
Chapter 5

Mathematical Background 1

In order to understand some of the cryptographic algorithms dealt with throughout this
course, it is necessary to have some background in two areas of mathematics: Abstract
Algebra and Number theory. It will be attempted to keep the level of mathematics to
the minimum required for a basic understanding of these algorithms.

As an example, the algorithm for the new Advanced Encryption Standard (AES) relies
on the subject of finite fields which forms a part of abstract algebra. It is therefore
necessary to understand some of the concepts of finite fields and the notation used
to describe them. Students new to these areas of mathematics may find some of the
ideas difficult to grasp at first however this will be remedied once some familiarity is
obtained.

5.1 Number Theory

As it’s name suggests, number theory deals with the theory of numbers and is probably
one of the oldest branches of mathematics. It is divided into several areas including
elementary, analytic and algebraic number theory. These are distinguished more by
the methods used in each than the type of problems posed. To understand some of
the topics discussed in this course, a number of elements from these different areas
are needed. The relevant ideas are discussed here and include prime numbers, the
greatest common divisor, the modulus operator, the modular inverse, Euler’s Theorem
and Fermat’s little Theorem. A rigorous approach is purposely avoided but can be
found in the recommended text.

5.1.1 Prime Numbers

A prime numberp is simply an integer greater than 1 with only twopositivedivisors,
1 and itself. This means that it’s entire set of divisors (i.e. its factors) consist only
of four integers±1 and±p. It is therefore seen that 1 isnot a prime number. Prime
numbers are of the utmost importance to certain cryptographic algorithms and most of
the techniques used will not work without them.

An interesting point to note is that any positive integerI ≥ 2 is either a prime or can
be expressed as the product of primes1:

1This is known as the fundamental theorem of arithmetic.
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I = P εN
N × P

εN−1

N−1 ×, . . . ,×P ε1
1 , PN > PN−1 > . . . > P1 (5.1)

or another way of looking at this would be:

I =
∏
S

P εn
n , εn ≥ 0 (5.2)

where S is the set of all prime numbers2.

As a result of equations 5.1 or 5.2, any integer> 1 that is not a prime is known as a
compositenumber. It can be seen from this and the definition of a prime number above,
that 1 is neither prime nor composite. As an example, the first ten prime numbers are:
2, 3, 5, 7, 11, 13, 17, 19, 23 and29.

5.1.2 Division

Any integer can be expressed asn = q ×m + r, wheren, q, andr are integers,m
is a positive integer and0 ≤ r < m. An important point to note is that theremainder
(also known asresidue) r, must benonnegative(i.e. either positive or0). This is seen

by two restrictions:0 ≤ r < m andq =
⌊

n
m

⌋
3. For example,24 ÷ 10 is 2 with a

remainder of4 however,−24 ÷ 10 is −3 with a remainder of6 and not−2 with a
remainder of−4 as might be expected. Ifr = 0 thenn is said to be a multiple ofm.
This is also the same as saying thatm dividesn, is a divisor ofn or is a factor ofn and
the notation used to express this ism|n.

The greatest common divisor, mmax, of two integersa andb is the largestpositive
integer that will divide botha andb without a remainder. Therefore,mmax|a, mmax|b
andmn|mmax for any divisormn of a andb. The notation generally used to represent
this isgcd(a, b) = mmax.

If gcd(a, b) = 1, this means thata andb have no common factors other than 1. Such
pairs of integers are known asrelatively prime or co-prime. Along with prime num-
bers, numbers that are relatively prime have considerable importance in cryptography
as will be seen later.

The greatest common divisor of two positive integersa andb (gcd(a, b)), can be de-
termined by a procedure known as Euclid’s Algorithm. It is based on the theorem that
gcd(a, b) = gcd(b, a mod b) a proof of which will not be given here. It is sufficient
to know that it exists. The expression “mod” is used in modular arithmetic which is a
special kind of arithmetic involving remainders as will be seen next.

