
Chapter 6

Mathematical Background 2

The last chapter gave a brief introduction to number theory. It was attempted to keep
the level to a minimum required for an understanding of the cryptographic algorithms
that will be encountered throughout this course. Although elements of number theory
are used in algorithms such as RSA, other mathematical methods are used in other
algorithms. This is because cryptographers are worried that the techniques used in one
algorithm may not offer sufficient security indefinitely1.

As a result of the fears of (say) the improved methods of factoring large numbers,
cryptographers have turned to other methods such asabstract algebrato find security.
As with number theory, the level of maths introduced will be enough to provide a
basic understanding of the common cryptographic algorithms. Some topics that will
be discussed are:

• Groups

• Rings

• Fields

• Polynomial arithmetic

As well as these topics we will also be looking at an area known ascomplexity theory
which allows us to determine how efficient a particular algorithm is.

6.1 Abstract Algebra

Although this section is entitled “abstract algebra” we will only be looking at a very
small subset of what this subject has to offer. There are three main ideas here that need
to be grasped:

1. Group{G, ·}

2. Ring{Rg, +,×}

1Again it must be stressed that generally cryptographic algorithms are not provably secure and the
cryptographers paranoia comes mainly from the fact that possible attack methods have improved over
the years.

46

Chapter 6 Mathematical Background 2

3. Field{F, +,×}

These are basically three different types of sets along with some operation(s). These
sets contain elements which are not necessarily numbers. One of the things that is
required for our purposes is to be allowed to combine two elements together using
some operation (usually called addition and multiplication although as will be seen
these aren’t quite the same as what one might be used to and generally in abstract
algebra we are not limited to ordinary arithmetical operations) and to obtain a result
that is also in the set. In other words, we would like to work within the confines of
the set. The classification of each set is determined by the axioms which it satisfies as
shall be seen.

Before continuing here are some explanations of what some of the notation used repre-
sents. Don’t let the notation confuse you, it is only used to explain the concepts using
as little English as possible.

• ∈: Is an element of.

• ∀: For all or for every.

• iff: If and only if.

• ∃: There exists.

• Z: This is the set of integers (i.e. whole numbers: positive, negative and zero).

• Z+: This is the set of positive integers2.

• Q: This is the set of rational numbers (i.e. numbers that can be expressed as
quotientsm/n of integers, wheren 6= 0).

• R: This is the set of all real numbers.

• Zn: This is set of numbers modulon i.e. Zn = {x | 0 ≤ x ≤ (n− 1)}.

• S = {x |x ∈ Z}: This is read “S is the set of all elementx such thatx is an
element of Z”, i.e.S = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.

6.1.1 Group

A Group {G, ·} is a set under some operation (·)3 if it satisfies the following 4 axioms:

1. Closure (A1): For any two elementsa, b ∈ G, c = a · b ∈ G

2. Associativity (A2): For any three elementsa, b, c ∈ G, (a · b) · c = a · (b · c)

2Remember that0 is not considered a positive integer soZ+ = {1, 2, 3, . . .}
3This can mean addition, multiplication or some other operation.

47

Chapter 6 Mathematical Background 2

3. Identity (A3): There exists anIdentity elemente ∈ G such that∀a∈G, a · e =
e · a = a.

4. Inverse (A4): Each element inG has an inverse i.e4., ∀a∈G ∃a−1 ∈ G, a · a−1 =
a−1 · a = e.

If in addition the set follows the axiom:

5. Commutativity (A5): For anya, b ∈ G, a · b = b · a.

it is then said to be anAbelian group.

Although you might be used to exponentiation as repeated multiplication, in terms of
groups, exponentiation is actually repeated application of the group operator. There-
fore we might havea3 and this would equala · a · a. So if the operation was addition
thena3 would in fact bea + a + a. Also we havea0 = e which for an additive group
is 0; anda−n = (a−1)n. A group is said to becyclic if every element of the groupG is
a powerak (wherek is an integer) of a fixed elementa ∈ G. The elementa is said to
generateG or be ageneratorof G. A cyclic group is always abelian and may be finite
or infinite.

If a group has a finite number of elements it is referred to as afinite group and the
order of the group is equal to the number of elements in the group. Otherwise, the
group is aninfinite group .

