
Disjoint-set data structure:
Union-Find

Lecture 20

 L20.2

Disjoint-set data structure
(Union-Find)

Problem: Maintain a dynamic collection of
pairwise-disjoint sets S = {S1, S2, …, Sr}.
Each set Si has one element distinguished as the
representative element, rep[Si].

Must support 3 operations:
• MAKE-SET(x): adds new set {x} to S
 with rep[{x}] = x (for any x  Si for all i).
• UNION(x, y): replaces sets Sx, Sy with Sx  Sy

 in S for any x, y in distinct sets Sx, Sy .
• FIND-SET(x): returns representative rep[Sx]
 of set Sx containing element x.

 L20.3

Simple linked-list solution

Store each set Si = {x1, x2, …, xk} as an (unordered)
doubly linked list. Define representative element
rep[Si] to be the front of the list, x1.

… Si : x1 x2 xk

rep[Si]

• MAKE-SET(x) initializes x as a lone node.
• FIND-SET(x) walks left in the list containing x
 until it reaches the front of the list.
• UNION(x, y) concatenates the lists containing
 x and y, leaving rep. as FIND-SET[x].

– (1)

– (n)

– (n)

 L20.4

Simple balanced-tree solution

Store each set Si = {x1, x2, …, xk} as a balanced tree
(ignoring keys). Define representative element
rep[Si] to be the root of the tree.

x1

x4 x3

x2 x5

• MAKE-SET(x) initializes x
 as a lone node.
• FIND-SET(x) walks up the
 tree containing x until it
 reaches the root.
• UNION(x, y) concatenates
 the trees containing x and y,
 changing rep.

Si = {x1, x2, x3, x4, x5}

rep[Si]
– (1)

– (lg n)

– (lg n)

L20.5

Plan of attack

We will build a simple disjoint-union data structure
that, in an amortized sense, performs significantly
better than (lg n) per op., even better than
(lg lg n), (lg lg lg n), etc., but not quite (1).

To reach this goal, we will introduce two key tricks.
Each trick converts a trivial (n) solution into a
simple (lg n) amortized solution. Together, the
two tricks yield a much better solution.

First trick arises in an augmented linked list.
Second trick arises in a tree structure.

 L20.6

Augmented linked-list solution

… Si : x1 x2 xk

rep[Si]

rep

Store set Si = {x1, x2, …, xk} as unordered doubly
linked list. Define rep[Si] to be front of list, x1.
Each element xj also stores pointer rep[xj] to rep[Si].

• FIND-SET(x) returns rep[x].
• UNION(x, y) concatenates the lists containing
 x and y, and updates the rep pointers for
 all elements in the list containing y. – (n)

– (1)

 L20.7

Example of
augmented linked-list solution

Sx : x1 x2

rep[Sx]

rep

Each element xj stores pointer rep[xj] to rep[Si].
UNION(x, y)

• concatenates the lists containing x and y, and
• updates the rep pointers for all elements in the

list containing y.

Sy : y1 y2 y3

rep[Sy]

rep

L20.8

Example of
augmented linked-list solution

Sx  Sy :

x1 x2

rep[Sx]

rep

Each element xj stores pointer rep[xj] to rep[Si].
UNION(x, y)

• concatenates the lists containing x and y, and
• updates the rep pointers for all elements in the

list containing y.

y1 y2 y3

rep[Sy]

rep

 L20.9

Example of
augmented linked-list solution

Sx  Sy :

x1 x2

rep[Sx  Sy]

Each element xj stores pointer rep[xj] to rep[Si].
UNION(x, y)

• concatenates the lists containing x and y, and
• updates the rep pointers for all elements in the

list containing y.

y1 y2 y3

rep

 L20.10

Alternative concatenation

Sx : x1 x2

rep[Sy]

UNION(x, y) could instead
• concatenate the lists containing y and x, and
• update the rep pointers for all elements in the

list containing x.

y1 y2 y3

rep

rep[Sx]
rep

Sy :

 L20.11

Alternative concatenation

Sx  Sy :
x1 x2

rep[Sy]

UNION(x, y) could instead
• concatenate the lists containing y and x, and
• update the rep pointers for all elements in the

list containing x.

y1 y2 y3

rep[Sx]
rep

rep

L20.12

Alternative concatenation

Sx  Sy :
x1 x2

UNION(x, y) could instead
• concatenate the lists containing y and x, and
• update the rep pointers for all elements in the

list containing x.

y1 y2 y3

rep

rep

rep[Sx  Sy]

 L20.13

Trick 1: Smaller into larger

To save work, concatenate smaller list onto the end
of the larger list. Cost = (length of smaller list).
Augment list to store its weight (# elements).

Let n denote the overall number of elements
(equivalently, the number of MAKE-SET operations).
Let m denote the total number of operations.
Let f denote the number of FIND-SET operations.

Theorem: Cost of all UNION’s is O(n lg n).

Corollary: Total cost is O(m + n lg n).

 L20.14

Analysis of Trick 1

To save work, concatenate smaller list onto the end
of the larger list. Cost = (1 + length of smaller list).

Theorem: Total cost of UNION’s is O(n lg n).

