustive methods,
these primes must be chosen from a sufficiently large set (must be large num-
bers). On the other hand the method used for finding large primes must be rea-
sonably efficient. At present there are no useful techniques that yield arbitrarily
large primes. The procedure is to pick at random an odd number of the desired
magnitude and test that it is prime. If not, repeat until a prime is found.
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A variety of tests for primality have been developed, all of which are statistical
in nature. The tests however may be run in such a way as to attain a probability,
of as near1 as is desired, that a particular number is prime. One of the more
efficient algorithms is theMiller-Rabin scheme, which performs calculations
onn, the candidate prime and a randomly chosen integera. This procedure may
be repeated as required.

In summary the procedure for picking a prime is as follows:

(a) Pick an odd integer n at random (e.g., using a pseudorandom number gen-
erator).

(b) Pick an integera < n at random.

(c) Perform the probabilistic primality test, (such as Miller-Rabin). Ifn fails
the test then go to step a.

(d) If n passes a sufficient number of tests then accept it, otherwise go to step
b.

8.4 The Security of RSA

RSA gets its security from the difficulty of factoring large numbers. The public and
private keys are functions of a pair of large (100 to 200 digits) prime numbers. Re-
covering the plaintext from one key and the ciphertext is equivalent to factoring the
product of two primes

Taking a first look at cryptographic considerations. Three possible approaches include:

1. Brute Force: Try all possible keys. Standard defense is a large key space. The
largere andd are the better, so we have the following:

5 years ago Today

Casual use 384 bits 768 bits

Commercial use 512 bits 1024

Military Spec. 1024 bits 4096 bits

where the military specification is only an estimate due to this information being
classified. For comparison, 512 bits is about 150 decimal digits.

2. Mathematical attacks:

• Factorn into its2 primes thus enabling calculation ofφ(n) and the private
key e ≡ d−1 (mod φ(n)). The best known algorithm used in factoring an
integern is time proportional to:
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O(n) = e
√

ln(n).ln(ln(n)) (8.8)

as discussed in the section on complexity theory. For a 200 digit number
this would take about 1000 years on a large machine. However, there has
been a lot of progress made in factorisation over the last number of years.
This can be seen in figure 8.6.

• Determiningφ(n), givenn or determiningd givenn ande. These are at
least as time consuming as factoringn so the factorising performance of
algorithms is used as the benchmark to evaluate the security of RSA. In
addition to specifyingn of order150− 200 decimal digits, some other rec-
ommendations are thatp andq should differ in length by only a few digits.
Other constraints are also specified to ensure the difficulty of factorising is
maintained.

Figure 8.6: Progress in factorisation

3. Timing attacks: These are an implementation attack that depends on the running
time of an algorithm. We will look at them in more detail when we study attacks
on cryptosystems.

Another public key algorithm was defined by Diffie and Hellman. This algorithm is
limited to key exchange only however. We will look at this next.

8.5 Diffie Hellman Key Exchange

The first published P-K algorithm appeared in the paper by Diffie and Hellman that
defined public key cryptography however it is limited to the secure exchange of a
secret key and not of a message. The security of the scheme depends on the difficulty
of computing discrete logarithms which were discussed earlier in the course.

The Diffie-Hellman key exchange consists of two publicly known numbers: a prime
numberp and an integerα that is a primitive root ofq. Suppose the usersA and
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B wish to exchange a key. UserA selects a random integerXA < q and com-
putesYA = αXA mod q. Similarly userB independently selects a random integer
XB < q and computesYB = αXB mod q. Each side keeps theX values private and
makes theY value available publicly to the other side. UserA computes the key as
K = (YB)XA mod q and userB computes the key asK = (YA)XB mod q. These
two calculations produce identical results and the result is that the two sides have ex-
changed a secret key. This can be seen because:

K = (YB)XA mod q

= (αXB mod q)XA mod q

= (αXB)XA mod q

= (αXA)XB mod q

= (αXA mod q)XB mod q

= (YA)XB mod q

Furthermore becauseXA andXB are private, an opponent is forced to take a discrete
logarithm to determine the key. For example, attacking the secret key of userB the
opponent must compute:

XB = indα,q(YB)

whereindα,q(YB) is the discrete logarithm, or index, ofYB for the baseα mod q. The
scheme can be summarised as shown in figure 8.7

For example lets say we have the valuesq = 353 and a primitive rootα = 3. We
can see thatα = 3 is a primitive root ofq = 353 due to the following reasoning.
If α is a primitive root of a primeq then the set of numbers{α, α2, . . . , αφ(q)} are
distinct moduloq and hence form the set{1, 2, . . . (q − 1)} in some order. In this case
α = 3 and it can be seen to be a primitive root ofq = 353 as{3 mod 353, 32 mod
353, . . . , 3353 mod 353, } which contains all the elements of{1, 2, . . . 352}.
Suppose A and B select the private keysXA = 97 andXB = 233 respectively. To
calculate the secret keyK userA calculates:

YA = αXA mod q

= 397 mod 353

= 40

Similarly user B calculates

YB = αXB mod q

= 3233 mod 353

= 248
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Figure 8.7:The Diffie Hellman Key Exchange Algorithm.

Then we haveK = 24897 mod 353 = 40233 mod 353 = 160.

We assume the attacker would haveq, α, YA, YB which for this example might be
enough using a brute force approach. However with large numbers this becomes im-
practical.
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