Disjoint-set data structure: Union-Find

Lecture 20

Disjoint-set data structure (Union-Find)

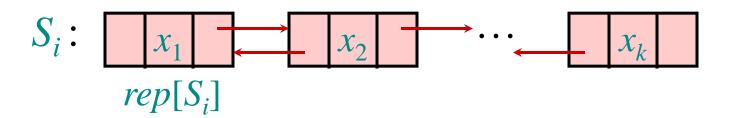
Problem: Maintain a dynamic collection of *pairwise-disjoint* sets $S = \{S_1, S_2, ..., S_r\}$. Each set S_i has one element distinguished as the representative element, $rep[S_i]$.

Must support 3 operations:

- MAKE-SET(x): adds new set {x} to S with $rep[{x}] = x$ (for any $x \notin S_i$ for all i).
- Union(x, y): replaces sets S_x , S_y with $S_x \cup S_y$ in S for any x, y in distinct sets S_x , S_y .
- FIND-SET(x): returns representative $rep[S_x]$ of set S_x containing element x.

Simple linked-list solution

Store each set $S_i = \{x_1, x_2, ..., x_k\}$ as an (unordered) doubly linked list. Define representative element $rep[S_i]$ to be the front of the list, x_1 .

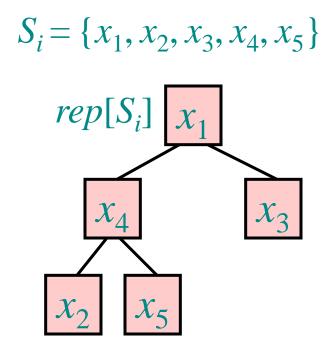


- Make-Set(x) initializes x as a lone node. $-\Theta(1)$
- FIND-SET(x) walks left in the list containing x until it reaches the front of the list. $-\Theta(n)$
- Union(x, y) concatenates the lists containing x and y, leaving rep. as Find-Set[x]. $-\Theta(n)$

Simple balanced-tree solution

Store each set $S_i = \{x_1, x_2, ..., x_k\}$ as a balanced tree (ignoring keys). Define representative element $rep[S_i]$ to be the root of the tree.

- Make-Set(x) initializes x as a lone node. $-\Theta(1)$
- FIND-SET(x) walks up the tree containing x until it reaches the root. $-\Theta(\lg n)$
- UNION(x, y) concatenates the trees containing x and y, changing rep. $-\Theta(\lg n)$



Plan of attack

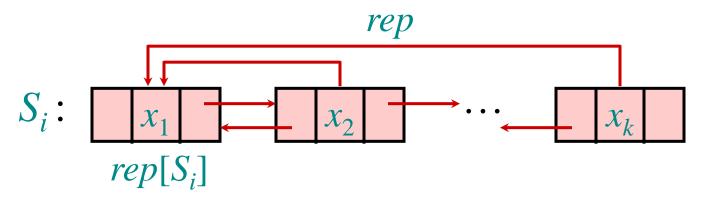
We will build a simple disjoint-union data structure that, in an amortized sense, performs significantly better than $\Theta(\lg n)$ per op., even better than $\Theta(\lg \lg n)$, $\Theta(\lg \lg \lg n)$, etc., but not quite $\Theta(1)$.

To reach this goal, we will introduce two key *tricks*. Each trick converts a trivial $\Theta(n)$ solution into a simple $\Theta(\lg n)$ amortized solution. Together, the two tricks yield a much better solution.

First trick arises in an augmented linked list. Second trick arises in a tree structure.

Augmented linked-list solution

Store set $S_i = \{x_1, x_2, ..., x_k\}$ as unordered doubly linked list. Define $rep[S_i]$ to be front of list, x_1 . Each element x_j also stores pointer $rep[x_j]$ to $rep[S_i]$.