6.1.2 Ring

A Ring {Rg, +,×} is a set with two binary operations5 addition andmultiplication
that satisfies the following axioms:

1. Abelian Group under addition (A1 → A5): It satisfies all of the axioms for
an Abelian group (all of the above) with the operation ofaddition. The identity
element is0 and the inverse is denoted−a.

2. Closure under multiplication (M1): For any two elementsa, b ∈ Rg, c = ab ∈
Rg

3. Associativity of multiplication (M2): For any elementsa, b, c ∈ Rg, (ab)c =
a(bc)

4. Distributive (M3): For any elementsa, b, c ∈ Rg, a(b + c) = ab + ac

If in addition the Ring follows the axiom:

4This reads,for all valuesa which are elements ofG, there existsa valuea−1 which is also an
element ofG etc.

5A binary operation is a mapping of two elements into one element under some operation.

48

Chapter 6 Mathematical Background 2

5. Commutativity (M4): For anya, b ∈ Rg, ab = ba.

it is then said to be acommutative ring. If in addition the commutative ring follows
the axioms:

6. Multiplicative Identity (M5): There is an element 1 inR such thata1 = 1a = a
for all a in R.

7. No Zero Divisors (M6): If a, b ∈ Rg andab = 0 theneithera = 0 or b = 0.

it is then said to be anIntegral domain.

6.1.3 Field

A Field {F, +,×} is a set with two binary operationsadditionandmultiplication that
satisfies the following axioms:

1. Integral Domain (A1−M6): It satisfies all of the axioms for an Integral domain
(all of the above).

2. Multiplicative Inverse (M7): Each element inF (except0) has an inverse i.e.,
∀a 6=0∈F ∃a−1 ∈ F , aa−1 = a−1a = 1.

In ordinary arithmetic it is possible to multiply both sides of an equation by the same
value and still have the equality intact. This is not necessarily true in finite arithmetic6.
In this particular type of arithmetic we are dealing with a set containing a finite number
of values. The set of real numbers is an infinite set and is not really useful for working
with on computer systems due to the limited amount of memory and processing power.
It would be much easier if every operation the computer performed resulted in a finite
value that was easily handled. This is where finite fields come into play. Closure is the
property that causes the result of a binary operation on an ordered pair of a set to be a
part of that set also. The termordered pairis important as it is not generally the case
thata · b = b · a.

Just to restate, Groups, Rings and Fields are all sets defined with either one or more
binary operations. For example a set may be a group under one binary operation but not
under another because it may obey the axiomsA1 → A4 under the first operation but
not under the second. Figure 6.1 summarises the hierarchical structure of the group,
ring and field. It can be seen that the group is defined under addition. Although a
group is defined under operations other than addition, a ring requires that the group be
defined with only addition.

6In fact, if you were working over the set of integers (which is infinite), this wouldn’t be true either
as there is no such thing as1/n wheren is an integer.

49

Chapter 6 Mathematical Background 2

Figure 6.1: Group, Ring and Field

6.1.4 Polynomial Arithmetic

We need to understand some things about arithmetic involving polynomials before
continuing. If you recall, apolynomial is anexpressionof the form:

f(x) = anx
n + an−1x

x−1 + . . . + a1x + a0 =
n∑

i=0

aix
i (6.1)

wherean 6= 0, thedegreeof the polynomial is equal to the value of the integern ≥ 0
and thecoefficientsare the setS = {an, an−1, . . . , a1, a0} which is known as the
coefficient set. If the value ofan = 1 then the polynomial is said to bemonic. If
n = 0 then we simply have a constant known as aconstant polynomial.

As an example we can setn = 8 and S = {1, 0, 0, 0, 1, 1, 1, 1, 1} and we get the
following polynomial:

8∑
i=0

aix
i = x8 + x4 + x3 + x2 + x + 1

This polynomial has important significance for us as it is used in the AES standard as
we shall see later.

As we are going to use these for cryptographic methods we will want to do some form
of arithmetic on them. What sort of arithmetic can we do? Well there are three classes
as follows:

1. Ordinary polynomial arithmetic, using the basic rules of algebra.

50

Chapter 6 Mathematical Background 2

2. Polynomial arithmetic in which the arithmetic on the coefficients is performed
modulop; that is the coefficients are inZp = 0, 1, . . . , p− 1.

