Flow networks-I1

L_ecture 22

Recall from Lecture 21

* Flow value: || =1(s, V).

» Cut: Any partition (S, T) of Vsuchthats € S
andt e T.

e Lemma. |f|=1(S, T) forany cut (S, T).

* Corollary. |f|<c(S, T) forany cut (S, T).

* Residual graph: The graph G; = (V, E;) with
strictly positive residual capacities c; (U, v) =
c(u,v)—f(u,v)>0.

« Augmenting path: Any path fromsto tin G;.

* Residual capacity of an augmenting path:

Ct(p) = (lmi)gp{cf (u,v)}.

L22.2

Max-flow, min-cut theorem

Theorem. The following are equivalent:
1. |f|=c(S, T) for somecut (S, T).

2. fi1samaximum flow.

3. fadmits no augmenting paths.

Proof.

(1) = (2): Since | f | <c(S, T) forany cut (S, T) (by
the corollary from Lecture 22), the assumption that
| T|=c(S, T) implies that f 1s.a maximum flow.

(2) = (3): If there were an augmenting path, the
flow value could be increased, contradicting the
maximality of f.

L22.3

Proof (continued)

(3) = (1): Suppose that f admits no augmenting paths.
Define S = {v € V : there exists a path in G; from s to v},
and let T =V —S. Observethats € Sandt € T, and thus
(S, T) 1s a cut. Consider any verticesu € Sand v < T.

Vi QT

path in G, S | T

We must have c; (u, v) =0, since if ¢, (u, v) > 0, thenv € S,
notv T as assumed. Thus, f(u, v) = c(u, v), since c; (U, V)
=c(u,v)—f(u,v). Summingoverallu e Sandv e T

yields (S, T) =c(S, T), and since | f | =1 (S, T), the theorem
follows.

L22.4

Ford-Fulkerson max-flow
algorithm

Algorithm:
flu,vl]«Oforallu,veV
while an augmenting path p in G wrt f exists
do augment f by c;(p)

Can be slow:

L22.5

Ford-Fulkerson max-flow
algorithm

Algorithm:
flu,vl]«Oforallu,veV
while an augmenting path p in G wrt f exists
do augment f by c;(p)

Can be slow:

0:10°

L22.6

Ford-Fulkerson max-flow
algorithm

Algorithm:
flu,vl]«Oforallu,veV
while an augmenting path p in G wrt f exists
do augment f by c;(p)

Can be slow:

0:10° ‘l
0:10° ‘

L22.7

Ford-Fulkerson max-flow
algorithm

Algorithm:
flu,vl]«Oforallu,veV
while an augmenting path p in G wrt f exists
do augment f by c;(p)

Can be slow:

1:10° ‘l
0:107 ‘

L22.8

Ford-Fulkerson max-flow
algorithm

Algorithm:
flu,vl]«Oforallu,veV
while an augmenting path p in G wrt f exists
do augment f by c;(p)

Can be slow:

1:107 l
0:107 ‘

L22.9

Ford-Fulkerson max-flow
algorithm

Algorithm:
flu,vl]«Oforallu,veV
while an augmenting path p in G wrt f exists
do augment f by c;(p)

Can be slow:

1:107 l
1:10° ‘

L22.10

Ford-Fulkerson max-flow
algorithm

Algorithm:
flu,vl]«Oforallu,veV
while an augmenting path p in G wrt f exists
do augment f by c;(p)

Can be slow:

1:10° ‘l
1:10° ‘

L22.11

Ford-Fulkerson max-flow
algorithm

Algorithm:
flu,vl]«Oforallu,veV
while an augmenting path p in G wrt f exists
do augment f by c;(p)

Can be slow:
2:10° ‘l
1:10° ‘
2 billion Iiterations on a graph with 4 vertices!

L22.12

Edmonds-Karp algorithm

Edmonds and Karp noticed that many people’s
Implementations of Ford-Fulkerson augment along
a breadth-first augmenting path: a shortest path in
G; from s to t where each edge has weight 1. These
Implementations would always run relatively fast.

Since a breadth-first augmenting path can be found
In O(E) time, their analysis, which provided the first
polynomial-time bound on maximum flow, focuses
on bounding the number of flow augmentations.

(In Independent work, Dinic also gave polynomial-
time bounds.)

L22.13

Monotonicity lemma

Lemma. Let (V) = 6 (S, v) be the breadth-first
distance from s to v in G;. During the Edmonds-
Karp algorithm, 6(v) increases monotonically.

Proof. Suppose that f Is a flow on G, and augmentation
produces a new flow f'. Letd'(v) = 6;.(s, v). We’ll show
that &’(v) > 6(v) by induction on o(v). For the base case,
0'(s) =9o(s) = 0.

For the Iinductive case, consider a breadth-first path s —
-+ —> U —VvInG;. We must have 6'(v) =o'(u) + 1, since
subpaths of shortest paths are shortest paths. Certainly,
(u, v) € E;/, and now consider two cases depending on
whether (u, v) € E;.

L22.14

Case 1

Case: (u, v) € E;.
We have
o(v) <o(u) +1 (triangle inequality)
<o'(u)y+1 (induction)
=9'(V) (breadth-first path),

and thus monotonicity of 6(v) Is established.