2Clearly in this case however, most of the exponentsεn will be 0.
3The notationbxc is known as thefloor of the integerx and is the greatest integer≤ x. Similarly,

the notationdxe is theceiling of the integerx and is the least integer≥ x.
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5.1.3 Modular Arithmetic

Modular arithmetic is a form of arithmetic that will generally have been encountered
before but may not have been recognised as such. An example given regularly is that
of a 12 hour clock, where it is recognised that 3 hours after 11 o’clock it will be 2
o’clock (and not 14 o’clock). Modular arithmetic may seem a little confusing when
first encountered but in fact has many parallels with ordinary arithmetic. The symbol
used(≡) is known as thecongruencesymbol and was invented by the German math-
ematician Karl Friedrich Gauss around the beginning of the 19th century. It resembles
the equality symbol(=) quite closely as was likely to be Gauss’s intention.

Modular relationships are of the formn ≡ R (mod m) (spoken as “n is congruent to R
mod m”) wheren andR are integers andm is a positive integer known as the modulus.
If this congruence relationship holds, then it is said thatn is congruent toR modulo
m. The modulus operator (mod) produces the remainder when the integer on it’s left
is divided by the modulus. Thus, the term(R mod m) is equal to the remainder,r,
whenR is divided bym.

If two remainders are equal then it can be written that(n mod m) = (R mod m) -
a standard equality. However, if the modulus is equal on both sides of the equation,
then the modm term can be removed from the left hand side and the equality symbol
replaced with a congruence symbol (along with a slight rearrangement of the brackets).
Assumingn 6= r, it would beincorrect4 to sayn = (R mod m) however it iscorrect
to say thatn ≡ R (mod m) and this basically states that the same remainder (in this
caser) results when bothn andR are divided bym.

As was mentioned briefly above, the remainderr is also known as aresidue(remember
that0 ≤ r < m). If R = r (i.e. 0 ≤ R < m) thenR is known as aleast residue. The
set of integers congruent tor (mod m) is known as aresidue class(also known as a
congruence class). As0 ≤ r < m, this means there arem possible values ofr and
hence there arem possible residue classes.

The congruence relationshipn ≡ R (mod m) is only true ifm|(n−R). To understand
why, it must be remembered that the integersn andR can be expressed asq{n,R}×m+
r{n,R}, where the subscript{n,R} represents the fact thatq andr will generally take on
different values forn andR. Only if rn = rR will m|(n− R) because in this case the
two remainders cancel each other in the(n−R) term: (qn×m+ rn− qR×m− rR) =
(qn×m− qR×m). Becausem|(qn×m) andm|(qr×m)⇒ m|(qn×m− qR×m). If
n− R is not divisible bym then the notation used to represent this is6 | and therefore,
m6 | (n−R). In this casen 6≡ R (mod m).

4Some texts don’t use the congruence symbol but instead writen = R (mod m) where the brackets
are placed only around the modulus operator and the modulus to identify congruency. This approach
will not be used here however.
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5.1.4 Modular Inverse

The idea of an inverse is important both in ordinary arithmetic and modular arithmetic.
In any set of numbers, the inverse of a number contained in that set is another number
which when combined with the first under a particular operation will give the Identity
element5 for that operation. Two examples of inverses are the additive inverse and a
multiplicative inverse.

It must be noted that the Identity element under different operations will be different.
For example, under addition it is 0, as any number added to 0 will remain unchanged.
However, undernormalmultiplication the Identity element is 1 as any number multi-
plied by 1 will remain unchanged.

In ordinary arithmetic if the number isx then the additive inverse is−x and the mul-
tiplicative inverse is1

x
. The idea is the same in modular arithmetic however ifx is an

integer then its multiplicative inverse would not be1
x

as there is no such thing as a frac-
tion in modular arithmetic. In this case it would be a number which, when multiplied
by the original number, would give a result that is congruent 1 modulom (again,m
is the modulus). A numberx can only have a multiplicative inverse if it is relatively
prime to the modulus (i.e.,gcd(x, m) = 1).

When one number is operated on modulo some other number, it is said that the first
number has been reduced modulo the second and the operation is called a modular
reduction.

