
 Flow networks-II

Lecture 22

L22.2

Recall from Lecture 21

• Flow value: | f | = f (s, V).
• Cut: Any partition (S, T) of V such that s  S

and t  T.
• Lemma. | f | = f (S, T) for any cut (S, T).
• Corollary. | f |  c(S, T) for any cut (S, T).
• Residual graph: The graph Gf = (V, Ef) with

strictly positive residual capacities cf (u, v) =
c(u, v) – f (u, v) > 0.

• Augmenting path: Any path from s to t in Gf .
• Residual capacity of an augmenting path:

)},({min)(
),(

vucpc f
pvu

f


 .

L22.3

Max-flow, min-cut theorem

Theorem. The following are equivalent:
1. | f | = c(S, T) for some cut (S, T).
2. f is a maximum flow.
3. f admits no augmenting paths.

Proof.

(1)  (2): Since | f |  c(S, T) for any cut (S, T) (by
the corollary from Lecture 22), the assumption that
| f |  c(S, T) implies that f is a maximum flow.

(2)  (3): If there were an augmenting path, the
flow value could be increased, contradicting the
maximality of f.

L22.4

Proof (continued)

(3)  (1): Suppose that f admits no augmenting paths.
Define S = {v  V : there exists a path in Gf from s to v},
and let T = V – S. Observe that s  S and t  T, and thus
(S, T) is a cut. Consider any vertices u  S and v  T.

We must have cf (u, v) = 0, since if cf (u, v) > 0, then v  S,
not v  T as assumed. Thus, f (u, v) = c(u, v), since cf (u, v)
= c(u, v) – f (u, v). Summing over all u  S and v  T
yields f (S, T) = c(S, T), and since | f | = f (S, T), the theorem
follows.

s u v

S T path in Gf

L22.5

Ford-Fulkerson max-flow
algorithm

Algorithm:
f [u, v]  0 for all u, v  V
while an augmenting path p in G wrt f exists

do augment f by cf (p)

Can be slow:

s t

109 109

109

1

109

G:

L22.6

Ford-Fulkerson max-flow
algorithm

Can be slow:

s t

0:109 0:109

0:109

0:1

0:109

G:

Algorithm:
f [u, v]  0 for all u, v  V
while an augmenting path p in G wrt f exists

do augment f by cf (p)

 L22.7

Ford-Fulkerson max-flow
algorithm

Can be slow:

s t

0:109 0:109

0:109

0:1

0:109

G:

Algorithm:
f [u, v]  0 for all u, v  V
while an augmenting path p in G wrt f exists

do augment f by cf (p)

L22.8

Ford-Fulkerson max-flow
algorithm

Can be slow:

s t

1:109 0:109

1:109

1:1

0:109

G:

Algorithm:
f [u, v]  0 for all u, v  V
while an augmenting path p in G wrt f exists

do augment f by cf (p)

L22.9

Ford-Fulkerson max-flow
algorithm

Can be slow:

s t

1:109 0:109

1:109

1:1

0:109

G:

Algorithm:
f [u, v]  0 for all u, v  V
while an augmenting path p in G wrt f exists

do augment f by cf (p)

L22.10

Ford-Fulkerson max-flow
algorithm

Can be slow:

s t

1:109 1:109

1:109

0:1

1:109

G:

Algorithm:
f [u, v]  0 for all u, v  V
while an augmenting path p in G wrt f exists

do augment f by cf (p)

L22.11

Ford-Fulkerson max-flow
algorithm

Can be slow:

s t

1:109 1:109

1:109

0:1

1:109

G:

Algorithm:
f [u, v]  0 for all u, v  V
while an augmenting path p in G wrt f exists

do augment f by cf (p)

 L22.12

Ford-Fulkerson max-flow
algorithm

Can be slow:

s t

2:109 1:109

2:109

1:1

1:109

G:

2 billion iterations on a graph with 4 vertices!

Algorithm:
f [u, v]  0 for all u, v  V
while an augmenting path p in G wrt f exists

do augment f by cf (p)

L22.13

Edmonds-Karp algorithm

Edmonds and Karp noticed that many people’s
implementations of Ford-Fulkerson augment along
a breadth-first augmenting path: a shortest path in
Gf from s to t where each edge has weight 1. These
implementations would always run relatively fast.

Since a breadth-first augmenting path can be found
in O(E) time, their analysis, which provided the first
polynomial-time bound on maximum flow, focuses
on bounding the number of flow augmentations.

(In independent work, Dinic also gave polynomial-
time bounds.)

L22.14

Monotonicity lemma

Lemma. Let d(v) = df (s, v) be the breadth-first
distance from s to v in Gf . During the Edmonds-
Karp algorithm, d(v) increases monotonically.

Proof. Suppose that f is a flow on G, and augmentation

produces a new flow f . Let d(v) = df (s, v). We’ll show
that d(v)  d(v) by induction on d(v). For the base case,
d(s)  d(s) = 0.

For the inductive case, consider a breadth-first path s 
L  u  v in Gf . We must have d(v)  d(u) + 1, since

subpaths of shortest paths are shortest paths. Certainly,
(u, v)  Ef  , and now consider two cases depending on
whether (u, v)  Ef .

L22.15

Case 1

Case: (u, v)  Ef .

d(v)  d(u) + 1 (triangle inequality)

 d(u) + 1 (induction)

= d(v) (breadth-first path),

and thus monotonicity of d(v) is established.

We have

L22.16

Case 2

Case: (u, v)  Ef .