L22.15

Case 2

Case: (u, V) ¢ E;.
Since (u, V) € E;., the augmenting path p that produced

f" from f must have included (v, u). Moreover, p Is a
breadth-first path in G;:

Pp=S—>--->U—>V->- - >1.
Thus, we have
o(V) =o(u) -1 (breadth-first path)
<o'(u)—1 (induction)
<o'(V) -2 (breadth-first path)
<d'(v),
thereby establishing monotonicity for this case, too.

L22.16

Counting flow augmentations

Theorem. The number of flow augmentations
In the Edmonds-Karp algorithm (Ford-Fulkerson
with breadth-first augmenting paths) is O(VE).
Proof. Let p be an augmenting path, and suppose that
we have c; (U, v) = c;(p) for edge (u, v) € p. Then, we
say that (u, v) is critical, and it disappears from the
residual graph after flow augmentation.

Example: Ct (p) = 2

L22.17

Counting flow augmentations

Theorem. The number of flow augmentations

In the Edmonds-Karp algorithm (Ford-Fulkerson
with breadth-first augmenting paths) is O(VE).
Proof. Let p be an augmenting path, and suppose that
the residual capacity of edge (u, v) € pis c:(u, v) = c:(p).
Then, we say (u, v) is critical, and it disappears from the
residual graph after flow augmentation.

Example:

L22.18

Counting flow augmentations
(continued)

The first time an edge (u, v) Is critical, we have 6(v) =
o(u) + 1, since p Is a breadth-first path. WWe must wait
until (v, u) Is on an augmenting path before (u, v) can
be critical again. Let &’ be the distance function when
(v, u) Is on an augmenting path. Then, we have
o'(u) =o'(v) +1 (breadth-first path)
>9(v) +1 (monotonicity)
=0o(u) +1 (breadth-first path).

Example:

O Y

L22.19

Counting flow augmentations
(continued)

The first time an edge (u, v) Is critical, we have 6(v) =
o(u) + 1, since p Is a breadth-first path. WWe must wait
until (v, u) Is on an augmenting path before (u, v) can
be critical again. Let &’ be the distance function when
(v, u) Is on an augmenting path. Then, we have
o'(u) =o'(v) +1 (breadth-first path)
>9(v) +1 (monotonicity)
=0o(u) +1 (breadth-first path).

L22.20

Counting flow augmentations
(continued)

The first time an edge (u, v) Is critical, we have 6(v) =
o(u) + 1, since p Is a breadth-first path. WWe must wait
until (v, u) Is on an augmenting path before (u, v) can
be critical again. Let &’ be the distance function when
(v, u) Is on an augmenting path. Then, we have
o'(u) =o'(v) +1 (breadth-first path)
>9(v) +1 (monotonicity)
=0o(u) +1 (breadth-first path).

Example: 5(u) =5

O Y

o(v) =6

L22.21

Counting flow augmentations
(continued)

The first time an edge (u, v) Is critical, we have 6(v) =
o(u) + 1, since p Is a breadth-first path. WWe must wait
until (v, u) Is on an augmenting path before (u, v) can
be critical again. Let &’ be the distance function when
(v, u) Is on an augmenting path. Then, we have
o'(u) =o'(v) +1 (breadth-first path)
>9(v) +1 (monotonicity)
=0o(u) +1 (breadth-first path).

Example: 5(u) =7

L22.22

Counting flow augmentations
(continued)

The first time an edge (u, v) Is critical, we have 6(v) =
o(u) + 1, since p Is a breadth-first path. WWe must wait
until (v, u) Is on an augmenting path before (u, v) can
be critical again. Let &’ be the distance function when
(v, u) Is on an augmenting path. Then, we have
o'(u) =o'(v) +1 (breadth-first path)
>9(v) +1 (monotonicity)
=0o(u) +1 (breadth-first path).

Example: 5(u) =7

O Y

o(V) > 6

L22.23

Counting flow augmentations
(continued)

The first time an edge (u, v) Is critical, we have 6(v) =
o(u) + 1, since p Is a breadth-first path. WWe must wait
until (v, u) Is on an augmenting path before (u, v) can
be critical again. Let &’ be the distance function when
(v, u) Is on an augmenting path. Then, we have
o'(u) =o'(v) +1 (breadth-first path)
>9(v) +1 (monotonicity)
=0o(u) +1 (breadth-first path).

L22.24

Running time of Edmonds-
Karp

Distances start out nonnegative, never decrease, and are
at most |V| — 1 until the vertex becomes unreachable.
Thus, (u, v) occurs as a critical edge O(V) times, because
o(V) Increases by at least 2 between occurrences. Since
the residual graph contains O(E) edges, the number of
flow augmentations is O(V E).

Corollary. The Edmonds-Karp maximum-flow
algorithm runs in O(V E?) time.

Proof. Breadth-first search runs in O(E) time, and all
other bookkeeping i1s O(V) per augmentation.

L22.25

Best to date

* The asymptotically fastest algorithm to date for
maximum flow, due to King, Rao, and Tarjan,
runs in O(V E loggy 14\yV) time.

* If we allow running times as a function of edge
welghts, the fastest algorithm for maximum
flow, due to Goldberg and Rao, runs in time

O(min{V%3 EY2} .Elg(VHE +2)-Ig C),
where C Is the maximum capacity of any edge
In the graph.

L22.26