Proof. Monitor an element x and set Sx containing it.
After initial MAKE-SET(x), weight[Sx] = 1. Each
time Sx is united with set Sy, weight[Sy]  weight[Sx],
pay 1 to update rep[x], and weight[Sx] at least
doubles (increasing by weight[Sy]). Each time Sy is
united with smaller set Sy, pay nothing, and
weight[Sx] only increases. Thus pay  lg n for x.

 L20.15

Representing sets as trees

Store each set Si = {x1, x2, …, xk} as an unordered,
potentially unbalanced, not necessarily binary tree,
storing only parent pointers. rep[Si] is the tree root.

x1

x4 x3

x2 x5

Si = {x1, x2, x3, x4, x5 , x6}

rep[Si]

• MAKE-SET(x) initializes x
 as a lone node.
• FIND-SET(x) walks up the
 tree containing x until it
 reaches the root.
• UNION(x, y) concatenates
 the trees containing x and y…

– (1)

– (depth[x])

x6

 L20.16

Trick 1 adapted to trees

UNION(x, y) can use a simple concatenation strategy:
Make root FIND-SET(y) a child of root FIND-SET(x).
 FIND-SET(y) = FIND-SET(x).

y1

y4 y3

y2 y5

We can adapt Trick 1
to this context also:
Merge tree with smaller
weight into tree with
larger weight.

Height of tree increases only when its size
doubles, so height is logarithmic in weight.
Thus total cost is O(m + f lg n).

x1

x4 x3

x2 x5 x6

 L20.17

Trick 2: Path compression

When we execute a FIND-SET operation and walk
up a path p to the root, we know the representative
for all the nodes on path p.

y1

y4 y3

y2 y5

x1

x4 x3

x2 x5 x6

Path compression makes
all of those nodes direct
children of the root.

Cost of FIND-SET(x)
is still (depth[x]).

FIND-SET(y2)

L20.18

Trick 2: Path compression

When we execute a FIND-SET operation and walk
up a path p to the root, we know the representative
for all the nodes on path p.

y1

y4 y3

y2 y5

x1

x4 x3

x2 x5 x6

Path compression makes
all of those nodes direct
children of the root.

Cost of FIND-SET(x)
is still (depth[x]).

FIND-SET(y2)

 L20.19

Trick 2: Path compression

When we execute a FIND-SET operation and walk
up a path p to the root, we know the representative
for all the nodes on path p.

y1

y4

y3y2

y5

x1

x4 x3

x2 x5 x6

FIND-SET(y2)

Path compression makes
all of those nodes direct
children of the root.

Cost of FIND-SET(x)
is still (depth[x]).

 L20.20

Analysis of Trick 2 alone

Theorem: Total cost of FIND-SET’s is O(m lg n).

Proof: Amortization by potential function.
The weight of a node x is # nodes in its subtree.
Define (x1, …, xn) = i lg weight[xi].
UNION(xi, xj) increases potential of root FIND-SET(xi)
by at most lg weight[root FIND-SET(xj)]  lg n.
Each step down p  c made by FIND-SET(xi),
except the first, moves c’s subtree out of p’s subtree.
Thus if weight[c]  ½ weight[p],  decreases by  1,
paying for the step down. There can be at most lg n
steps p  c for which weight[c] < ½ weight[p].

 L20.21

Analysis of Trick 2 alone

Theorem: If all UNION operations occur before
all FIND-SET operations, then total cost is O(m).

Proof: If a FIND-SET operation traverses a path
with k nodes, costing O(k) time, then k – 2 nodes
are made new children of the root. This change
can happen only once for each of the n elements,
so the total cost of FIND-SET is O(f + n).

 L20.22

Ackermann’s function A

Define







 

 .1 if

,0 if

)(

1
)()1(

1 k

k

jA

j
jA j

k
k

Define (n) = min {k : Ak(1)  n}  4 for practical n.

A0(j) = j + 1
A1(j) ~ 2 j
A2(j) ~ 2j 2j > 2j

A3(j) >
A4(j) is a lot bigger.

2
2

2

2
j

..
.

j

A0(1) = 2
A1(1) = 3
A2(1) = 7
A3(1) = 2047

A4(1) >

– iterate j+1 times

2
2

2

2
2047

..
.

2048

 L20.23

Analysis of Tricks 1 + 2

Theorem: In general, total cost is O(m (n)).

(long, tricky proof – see the text book)

 L20.24

Application:
Dynamic connectivity

Suppose a graph is given to us incrementally by
• ADD-VERTEX(v)
• ADD-EDGE(u, v)

and we want to support connectivity queries:
• CONNECTED(u, v):
 Are u and v in the same connected component?

For example, we want to maintain a spanning forest,
so we check whether each new edge connects a
previously disconnected pair of vertices.

 L20.25

Application:
Dynamic connectivity

Sets of vertices represent connected components.
Suppose a graph is given to us incrementally by

• ADD-VERTEX(v) – MAKE-SET(v)
• ADD-EDGE(u, v) – if not CONNECTED(u, v)

 then UNION(v, w)
and we want to support connectivity queries:

• CONNECTED(u, v): – FIND-SET(u) = FIND-SET(v)
 Are u and v in the same connected component?

For example, we want to maintain a spanning forest,
so we check whether each new edge connects a
previously disconnected pair of vertices.