5.1.5 Euler’s Theorem

Euler’s Theorem which will be stated here without proof can be stated mathematically
as

aφ(m) ≡ 1 (mod m), gcd(a, m) = 1 (5.3)

wherea is any integer andm is the modulus (which, again, is restricted to being a
positive integer). The symbolφ(m) is known as Euler’s phi (or totient) function and is
the number of positive integers≤ m and relatively prime to it.

A few points should be noted aboutφ(m):

• The value ofφ(1) is defined as being equal to 1.

• If p is some prime, thenφ(p) = p − 1 as there arep − 1 positive integers< p
and relatively prime to it.

• If p andq are prime numbers andn = pq, thenφ(n) = φ(p)φ(q) = (p− 1)(q −
1). The reason for this is that the integersnot relatively prime top andq are
{0, p, 2p, ..., (q − 1)p} and{0, q, 2q, ..., (p − 1)q} respectively. The number of

5This is a number that will leave the original number unchanged under that operation.
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integers relatively prime to n is thenpq − (q + p− 1), where the 1 is subtracted
so as not to include0 twice.

As an example take410 = 1, 048, 576 ≡ 1 (mod 11) because11× 95, 325 + 1 = 410.

5.1.6 Fermat’s Little Theorem

Fermat’s Little Theorem is really a specific case of Euler’s theorem wherem is prime6.
It can be stated as follows:

am−1 ≡ 1 (mod m), wherem is a prime andm 6 | a (5.4)

If Euler’s theorem is taken to be true, then this can also be seen to work because of the
fact thatφ(m) = m− 1 for a prime number as mentioned above.

6Historically though, Fermat’s little theorem was discovered long before Euler’s Theorem.
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5.2 Extended Euclid Algorithm

It was stated earlier that the greatest common divisor of two numbers can be found
using Euclid’s algorithm. This algorithm can be extended so that it not only finds
the greatest common divisor but also calculates the inverse of some numberb modulo
some other numberm (assuming it exists). In other words, it finds the valueb−1. For
small values ofm it is easy enough to find the inverse. You simply construct a table as
in figure 5.1 and read off the value for which the result is 1. For example, in the table
it can be seen that for this particular example (multiplication modulo 8) each value is
its own inverse7 (for the values that have inverses) because5 × 5 ≡ 1 (mod 8) and
7× 7 ≡ 1 (mod 8) etc.

Figure 5.1: Arithmetic modulo 8

However for large numbers this approach is not practical. Luckily there is an extended
form of Euclid’s algorithm that will allow us to find the inverse of a numberb mod m
assuming gcd(m, b) = 1. It is given as follows:

EXTENDED EUCLID(m,b)

1. (A1, A2, A3)← (1, 0, m); (B1, B2, B3)← (0, 1, b)

2. if B3 = 0 return A3 = gcd(m, b); no inverse

3. if B3 = 1 return B3 = gcd(m, b); B2 = b−1 mod m

4. Q = bA3

B3
c

7This obviously isn’t always the case.
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5. (T1, T2, T3)← (A1 −QB1, A2 −QB2, A3 −QB3)

6. (A1, A2, A3)← (B1, B2, B3)

7. (B1, B2, B3)← (T1, T2, T3)

8. Goto 2

This is seen to work becausebB2 = 1−mB1 implies thatbB2 ≡ 1 (mod m). There-
fore the value ofB2 is a number when multiplied byb will give a value which is
congruent to1 modulom (in other words it gives a value that when divided bym will
leave a remainder of1).

We can therefore say:
bB2 = 1−mB1 (5.5)

which means

mB1 + bB2 = 1 (5.6)

In other words we are trying to find two valuesB1 andB2 that solve equation 5.6.
These values will be revealed when another valueB3 is equal to1 in the above algo-
rithm:

mB1 + bB2 = B3 (5.7)

In order to find this multiplicative inverse we need to keep track ofA1, A2 andA3 also.
The valuesT1, T2, T3 are only used for temporary storage. Looking at steps5 and7 it
can be seen theB3 ← A3−QB3. This equation is a consequence of Euclid’s algorithm
and it leaves the remainder whenA3 is divided byB3 (you are subtractingB3 away
from A3 as many times as you can, rememberQ = bA3

B3
c).