3. Polynomial arithmetic in which the coefficients are inZp and the polynomials
are defined modulo a polynomialm(x) whose highest power is some integern.

When in school we were usually asked to solve the polynomials for certain values of
x, e.g.:

x2 + 3x + 2 = 0

⇒ x = −1,−2

However, for our purposes we are not interested in evaluating the polynomial for a cer-
tain value ofx. Because of this, the variablex is sometimes known asindeterminate.

Considering the first class of operations above, the next question we want to ask is
can we operate on polynomials using the four basic arithmetical operation of addition,
subtraction, multiplication and division? Well consider two polynomialsf(x) = x3 +
x2 + 2 andg(x) = x2 − x + 1. If we add these we get:

f(x) + g(x) = x3 + 2x2 − x + 3

this would seem to suggest we can add (and it turns out we can).

If we subtract them:
f(x)− g(x) = x3 + x + 1

this would seem to suggest we can subtract (and it turns out we can).

If we multiply them:
f(x)× g(x) = x5 + 3x2 − 2x + 2

this would seem to suggest we can multiply (and it turns out we can). An interesting
point to note about multiplication is that the order of the product polynomial is equal to
the sum of the orders of the two factors. In this casenprod = nf(x) +ng(x) = 3+2 = 5.

What about division? Well it turns out that division requires that the set of coefficients
S = {an, an−1, . . . , a1, a0} be a field. In other wordsS must satisfy the conditions
described in section 6.1.3. Don’t worry too much about why this is the case but just
take it to be true. Remember for our purposes we really only want enough mathematics
to help us understand the algorithms. Later if you are interested you can go deeper into
the whole subject.

In general, division will produce a quotient and a remainder so we can write:

f(x)

g(x)
= q(x) +

r(x)

g(x)

f(x) = q(x)g(x) + r(x)

(6.2)

51

Chapter 6 Mathematical Background 2

for two polynomialsf(x) andg(x).

6.1.5 Galois Fields

We saw earlier that afield obeys axiomsA1 → M7. It is possible for a set with
an infinite number of elements to be a field. For example the set of real numbers is
a field under the usual arithmetical operations. In cryptography however we are not
interested in infinite fields because they cannot be worked with in practice (due to
memory limitations etc.). What cryptographers want instead arefinite fields. These are
simply fields with a finite number of elements.

It turns out that the order of a finite field must be the power of a primepn wheren > 0.
The finite field of orderpn is normally written GF(pn). The GF stands forGalois Field
in honour of the mathematician who first studied them7. Whenn = 1 Galois fields
take on a different structure than whenn > 1. We will mainly be interested in GF(p)
for some primep and GF(2n) (2 being the main prime of interest due to computers
operating in binary).

Addition and multiplication in a Galois field are done modulo m(x), where m(x) is
an irreducible polynomial of degreen. A polynomial m(x) over a fieldF is called
irreducible if and only if m(x) cannot be expressed as a product of two polynomials
both over F, and both of degree lower than that of m(x). By analogy to integers, an
irreducible polynomial is also called a prime polynomial.

As an example of a Galois field we can look at GF(23). This has the following ele-
ments:{0, 1, x, x + 1, x2, x2 + 1, x2 + x, x2 + x + 1} and an irreducible polynomial is
x3 + x + 1. In binary Galois fields all polynomials are monic due to the fact that the
coefficients are taken from the setS = {0, 1}.
Earlier we stated thatZm was the set of integers modulom. If m = p wherep is
some prime, then we haveZm = Zp = {0, 1, 2, . . . , p − 1}. This, together with the
arithmetic operations modulop, form the finite field of orderp. Sincep is the power
of a prime, this field is a Galois field. Table 6.2 shows the properties of modular
arithmetic for integers inZm. If you compare this to figure 6.1 then it can be seen that
Zm is a commutative ring. It was seen in the last chapter that if some numbera ∈ Zm

is relatively prime tom then there exists a valuea−1 such thataa−1 ≡ 1 (mod m), i.e.
the multiplicative inverse ofa exists. However ifm = p for some primep then each
nonzero element inZ has a multiplicative inverse because eacha ∈ Zp is relatively
prime top. Also if ab = 0 for a, b ∈ Zp then eithera = 0 or b = 0. It can therefore be
seen thatZp is a finite field. This is fine for GF(p) wheren = 1 becausep is a prime
but what about the case wheren > 1? In this casepn will not be a prime.