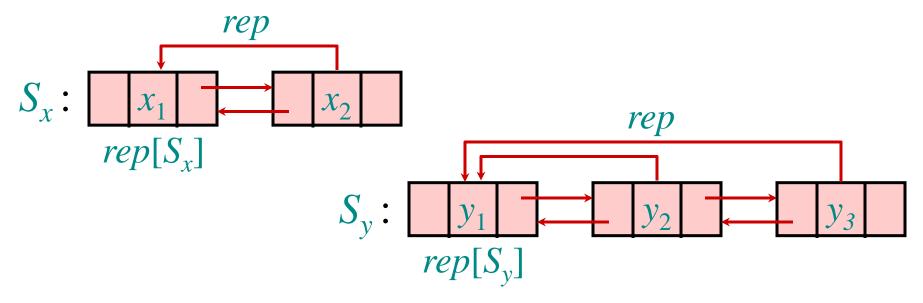


- FIND-SET(x) returns rep[x]. $-\Theta(1)$
- UNION(x, y) concatenates the lists containing x and y, and updates the *rep* pointers for all elements in the list containing y. $-\Theta(n)$

Example of augmented linked-list solution

Each element x_j stores pointer $rep[x_j]$ to $rep[S_i]$. UNION(x, y)

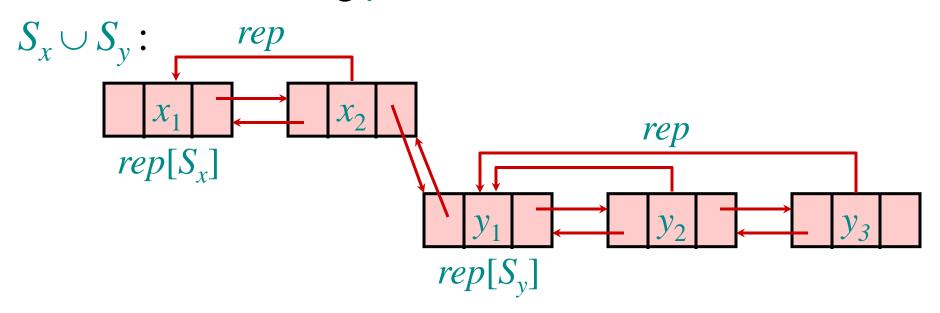
- concatenates the lists containing x and y, and
- updates the *rep* pointers for all elements in the list containing y.



Example of augmented linked-list solution

Each element x_j stores pointer $rep[x_j]$ to $rep[S_i]$. UNION(x, y)

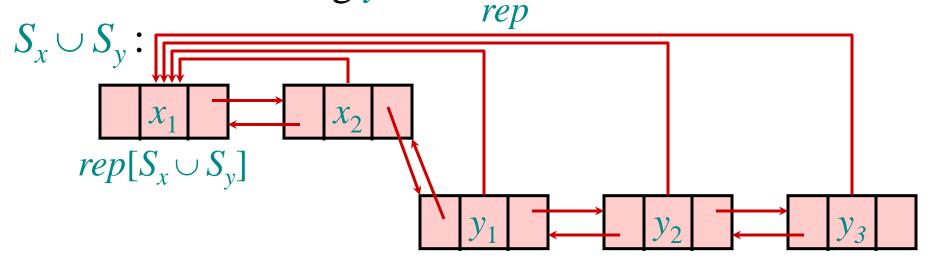
- concatenates the lists containing x and y, and
- updates the *rep* pointers for all elements in the list containing y.



Example of augmented linked-list solution

Each element x_j stores pointer $rep[x_j]$ to $rep[S_i]$. UNION(x, y)

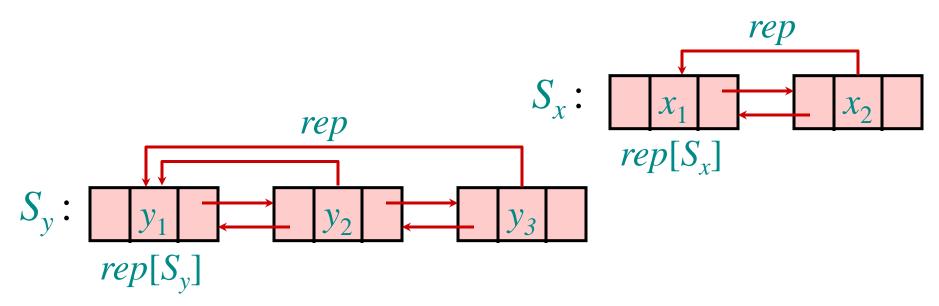
- concatenates the lists containing x and y, and
- updates the *rep* pointers for all elements in the list containing y.



