Disjoint-set data structure:
Union-Find

_ecture 20

Disjoint-set data structure
(Union-Find)

Problem: Maintain a dynamic collection of
pairwise-disjoint sets S = {S;, S, ..., S,}.
Each set S; has one element distinguished as the
representative element, rep[S;].
Must support 3 operations:
* MAKE-SET(X): adds new set {x} to S
with rep[{x}] = x (forany x ¢ S, for all 1).
* UNION(X, y): replaces sets S,, S, with S, U S,
In S for any X, y In distinct sets S, S, .
* FIND-SET(X): returns representative rep[S, |
of set S, containing element x.

L20.2

Simple linked-list solution

Store each set S; = {Xy, X, ..., X, + as an (unordered)
doubly linked list. Define representative element
rep[S;] to be the front of the list, x,.

Si: x| T > X, T X,
rep[S]

« MAKE-SET(X) initializes x as a lone node. —©O(1)
» FIND-SET(X) walks left In the list containing x
until 1t reaches the front of the list. — 0(n)
* UNION(X, y) concatenates the lists containing
x and vy, leaving rep. as FIND-SET[Xx]. — O(n)

L20.3

Simple balanced-tree solution

Store each set S; = {X4, X, ..., X, + as a balanced tree
(ignoring keys). Define representative element
rep[S;] to be the root of the tree.

* MAKE-SET(X) Initializes x 5i = X1, X5, X3, Xy, X5}
asalonenode. —O(1) enlS.

* FIND-SET(X) walks up the Pl
tree containing x until it y X
reaches the root. — ®(lg n) /4\ 2

* UNION(X, V) concatenates

the trees containing x and v,
changing rep. —O(gn)

Xo | [Xe

L20.4

Plan of attack

We will build a simple disjoint-union data structure
that, in an amortized sense, performs significantly
better than ®(lg n) per op., even better than

O(lg lg n), ®(lg Ig Ig n), etc., but not quite G(1).

To reach this goal, we will introduce two key tricks.
Each trick converts a trivial ®(n) solution into a
simple ®(lg n) amortized solution. Together, the
two tricks yield a much better solution.

First trick arises in an augmented linked list.
Second trick arises In a tree structure.

L20.5

Augmented linked-list solution

Store set S; = {X;, X, ..., X, + as unordered doubly
linked list. Define rep[S;] to be front of list, x,.
Each element x; also stores pointer rep[x;] to rep[S;].

rep
S T e Tl [T
rep[Sj]
* FIND-SET(X) returns rep|x]. - 0(1)

* UNION(X, y) concatenates the lists containing
x and y, and updates the rep pointers for
all elements in the list containing v. — O(n)

L20.6

Example of
augmented linked-list solution

Each element x; stores pointer rep[x;] to rep[S;].
UNION(X, V)
» concatenates the lists containing x and y, and
» updates the rep pointers for all elements in the
list containing .

rep

X | T—L [X%
rep[S,]

rep

Sy | Ve T [Yof T—1F |¥s

rep[S,]

L20.7

Example of
augmented linked-list solution
Each element x; stores pointer rep[x;] to rep[S;].

UNION(X, V)

» concatenates the lists containing x and y, and
» updates the rep pointers for all elements in the

list containing .

Sy U Sy !

rep

X1

rep[S,]

X5

rep

Y1

rep[S,]

Yol |— Y3

L20.8

Example of
augmented linked-list solution

Each element x; stores pointer rep[x;] to rep[S;].
UNION(X, V)
» concatenates the lists containing x and y, and
» updates the rep pointers for all elements in the
list containing .

Sy U Sy !

rep

Xl —F 1 %2\

rep[S,uS,] \\

yl « ’ y2 « ’ y3

L20.9

Alternative concatenation

UNION(X,) coulc
e concatenate t
* update the re

Instead
ne lists containing vy and x, and

0 pointers for all elements in the

list containing x.

rep X

rep

rep[S,]

Syl v =L |vo| ==L |vs

rep[S,]

L20.10

Alternative concatenation

UNION(X,) coulc
e concatenate t
* update the re

Instead
ne lists containing vy and x, and

0 pointers for all elements in the

list containing x.

rep

: re /] ¢ %
S8y p /‘ rep[s,]

Yol | — (Y2 | — [V

rep[S,]

L20.11

Alternative concatenation

UNIoN(X, v) could instead
» concatenate the lists containing y and x, and
» update the rep pointers for all elements in the
list containing x.

rep

| 7% =L | %

yo = Yo = (Vs
rep[S, v S]

L20.12

Trick 1: Smaller into larger

To save work, concatenate smaller list onto the end
of the larger list. Cost = ®(length of smaller list).
Augment list to store its weight (# elements).

et n denote the overall number of elements
(equivalently, the number of MAKE-SET operations).
et m denote the total number of operations.

Let f denote the number of FIND-SET operations.

Theorem: Cost of all UNION’s is O(n Ig n).
Corollary: Total cost is O(m + n Ig n).

L20.13

Analysis of Trick 1

To save work, concatenate smaller list onto the end
of the larger list. Cost = ®(1 + length of smaller list).