In the general case, ifm = pn wherep is again some prime andn some integer greater
than 1, m will not be prime. This poses problems asZm will not form a finite field
when the arithmetical operations are done modulom. Remember we need this if we
wish to use division as one of our operations. However, if we add two restrictions to

7Unfortunately Galois was killed in a dual at the age of 21.

52

Chapter 6 Mathematical Background 2

Figure 6.2:The number of operations required to factor an integer of size n.

our arithmetical operations (which follow the ordinary rules of polynomial arithmetic
using the basic rules of algebra) it is possible to keepZm as a finite field. These
restrictions are:

1. Arithmetic on the coefficients is performed modulop. That is, we use the rules of
arithmetic for the finite fieldZp (for GF(2n) this is basically the XOR operation).

2. If multiplication results in a polynomial of degree greater thann − 1, then the
polynomial is reduced modulo some irreducible polynomialm(x) of degreen.
That is, we divide bym(x) and keep the remainder. For a polynomial f(x), the
remainder is expressed asr(x) = f(x) modm(x).

It can be shown that the set of all polynomials modulo an irreduciblenth-degree poly-
nomial m(x) satisfies the axioms forA1 → M7 above and therefore forms a finite
field. This is a very important point because if we were working in GF(28) and we re-
duced the polynomial modulo256 then this wouldn’t form a finite field and we might
have to think about using251 because this is the closest prime to256. This isn’t effi-
cient because we might be using a processor that operates on8 bit words which allows
representation of28 = 256 values. The other values (251 → 256) would not be used.

Although more could be said on finite fields we will leave it there for the moment.
We will be coming back to this when we study the AES algorithm in the next chapter.
Stallings gives some good examples on finite fields which may help to clarify things a
little more. In the next section we are going to look at something completely different
to what we have been doing up to this point.

53

Chapter 6 Mathematical Background 2

6.2 Complexity theory

All cryptographic algorithms require time and space (memory) to execute. Clearly
what is desired is an algorithm that executes as quickly as possible with the minimum
number of resources possible, however, often this is not feasible.Complexity Theory
deals with the resources required during computations to solve a given problem. The
most common resources (for example) would betime andspace. How much time is
it going to take to solve a particular problem? Generally time is a valuable resource
so we would like to keep it to a minimum. Also, how much memory (space) are we
going to require to solve the problem? The PC in the lab only has128MB so if it
takes more than that we are going to have to buy more. Complexity theory allows us
to work out how costly different algorithms (such as DES and RSA) are going to be.
In fact, if you think about it, it also allows us to analyse attacks on cryptosystems as
these will be algorithmic in nature as well. Using complexity theory we can therefore
determine whether a particular attack is feasible against a cryptographic algorithm and
can therefore give some indication of the security of an algorithm.

Of course one could say that the time the execution of an algorithm takes depends on
the speed of the particular computer on which it is running, as well as the amount of
memory it has. This is true, so what we would like is a method of comparing different
algorithms that is independent not only of the speed and amount of RAM a particular
machine has, but also of the size of the input (which is normally denoted byn).

A measure of the efficiency of an algorithm is known as itsTime Complexity. The
time complexity of an algorithm is defined to bef(n) if for all n and all inputs of
lengthn, the algorithm takes at mostf(n) steps. Thus for a given processor speed and
a given size of input (n) the time complexity is anupper boundon the execution time
of the algorithm. However, the definition is not precise:

• The meaning of “step” is not precise: Is it a single processor machine instruction
or a single high-level language machine instruction? Fortunately, each definition
of “step” is in general related to each other by a multiplicative constant and for
largen these constants are not important. What is important however is the speed
at which the relative execution time is growing with increasingn. For example,
In RSA, if we are concerned about whether to use a50 digit (n = 1050) or a
100 digit (n = 10100) key, it is not necessary (or possible) to know exactly how
long it would take to break each size of key. However in ballpark figures, we can
determine the level of effort and how much extra relative effort is required for
larger key sizes.