Alternative concatenation

 $U_{NION}(x, y)$ could instead

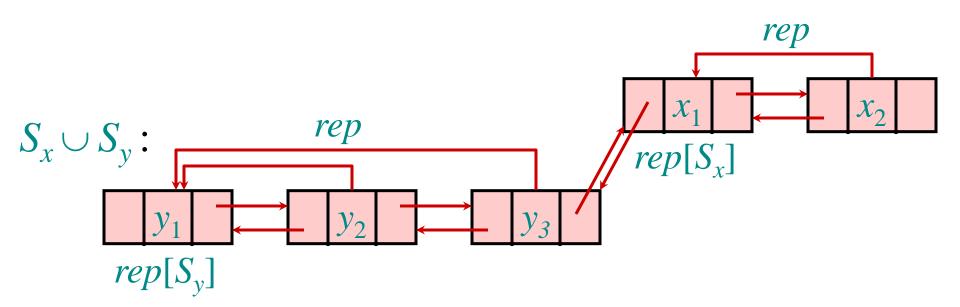
- concatenate the lists containing y and x, and
- update the *rep* pointers for all elements in the list containing *x*.



Alternative concatenation

 $U_{NION}(x, y)$ could instead

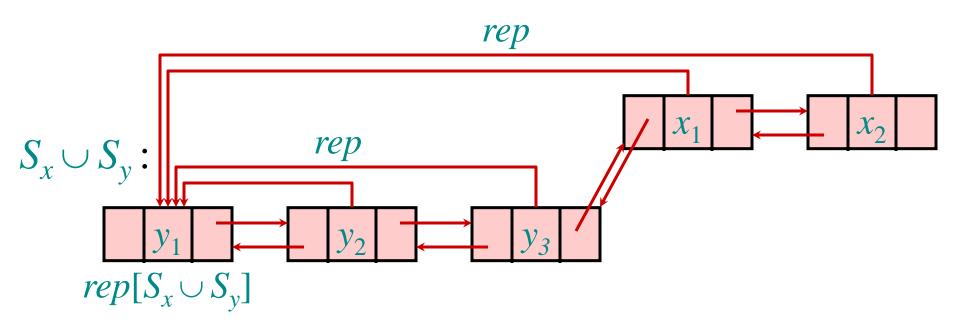
- concatenate the lists containing y and x, and
- update the *rep* pointers for all elements in the list containing *x*.



Alternative concatenation

 $U_{NION}(x, y)$ could instead

- concatenate the lists containing y and x, and
- update the *rep* pointers for all elements in the list containing *x*.



Trick 1: Smaller into larger

To save work, concatenate smaller list onto the end of the larger list. $Cost = \Theta(length \ of \ smaller \ list)$. Augment list to store its *weight* (# elements).

Let *n* denote the overall number of elements (equivalently, the number of MAKE-SET operations). Let *m* denote the total number of operations. Let *f* denote the number of FIND-SET operations.

Theorem: Cost of all Union's is $O(n \lg n)$.

Corollary: Total cost is $O(m + n \lg n)$.

Analysis of Trick 1

To save work, concatenate smaller list onto the end of the larger list. $Cost = \Theta(1 + length of smaller list)$.

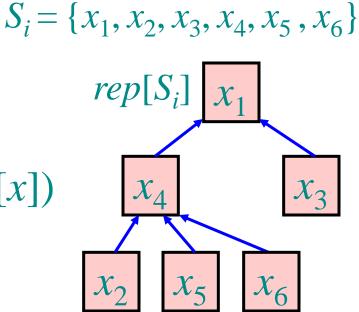
Theorem: Total cost of Union's is $O(n \lg n)$.

