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 L20.2 

Disjoint-set data structure 
(Union-Find) 

Problem: Maintain a dynamic collection of 
pairwise-disjoint  sets S = {S1, S2, …, Sr}. 
Each set Si has one element distinguished as the 
representative element, rep[Si]. 

Must support 3 operations: 
• MAKE-SET(x): adds new set {x} to S
   with rep[{x}] = x  (for any x  Si for all i ). 
• UNION(x, y): replaces sets Sx, Sy with Sx  Sy

   in S for any x, y in distinct sets Sx, Sy . 
• FIND-SET(x): returns representative rep[Sx]
   of set Sx containing element x. 
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Simple linked-list solution 

Store each set Si = {x1, x2, …, xk} as an (unordered) 
doubly linked list.  Define representative element 
rep[Si] to be the front of the list, x1. 

… Si : x1 x2 xk

rep[Si] 

• MAKE-SET(x) initializes x as a lone node.
• FIND-SET(x) walks left in the list containing x
   until it reaches the front of the list. 
• UNION(x, y) concatenates the lists containing
   x and y, leaving rep. as FIND-SET[x]. 

– (1)

– (n)

– (n)
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Simple balanced-tree solution 

Store each set Si = {x1, x2, …, xk} as a balanced tree 
(ignoring keys).  Define representative element 
rep[Si] to be the root of the tree. 

x1

x4 x3

x2 x5

• MAKE-SET(x) initializes x
   as a lone node. 
• FIND-SET(x) walks up the
   tree containing x until it 
   reaches the root. 
• UNION(x, y) concatenates
   the trees containing x and y, 
   changing rep. 

Si = {x1, x2, x3, x4, x5} 

rep[Si] 
– (1)

– (lg n)

– (lg n)
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Plan of attack 

We will build a simple disjoint-union data structure 
that, in an amortized sense, performs significantly 
better than (lg n) per op., even better than 
(lg lg n), (lg lg lg n), etc., but not quite (1). 

To reach this goal, we will introduce two key tricks. 
Each trick converts a trivial (n) solution into a 
simple (lg n) amortized solution.  Together, the 
two tricks yield a much better solution. 

First trick arises in an augmented linked list. 
Second trick arises in a tree structure. 
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Augmented linked-list solution 

… Si : x1 x2 xk

rep[Si] 

rep 

Store set Si = {x1, x2, …, xk} as unordered doubly 
linked list.  Define rep[Si] to be front of list, x1. 
Each element xj also stores pointer rep[xj] to rep[Si]. 

• FIND-SET(x) returns rep[x].
• UNION(x, y) concatenates the lists containing
   x and y, and updates the rep pointers for 
   all elements in the list containing y. – (n)

– (1)
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Example of 
augmented linked-list solution 

Sx : x1 x2

rep[Sx] 

rep 

Each element xj stores pointer rep[xj] to rep[Si]. 
UNION(x, y) 

• concatenates the lists containing x and y, and
• updates the rep pointers for all elements in the

list containing y.

Sy : y1 y2 y3

rep[Sy] 

rep 
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Example of 
augmented linked-list solution 

Sx  Sy : 

x1 x2

rep[Sx] 

rep 

Each element xj stores pointer rep[xj] to rep[Si]. 
UNION(x, y) 

• concatenates the lists containing x and y, and
• updates the rep pointers for all elements in the

list containing y.

y1 y2 y3

rep[Sy] 

rep 
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Example of 
augmented linked-list solution 

Sx  Sy : 

x1 x2

rep[Sx  Sy] 

Each element xj stores pointer rep[xj] to rep[Si]. 
UNION(x, y) 

• concatenates the lists containing x and y, and
• updates the rep pointers for all elements in the

list containing y.

y1 y2 y3

rep 
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Alternative concatenation 

Sx : x1 x2

rep[Sy] 

UNION(x, y) could instead 
• concatenate the lists containing y and x, and
• update the rep pointers for all elements in the

list containing x.

y1 y2 y3

rep 

rep[Sx] 
rep 

Sy : 
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Alternative concatenation 

Sx  Sy : 
x1 x2

rep[Sy] 

UNION(x, y) could instead 
• concatenate the lists containing y and x, and
• update the rep pointers for all elements in the

list containing x.

y1 y2 y3

rep[Sx] 
rep 

rep 
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Alternative concatenation 

Sx  Sy : 
x1 x2

UNION(x, y) could instead 
• concatenate the lists containing y and x, and
• update the rep pointers for all elements in the

list containing x.

y1 y2 y3

rep 

rep 

rep[Sx  Sy] 
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Trick 1: Smaller into larger 

To save work, concatenate smaller list onto the end 
of the larger list.  Cost = (length of smaller list). 
Augment list to store its weight (# elements). 

Let n denote the overall number of elements 
(equivalently, the number of MAKE-SET operations). 
Let m denote the total number of operations. 
Let f denote the number of FIND-SET operations. 

Theorem: Cost of all UNION’s is O(n lg n). 

Corollary: Total cost is O(m + n lg n). 
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Analysis of Trick 1 

To save work, concatenate smaller list onto the end 
of the larger list.  Cost = (1 + length of smaller list). 

Theorem: Total cost of UNION’s is O(n lg n). 

