
 Flow networks-II 

Lecture 22 



L22.2 

Recall from Lecture 21 

• Flow value: | f | = f (s, V).
• Cut: Any partition  (S, T) of V such that s  S

and t  T.
• Lemma. | f | = f (S, T) for any cut (S, T).
• Corollary. | f |  c(S, T) for any cut (S, T).
• Residual graph: The graph Gf  = (V, Ef ) with

strictly positive residual capacities cf (u, v) =
c(u, v) – f (u, v) > 0.

• Augmenting path: Any path from s to t in Gf .
• Residual capacity of an augmenting path:
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Max-flow, min-cut theorem 

Theorem.  The following are equivalent: 
1. | f | = c(S, T) for some cut (S, T).
2. f is a maximum flow.
3. f admits no augmenting paths.

Proof.  

(1)  (2): Since | f |  c(S, T) for any cut (S, T) (by 
the corollary from Lecture 22), the assumption that 
| f |  c(S, T) implies that  f  is a maximum flow. 

(2)  (3): If there were an augmenting path, the 
flow value could be increased, contradicting the 
maximality of  f. 
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Proof (continued) 

(3)  (1):  Suppose that  f  admits no augmenting paths.  
Define S = {v  V : there exists a path in Gf  from s to v}, 
and let T = V – S.  Observe that s  S and t  T, and thus   
(S, T) is a cut. Consider any vertices u  S and v  T.   

We must have cf (u, v) = 0, since if cf (u, v) > 0, then v  S, 
not v  T as assumed. Thus, f (u, v) = c(u, v), since cf (u, v) 
= c(u, v) – f (u, v).  Summing over all u  S and v  T 
yields f (S, T) = c(S, T), and since | f | = f (S, T), the theorem 
follows. 
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Ford-Fulkerson max-flow 
algorithm 

Algorithm: 
f [u, v]  0 for all u, v  V 
while an augmenting path p in G wrt  f  exists 

do augment  f  by cf (p) 

Can be slow: 
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Ford-Fulkerson max-flow 
algorithm 

Can be slow: 
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2 billion iterations on a graph with 4 vertices! 

Algorithm: 
f [u, v]  0 for all u, v  V 
while an augmenting path p in G wrt  f  exists 

do augment  f  by cf (p) 
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Edmonds-Karp algorithm 

Edmonds and Karp noticed that many people’s 
implementations of Ford-Fulkerson augment along 
a breadth-first augmenting path: a shortest path in 
Gf  from s to t where each edge has weight 1.  These 
implementations would always run relatively fast. 

Since a breadth-first augmenting path can be found 
in O(E) time, their analysis, which provided the first 
polynomial-time bound on maximum flow, focuses 
on bounding the number of flow augmentations. 

(In independent work, Dinic also gave polynomial-
time bounds.) 
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Monotonicity lemma 

Lemma. Let d(v) = df (s, v) be the breadth-first 
distance from s to v in Gf . During the Edmonds-
Karp algorithm, d(v) increases monotonically. 

Proof.  Suppose that  f  is a flow on G, and augmentation 

produces a new flow  f .  Let d(v) = df (s, v).  We’ll show
that d(v)  d(v) by induction on d(v).  For the base case, 
d(s)  d(s) = 0. 

For the inductive case, consider a breadth-first path s  
L  u  v in Gf .  We must have d(v)  d(u) + 1, since

subpaths of shortest paths are shortest paths.  Certainly, 
(u, v)  Ef  , and now consider two cases depending on 
whether (u, v)  Ef . 
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Case 1 

Case: (u, v)  Ef . 

d(v)  d(u) + 1 (triangle inequality) 

 d(u) + 1 (induction) 

= d(v) (breadth-first path), 

and thus monotonicity of d(v) is established. 

We have 
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Case 2 

Case: (u, v)  Ef . 

Since  (u, v)  Ef  , the augmenting path p that produced 

f  from  f  must have included (v, u).  Moreover, p is a 
breadth-first path in Gf : 

p = s  L  u  v  L  t . 