Proof. Monitor an element x and set S_x containing it. After initial Make-Set(x), $weight[S_x] = 1$. Each time S_x is united with set S_y , $weight[S_y] \ge weight[S_x]$, pay 1 to update rep[x], and $weight[S_x]$ at least doubles (increasing by $weight[S_y]$). Each time S_y is united with smaller set S_y , pay nothing, and $weight[S_x]$ only increases. Thus pay $\le \lg n$ for x.

Representing sets as trees

Store each set $S_i = \{x_1, x_2, ..., x_k\}$ as an unordered, potentially unbalanced, not necessarily binary tree, storing only *parent* pointers. $rep[S_i]$ is the tree root.

- Make-Set(x) initializes x as a lone node. $-\Theta(1)$
- FIND-SET(x) walks up the tree containing x until it reaches the root. $-\Theta(depth[x])$
- UNION(x, y) concatenates the trees containing x and y...



Trick 1 adapted to trees

Union(x, y) can use a simple concatenation strategy: Make root Find-Set(y) a child of root Find-Set(x).

 \Rightarrow FIND-SET(y) = FIND-SET(x). We can adapt Trick 1 to this context also: Merge tree with smaller weight into tree with larger weight.

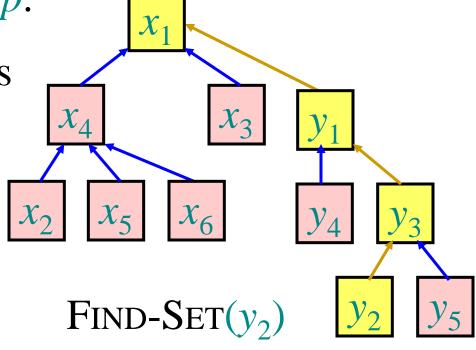
Height of tree increases only when its size doubles, so height is logarithmic in weight. Thus total cost is $O(m + f \lg n)$.

Trick 2: Path compression

When we execute a FIND-SET operation and walk up a path p to the root, we know the representative for all the nodes on path p.

Path compression makes all of those nodes direct children of the root.

Cost of FIND-SET(x) is still $\Theta(depth[x])$.

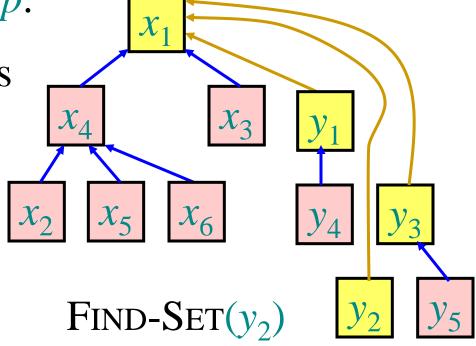


Trick 2: Path compression

When we execute a FIND-SET operation and walk up a path p to the root, we know the representative for all the nodes on path p.

Path compression makes all of those nodes direct children of the root.

Cost of FIND-SET(x) is still $\Theta(depth[x])$.

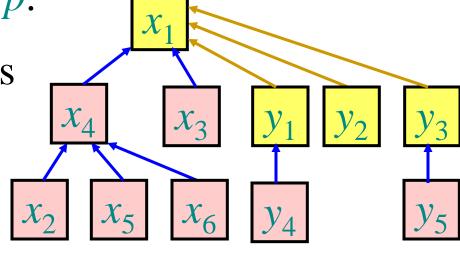


Trick 2: Path compression

When we execute a FIND-SET operation and walk up a path p to the root, we know the representative for all the nodes on path p.

Path compression makes all of those nodes direct children of the root.

Cost of FIND-SET(x) is still $\Theta(depth[x])$.