Proof. Monitor an element x and set Sx containing it. 
After initial MAKE-SET(x), weight[Sx] = 1.  Each 
time Sx is united with set Sy, weight[Sy]  weight[Sx], 
pay 1 to update rep[x], and weight[Sx] at least 
doubles (increasing by weight[Sy]).  Each time Sy is 
united with smaller set Sy, pay nothing, and 
weight[Sx] only increases.  Thus pay  lg n for x. 
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Representing sets as trees 

Store each set Si = {x1, x2, …, xk} as an unordered, 
potentially unbalanced, not necessarily binary tree, 
storing only parent pointers. rep[Si] is the tree root. 

x1

x4 x3

x2 x5

Si = {x1, x2, x3, x4, x5 , x6} 

rep[Si] 

• MAKE-SET(x) initializes x
   as a lone node. 
• FIND-SET(x) walks up the
   tree containing x until it 
   reaches the root. 
• UNION(x, y) concatenates
   the trees containing x and y… 

– (1)

– (depth[x])

x6
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Trick 1 adapted to trees 

UNION(x, y) can use a simple concatenation strategy: 
Make root FIND-SET(y) a child of root FIND-SET(x). 
 FIND-SET(y) = FIND-SET(x). 

y1

y4 y3

y2 y5

We can adapt Trick 1 
to this context also: 
Merge tree with smaller 
weight into tree with 
larger weight. 

Height of tree increases only when its size 
doubles, so height is logarithmic in weight. 
Thus total cost is O(m + f lg n). 

x1

x4 x3

x2 x5 x6 
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Trick 2: Path compression 

When we execute a FIND-SET operation and walk 
up a path p to the root, we know the representative 
for all the nodes on path p. 

y1

y4 y3

y2 y5

x1

x4 x3

x2 x5 x6 

Path compression makes 
all of those nodes direct 
children of the root. 

Cost of FIND-SET(x) 
is still (depth[x]). 

FIND-SET(y2) 
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Trick 2: Path compression 

When we execute a FIND-SET operation and walk 
up a path p to the root, we know the representative 
for all the nodes on path p. 

y1

y4 y3

y2 y5

x1

x4 x3

x2 x5 x6 

Path compression makes 
all of those nodes direct 
children of the root. 

Cost of FIND-SET(x) 
is still (depth[x]). 

FIND-SET(y2) 
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Trick 2: Path compression 

When we execute a FIND-SET operation and walk 
up a path p to the root, we know the representative 
for all the nodes on path p. 

y1

y4

y3y2

y5

x1

x4 x3

x2 x5 x6 

FIND-SET(y2) 

Path compression makes 
all of those nodes direct 
children of the root. 

Cost of FIND-SET(x) 
is still (depth[x]). 
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Analysis of Trick 2 alone 

Theorem: Total cost of FIND-SET’s is O(m lg n). 

Proof: Amortization by potential function. 
The weight of a node x is # nodes in its subtree. 
Define (x1, …, xn) = i lg weight[xi]. 
UNION(xi, xj) increases potential of root FIND-SET(xi) 
by at most  lg weight[root FIND-SET(xj)]  lg n. 
Each step down p  c made by FIND-SET(xi), 
except the first, moves c’s subtree out of p’s subtree. 
Thus if weight[c]  ½ weight[p],  decreases by  1, 
paying for the step down. There can be at most lg n 
steps p  c for which weight[c] < ½ weight[p]. 
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Analysis of Trick 2 alone 

Theorem: If all UNION operations occur before 
all FIND-SET operations, then total cost is O(m). 

Proof: If a FIND-SET operation traverses a path 
with k nodes, costing O(k) time, then k – 2 nodes 
are made new children of the root.  This change 
can happen only once for each of the n elements, 
so the total cost of FIND-SET is O(f + n). 
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Ackermann’s function A 

Define 







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 .1 if 

,0 if 

)(

1
)( )1(

1 k

k

jA

j
jA j

k
k

Define (n) = min {k : Ak(1)  n}  4 for practical n. 

A0(j) = j + 1 
A1(j) ~ 2 j 
A2(j) ~ 2j 2j > 2j

 

A3(j) > 
A4(j) is a lot bigger. 

2 
2 

2 

2 
j

..
. 

j 

A0(1) = 2 
A1(1) = 3 
A2(1) = 7 
A3(1) = 2047 

A4(1) > 

– iterate j+1 times

2 
2 

2 

2
2047 

..
. 

2048 



 L20.23 

Analysis of Tricks 1 + 2 

Theorem: In general, total cost is O(m (n)). 

(long, tricky proof – see the text book) 
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Application: 
Dynamic connectivity 

Suppose a graph is given to us incrementally by 
• ADD-VERTEX(v)
• ADD-EDGE(u, v)

and we want to support connectivity queries: 
• CONNECTED(u, v):
  Are u and v in the same connected component? 

For example, we want to maintain a spanning forest, 
so we check whether each new edge connects a 
previously disconnected pair of vertices. 
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Application: 
Dynamic connectivity 

Sets of vertices represent connected components. 
Suppose a graph is given to us incrementally by 

• ADD-VERTEX(v) – MAKE-SET(v)
• ADD-EDGE(u, v) – if not CONNECTED(u, v)

   then UNION(v, w) 
and we want to support connectivity queries: 

• CONNECTED(u, v): – FIND-SET(u) = FIND-SET(v)
  Are u and v in the same connected component? 

For example, we want to maintain a spanning forest, 
so we check whether each new edge connects a 
previously disconnected pair of vertices. 