• An exact formula forf(n) is generally not available but that is not important. We
need only an approximation and are interested primarily in the rate of change of
f(n) asn increases to very large values.

There is a standard mathematical notation known as the “big O” notation which is used
to characterise the time complexity of algorithms. By definition:-

54

Chapter 6 Mathematical Background 2

f(n) = O(g(n)) iff ∃ a, M ∈ Z+ such that

|f(n)| ≤ a× |g(n)| for n ≥ M
(6.3)

For example we might say that an algorithm runs inO(n2) time. This means that for
an input of sizen the running time of the algorithm will be proportional ton2. So if
we double the input sizen the running time will increase by a factor of 4. It must be
emphasised that the “big O” notation does not tell us the running time of an algorithm.
It only tells us how its performance changes with the size of the input.

Anything that takes a fixed amount of resources takesO(1). For example if the amount
of memory required by an algorithm is always64MB then we can say that the algorithm
takes O(1) space (and similarly for time).

Lets say we want to evaluate the following polynomial:

p(x) = anx
n + an−1x

x−1 + . . . + a1x + a0

Some fairly inefficient coding is shown in figure 6.3. In this implementation, each term
(subexpression) is evaluated seperately. It could have been more efficient however.
Eachaix

i requiresi + 1 multiplications. Computing alln terms requires

n∑
i=0

(i + 1) =
(n + 2)(n + 1)

2

multiplications. The time complexity of the algorithm B is :

f(n) =
(n + 2)(n + 1)

2

f(n) =
n2

2
+

3

2
n + 1

We can show that in this casef(n) = O(n2) (i.e. g(n) = n2). We must findM ≤ n
anda such that

|f(n)| ≤ a · |g(n)|

If we let M = 4 anda = 1 then equation 6.3 is satisfied as suggested by table 6.1. In
this case we can say thatO(f(n)) = n2.

In general, the “big O” notation makes use of the term that grows fastest:

• O(ax7 + 3x3 + sin(x)) = O(x7)

• O(en + an10 = O(en))

• O(n! + n50) = O(n!)

55

Chapter 6 Mathematical Background 2

Declaren, i, j integer;
Declarea, s array[100] real;
Declarex, p real;
Read(x, n);
for i = 0 to n do * Each ofn terms of thef(x) *\
{

s[i] = 1;
read(a[i]);
for j = 1 to i do
{

s[j] = x× s[i]; * Calculatexi and store ins[j]*\
}

s[i] = a[i]× s[i]; * Calculateaix
i and store*\

}
p = 0;
for i = 0 to n do
{

p = p + s[i];
}

write(“Value of function at”, x, “is”, p “.”);

Figure 6.3: Badly written pseudocode.

n n2 f(n) = n2

2
+ 3

2
n + 1 g(n) = n2 function ok?

3 9 10 9 No
4 16 15 16 Yes
5 25 21 25 Yes
6 36 28 36 Yes
7 49 35 49 Yes

Table 6.1: This table shows the value of the functionf(n) for differentn.

An algorithm with an input of sizen is said to be

a). Linear if the running time isO(n).

b). Polynomial if the running time isO(nt) for some constantt.

c). Exponential if the running time isO(th(n)) wheret is some constant andh(n) is
a polynomial inn.

Generally a problem that can be solved in polynomial time is considered feasible
whereas anything worse than polynomial time is considered computationally infea-
sible - especially exponential time.

56

Chapter 6 Mathematical Background 2

N.B. If n is small enough, even complex algorithms become feasible.

For example, most discussions on cryptanalysis of RSA centre on the task of factor-
ing n into its 2 prime factors. The best known methods for doing this have a time
complexity of:

f(n) = e
√

ln(n)·ln(ln(n)) (6.4)

A graph of this equation is shown in figure 6.4. The “big O” is exponential running
time so this is considered computationally infeasible (with bign, i.e. n > 150) and
hence RSA is considered secure.

Figure 6.4:The number of operations required to factor an integer of size n.

57