FIND-SET (y_2)

Analysis of Trick 2 alone

Theorem: Total cost of FIND-SET's is $O(m \lg n)$. **Proof:** Amortization by potential function. The *weight* of a node x is # nodes in its subtree. Define $\phi(x_1, ..., x_n) = \sum_i \lg weight[x_i]$. Union (x_i, x_i) increases potential of root Find-Set (x_i) by at most $\lg weight[\text{root FIND-Set}(x_i)] \leq \lg n$. Each step down $p \rightarrow c$ made by FIND-SET (x_i) , except the first, moves c's subtree out of p's subtree. Thus if $weight[c] \ge \frac{1}{2} weight[p]$, ϕ decreases by ≥ 1 , paying for the step down. There can be at most $\lg n$ steps $p \to c$ for which $weight[c] < \frac{1}{2} weight[p]$.

Analysis of Trick 2 alone

Theorem: If all Union operations occur before all Find-Set operations, then total cost is O(m).

Proof: If a FIND-SET operation traverses a path with k nodes, costing O(k) time, then k-2 nodes are made new children of the root. This change can happen only once for each of the n elements, so the total cost of FIND-SET is O(f+n).

Ackermann's function A

Define
$$A_k(j) = \begin{cases} j+1 & \text{if } k = 0, \\ A_{k-1}^{(j+1)}(j) & \text{if } k \ge 1. \end{cases}$$
 — iterate $j+1$ times

$$A_{0}(j) = j + 1
A_{1}(j) \sim 2 j
A_{2}(j) \sim 2j \ 2^{j} > 2^{j}
A_{2}(1) = 7
A_{3}(1) = 2047
A_{3}(1) = 2047
A_{4}(j) is a lot bigger. A_{4}(1) > 2
$$A_{4}(1) = 2
A_{2}(1) = 7
A_{3}(1) = 2047
A_{4}(1) > 2
A_{4}(1) > 2
A_{4}(1) > 2
A_{5}(1) = 2
A_{4}(1) > 2
A_{5}(1) = 2
A_{6}(1) = 2
A_{1}(1) = 3
A_{2}(1) = 7
A_{2}(1) = 7
A_{3}(1) = 2047
A_{4}(1) > 2
A_{4}(1) > 2
A_{5}(1) = 2
A_{6}(1) = 2
A_{1}(1) = 2
A_{2}(1) = 7
A_{3}(1) = 2047
A_{4}(1) > 2
A_{5}(1) = 2
A_{6}(1) = 2
A_{7}(1) = 2
A_{1}(1) = 2
A_{1}(1) = 2
A_{2}(1) = 2
A_{2}(1) = 2
A_{3}(1) = 2
A_{4}(1) > 2
A_{5}(1) = 2
A_{6}(1) = 2
A_{1}(1) = 2
A_{2}(1) = 2
A_{1}(1) = 2
A_{2}(1) = 2
A_{2}(1) = 2
A_{3}(1) = 2
A_{4}(1) = 2
A_{4}(1) = 2
A_{5}(1) = 2
A_{6}(1) = 2
A_{6}(1) = 2
A_{7}(1) = 2$$$$

Define $\alpha(n) = \min \{k : A_k(1) \ge n\} \le 4 \text{ for practical } n.$

Analysis of Tricks 1 + 2

Theorem: In general, total cost is $O(m \alpha(n))$. (long, tricky proof – see the text book)

Application: Dynamic connectivity

Suppose a graph is given to us incrementally by

- ADD-VERTEX(ν)
- ADD-EDGE(u, v)

and we want to support *connectivity* queries:

• Connected(u, v): Are u and v in the same connected component?

For example, we want to maintain a spanning forest, so we check whether each new edge connects a previously disconnected pair of vertices.

Application: Dynamic connectivity

Sets of vertices represent connected components. Suppose a graph is given to us *incrementally* by

- ADD-VERTEX(v) MAKE-SET(v)
- ADD-EDGE(u, v) **if** not Connected(u, v) **then** Union(v, w)

and we want to support connectivity queries:

• CONNECTED(u, v): - FIND-SET(u) = FIND-SET(v) Are u and v in the same connected component?

For example, we want to maintain a spanning forest, so we check whether each new edge connects a previously disconnected pair of vertices.