Thus, we have 

d(v)  d(u) – 1 (breadth-first path) 

 d(u) – 1 (induction) 

 d(v) – 2 (breadth-first path) 

< d(v) , 

thereby establishing monotonicity for this case, too. 
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Counting flow augmentations 

Theorem.  The number of flow augmentations 
in the Edmonds-Karp algorithm (Ford-Fulkerson 
with breadth-first augmenting paths) is O(V E). 

Proof.  Let p be an augmenting path, and suppose that 
we have cf (u, v) = cf (p) for edge (u, v)  p.  Then, we 
say that (u, v) is critical, and it disappears from the 
residual graph after flow augmentation. 
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Counting flow augmentations 

Theorem.  The number of flow augmentations 
in the Edmonds-Karp algorithm (Ford-Fulkerson 
with breadth-first augmenting paths) is O(V E). 

Proof.  Let p be an augmenting path, and suppose that 
the residual capacity of edge (u, v)  p is cf (u, v) = cf (p).  
Then, we say (u, v) is critical, and it disappears from the 
residual graph after flow augmentation. 
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Counting flow augmentations 
(continued) 

The first time an edge (u, v) is critical, we have d(v) = 
d(u) + 1, since p is a breadth-first path.  We must wait 
until (v, u) is on an augmenting path before (u, v) can 
be critical again.  Let d be the distance function when 
(v, u) is on an augmenting path.  Then, we have 
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d(u)   d(v) + 1 (breadth-first path) 

 d(v) + 1 (monotonicity) 

 d(u) + 1 (breadth-first path). 
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Counting flow augmentations 
(continued) 

The first time an edge (u, v) is critical, we have d(v) = 
d(u) + 1, since p is a breadth-first path.  We must wait 
until (v, u) is on an augmenting path before (u, v) can 
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(v, u) is on an augmenting path.  Then, we have 
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 d(u) + 1 (breadth-first path). 
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Counting flow augmentations 
(continued) 

The first time an edge (u, v) is critical, we have d(v) = 
d(u) + 1, since p is a breadth-first path.  We must wait 
until (v, u) is on an augmenting path before (u, v) can 
be critical again.  Let d be the distance function when 
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Counting flow augmentations 
(continued) 

The first time an edge (u, v) is critical, we have d(v) = 
d(u) + 1, since p is a breadth-first path.  We must wait 
until (v, u) is on an augmenting path before (u, v) can 
be critical again.  Let d be the distance function when 
(v, u) is on an augmenting path.  Then, we have 
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Counting flow augmentations 
(continued) 

The first time an edge (u, v) is critical, we have d(v) = 
d(u) + 1, since p is a breadth-first path.  We must wait 
until (v, u) is on an augmenting path before (u, v) can 
be critical again.  Let d be the distance function when 
(v, u) is on an augmenting path.  Then, we have 
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Counting flow augmentations 
(continued) 

The first time an edge (u, v) is critical, we have d(v) = 
d(u) + 1, since p is a breadth-first path.  We must wait 
until (v, u) is on an augmenting path before (u, v) can 
be critical again.  Let d be the distance function when 
(v, u) is on an augmenting path.  Then, we have 
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Running time of Edmonds-
Karp 

Distances start out nonnegative, never decrease, and are 
at most |V| – 1 until the vertex becomes unreachable.  
Thus, (u, v) occurs as a critical edge O(V) times, because 
d(v) increases by at least 2 between occurrences.  Since 
the residual graph contains O(E) edges, the number of 
flow augmentations is O(V E). 

Corollary.  The Edmonds-Karp maximum-flow 
algorithm runs in O(V E 

2) time. 

Proof.  Breadth-first search runs in O(E) time, and all 
other bookkeeping is O(V) per augmentation. 
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Best to date 

• The asymptotically fastest algorithm to date for
maximum flow, due to King, Rao, and Tarjan,
runs in O(V E logE/(V lg V)V) time.

• If we allow running times as a function of edge
weights, the fastest algorithm for maximum
flow, due to Goldberg and Rao, runs in time

O(min{V 2/3, E 1/2}  E lg (V 2/E + 2)  lg C),

where C is the maximum capacity of any edge 
in the graph. 