Theorem: Total cost of UNION’s is O(n Ig n).

Proof. Monitor an element x and set S, containing it.
After initial MAKE-SET(X), weight[S,] = 1. Each
time S, IS united with set S weight[S,] > weight[S,],
pay 1 to update rep[x], an Welght[S at least
doubles (increasing by weight[S,|). Each time S, Is
united with smaller set S, pay nothmg and

welght[S,] only I mcreases Thus pay < Ig n for x.

L20.14

Representing sets as trees

Store each set S; = {Xy, X, ..., X, as an unordered,
potentially unbalanced, not necessarily binary tree,
storing only parent pointers. rep[S;] is the tree root.

* MAKE-SET(X) Initializes x =

as alone node. —O(1) o K X ol
» FIND-SET(x) walks up the rep[Si] | x,

tree containing x until it

reaches the root. — ®(depth[x])
* UNION(X, V) concatenates

the trees containing x and ...

Trick 1 adapted to trees

UNION(X, V) can use a simple concatenation strategy:

Make root FIND-SET(Y) a child of root FIND-SET(X).
= FIND-SET(Y) = FIND-SET(X).

We can adapt Trick 1

to this context also:
Merge tree with smaller
weight into tree with
larger weight.

Height of tree increases only when its size y‘
doubles, so height is logarithmic in weight. ==

e

X1

X5

Xg

%
IS
IS
N
%
IS

Thus total cost Is O(m + f Ig n).

L 4

L20.16

Trick 2: Path compression

When we execute a FIND-SET operation and walk

up a path p to the root, we know the representative
for all the nodes on path p.

Path compression makes
all of those nodes direct
children of the root.

Cost of FIND-SET(X)

IS still ®(depth[x]).

FIND-SET(Y.)

L20.17

Trick 2: Path compression

When we execute a FIND-SET operation and walk

up a path p to the root, we know the representative
for all the nodes on path p.

Path compression makes
all of those nodes direct
children of the root.

Cost of FIND-SET(X)

IS still ®(depth[x]).

FIND-SET(Y.)

Y4

Y3

A

Ys

L20.

18

Trick 2: Path compression

When we execute a FIND-SET operation and walk

up a path p to the root, we know the representative
for all the nodes on path p.

X1
Path compression makes " \

all of those nodes direct | %, Xa| [Y1[IY2] | Y3
children of the root. / i T
Cost of FIND-SET(X) fo]] o] [Va Y5

Is still ®(depth[x]). FIND-SET(Y,)
- 2

L20.19

Analysis of Trick 2 alone

Theorem: Total cost of FIND-SET’s 1s O(m Ig n).

Proof: Amortization by potential function.

The weight of a node x Is # nodes In Its subtree.
Define (X4, ..., X,) = Z; Ig weight[x].

UNION(X;, X;) InCreases potentlal of root FIND-SET(X;)
0y at most Ig weight[root FIND-SET(X;)] < g n.

Each step down p — ¢ made by FIND- SET(x)

except the first, moves c’s subtree out of p’s subtree.
Thus If weight[c] > %2 weight[p], ¢ decreases by > 1,
paying for the step down. There can be at most Ig n
steps p — ¢ for which weight[c] < Y2 weight[p].

L20.20

Analysis of Trick 2 alone

Theorem: If all UNION operations occur before
all FIND-SET operations, then total cost is O(m).

Proof: If a FIND-SET operation traverses a path
with k nodes, costing O(k) time, then k — 2 nodes
are made new children of the root. This change
can happen only once for each of the n elements,
so the total cost of FIND-SET Is O(f + n).

L20.21

Ackermann’s function A

Define A (]) =+

Al) =] +1
A(J) ~ 2]

A(j) ~2j 2 > 2

2]

5

_ 2
As(]) > 2

A,(]) Is a lot bigger.

/

)

J+1 if k=0,

Ag(1) =2
A(1) =3
A1) =7
A;(1) = 2047

22
Ay(1) > 2

2047

Aé”l)(J) if k>1. —iteratej+1 times

> 2048

/

Define a.(n) = min {k : A (1) > n} <4 for practical n.

L20.22

Analysis of Tricks 1 + 2

Theorem: In general, total cost is O(m a.(n)).
(long, tricky proof — see the text book)

L20.23

Application:
Dynamic connectivity

Suppose a graph is given to us incrementally by
* ADD-VERTEX(V)
* ADD-EDGE(U, V)

and we want to support connectivity queries:
* CONNECTED(U, V):
Are u and v In the same connected component?

For example, we want to maintain a spanning forest,
so we check whether each new edge connects a
previously disconnected pair of vertices.

L20.24

Application:
Dynamic connectivity

Sets of vertices represent connected components.
Suppose a graph is given to us incrementally by

* ADD-VERTEX(V) — MAKE-SET(V)

* ADD-EDGE(U, V) — If not CONNECTED(U, V)

then UNION(V, w)

and we want to support connectivity queries:

» CONNECTED(U, V): — FIND-SET(U) = FIND-SET(V)

Are u and v In the same connected component?

For example, we want to maintain a spanning forest,
so we check whether each new edge connects a
previously disconnected pair of vertices.

L20.25