Since (u, v)  Ef  , the augmenting path p that produced

f  from f must have included (v, u). Moreover, p is a
breadth-first path in Gf :

p = s  L  u  v  L  t .

Thus, we have

d(v)  d(u) – 1 (breadth-first path)

 d(u) – 1 (induction)

 d(v) – 2 (breadth-first path)

< d(v) ,

thereby establishing monotonicity for this case, too.

L22.17

Counting flow augmentations

Theorem. The number of flow augmentations
in the Edmonds-Karp algorithm (Ford-Fulkerson
with breadth-first augmenting paths) is O(V E).

Proof. Let p be an augmenting path, and suppose that
we have cf (u, v) = cf (p) for edge (u, v)  p. Then, we
say that (u, v) is critical, and it disappears from the
residual graph after flow augmentation.

s

2

3

Gf :

4

2

7 2

1

t

3

cf (p) = 2 Example:

2

L22.18

Counting flow augmentations

Theorem. The number of flow augmentations
in the Edmonds-Karp algorithm (Ford-Fulkerson
with breadth-first augmenting paths) is O(V E).

Proof. Let p be an augmenting path, and suppose that
the residual capacity of edge (u, v)  p is cf (u, v) = cf (p).
Then, we say (u, v) is critical, and it disappears from the
residual graph after flow augmentation.

s

5

Gf :

2

4

5

3

t

1
Example:

4 4

L22.19

Counting flow augmentations
(continued)

The first time an edge (u, v) is critical, we have d(v) =
d(u) + 1, since p is a breadth-first path. We must wait
until (v, u) is on an augmenting path before (u, v) can
be critical again. Let d be the distance function when
(v, u) is on an augmenting path. Then, we have

s

u

v

t

Example:

d(u)  d(v) + 1 (breadth-first path)

 d(v) + 1 (monotonicity)

 d(u) + 1 (breadth-first path).

L22.20

Counting flow augmentations
(continued)

The first time an edge (u, v) is critical, we have d(v) =
d(u) + 1, since p is a breadth-first path. We must wait
until (v, u) is on an augmenting path before (u, v) can
be critical again. Let d be the distance function when
(v, u) is on an augmenting path. Then, we have

d(u)  d(v) + 1 (breadth-first path)

 d(v) + 1 (monotonicity)

 d(u) + 1 (breadth-first path).

s

u

v

t

d(u) = 5

d(v) = 6

Example:

L22.21

Counting flow augmentations
(continued)

The first time an edge (u, v) is critical, we have d(v) =
d(u) + 1, since p is a breadth-first path. We must wait
until (v, u) is on an augmenting path before (u, v) can
be critical again. Let d be the distance function when
(v, u) is on an augmenting path. Then, we have

s

u

v

t

d(u) = 5

d(v) = 6

Example:

d(u)  d(v) + 1 (breadth-first path)

 d(v) + 1 (monotonicity)

 d(u) + 1 (breadth-first path).

L22.22

Counting flow augmentations
(continued)

The first time an edge (u, v) is critical, we have d(v) =
d(u) + 1, since p is a breadth-first path. We must wait
until (v, u) is on an augmenting path before (u, v) can
be critical again. Let d be the distance function when
(v, u) is on an augmenting path. Then, we have

s

u

v

t

d(u)  7

d(v)  6

Example:

d(u)  d(v) + 1 (breadth-first path)

 d(v) + 1 (monotonicity)

 d(u) + 1 (breadth-first path).

L22.23

Counting flow augmentations
(continued)

The first time an edge (u, v) is critical, we have d(v) =
d(u) + 1, since p is a breadth-first path. We must wait
until (v, u) is on an augmenting path before (u, v) can
be critical again. Let d be the distance function when
(v, u) is on an augmenting path. Then, we have

s

u

v

t

d(u)  7

d(v)  6

Example:

d(u)  d(v) + 1 (breadth-first path)

 d(v) + 1 (monotonicity)

 d(u) + 1 (breadth-first path).

L22.24

Counting flow augmentations
(continued)

The first time an edge (u, v) is critical, we have d(v) =
d(u) + 1, since p is a breadth-first path. We must wait
until (v, u) is on an augmenting path before (u, v) can
be critical again. Let d be the distance function when
(v, u) is on an augmenting path. Then, we have

s

u

v

t

d(u)  7

d(v)  8

Example:

d(u)  d(v) + 1 (breadth-first path)

 d(v) + 1 (monotonicity)

 d(u) + 1 (breadth-first path).

L22.25

Running time of Edmonds-
Karp

Distances start out nonnegative, never decrease, and are
at most |V| – 1 until the vertex becomes unreachable.
Thus, (u, v) occurs as a critical edge O(V) times, because
d(v) increases by at least 2 between occurrences. Since
the residual graph contains O(E) edges, the number of
flow augmentations is O(V E).

Corollary. The Edmonds-Karp maximum-flow
algorithm runs in O(V E

2) time.

Proof. Breadth-first search runs in O(E) time, and all
other bookkeeping is O(V) per augmentation.

L22.26

Best to date

• The asymptotically fastest algorithm to date for
maximum flow, due to King, Rao, and Tarjan,
runs in O(V E logE/(V lg V)V) time.

• If we allow running times as a function of edge
weights, the fastest algorithm for maximum
flow, due to Goldberg and Rao, runs in time

O(min{V 2/3, E 1/2}  E lg (V 2/E + 2)  lg C),

where C is the maximum capacity of any edge
in the graph.