Throughout the algorithm, the following relationships hold:

mT1 + bT2 = T3

mA1 + bA2 = A3

mB1 + bB2 = B3

These equations are why the initial assignments are(1, 0, m) and(0, 1, b). If you work
them out you will get the above forA3 andB3. The last equation is the one we are
interested in and whenB3 = 1 thenB2 = b−1 mod m.

For example to find the multiplicative inverse of550 modulo 1759 we have:
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Q A1 A2 A3 B1 B2 B3

- 1 0 1759 0 1 550

3 0 1 550 1 -3 109

5 1 -3 109 -5 16 5

21 -5 16 5 106 -339 4

1 106 -339 4 -111 355 1

where it can be seen that 355 is the multiplicative inverse of 550 modulo 1759.

5.3 Discrete Logarithms

Discrete logarithms are fundamental to a number of public key algorithms as we shall
see later. It is therefore imperative that we gain an understanding of them.

Considering equation 5.3 above which is Euler’s theorem and generalising we have:

aε ≡ 1 (mod m), gcd(a, m) = 1 (5.8)

From Euler’s theorem we know that this holds forφ(m) = ε. However the least
positive exponentε for which this holds is known as theorder of a mod m. If this
value ends up being equal toφ(m) then it is said thata is aprimitive root of m. This
basically says that the set of numbers{a, a2, . . . , aφ(m)} are distinct modulom and
relatively prime to it. Ifm is prime then this means they form the set{1, 2, . . . (m−1)}
in some order.

For example it is true that718 ≡ 1 (mod 19) becauseφ(19) = 18 and Euler’s theorem
holds. Howeverφ(19) is not theorderof 7 (mod 19) because it is not the least positive
exponent for which equation 5.8 holds. The set of values for which this equation does
hold areε = {18, 15, 12, 9, 6, 3}. It can be seen that the least positive value of this
set is3 and this is therefore the order of7 mod m. It isn’t a coincidence that the set
is a multiple of the order as73+j ≡ 737j ≡ 7j (mod 19) which says that any two
powers whose exponents differ by3 are congruent modulo19 (in other words this is a
sequence with a period of3). However, if we consider a base of 2 (rather than 7), then
we can see that the only value of epsilon for which equation 5.8 now holds is phi(m).
Therefore it can be seen that 2 is a primitive root of the modulus 19.

So if we have a primitive roota for some numberm then we know that the powers of
a from 1 to φ(m) produce a set of distinct integers that are relatively prime tom. In
particular ifm = p for some primep, the set produced is{1,2,. . . ,(p-1)} in some order.
Now we know that any integerb can be expressed in the form:

b ≡ r (mod p) 0 ≤ r ≤ (p− 1)
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Therefore given anyb anda we can findi such that:

b ≡ ai (mod p) 0 ≤ i ≤ (p− 1)

The exponenti is referred to as theindex or discrete logarithm of the numberb for
the basea mod p and is denoted by inda,p(b). If we consider two values:

x = ainda,p(x) mod p

y = ainda,p(y) mod p

then due to the rules of modular arithmetic we can say:

xy mod p = [(x mod p)(y mod p)] mod p

ainda,p(xy) mod p = [(ainda,p(x) mod p)(ainda,p(y) mod p)] mod p

= ainda,p(x)+inda,p(y) mod p

Any positive integerz can be expressed asz = q+kφ(m) therefore by Euler’s theorem:

az ≡ aq (mod m) if z ≡ q (mod φ(m))

Applying this to the above:

inda,p(xy) ≡ [inda,p(x) + inda,p(y)] (mod φ(p)).

Generalising we have:

inda,p(y
r) ≡ [r × inda,p(y)] (mod φ(p))

As can be seen there is a distinct analogy here between true logarithms and indices.
For this reason, the latter are often referred to as discrete logarithms.
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