
Amortized Algorithms,
Table Doubling, Potential

Method

Lecture 19

L19.2

How large should a hash
table be?

Problem: What if we don’t know the proper size
in advance?

Goal: Make the table as small as possible, but
large enough so that it won’t overflow (or
otherwise become inefficient).

IDEA: Whenever the table overflows, “grow” it
by allocating (via malloc or new) a new, larger
table. Move all items from the old table into the
new one, and free the storage for the old table.

Solution: Dynamic tables.

L19.3

Example of a dynamic table

1. INSERT 1

2. INSERT overflow

L19.4

1

Example of a dynamic table

1. INSERT

2. INSERT overflow

L19.5

1

2

Example of a dynamic table

1. INSERT

2. INSERT

L19.6

Example of a dynamic table

1. INSERT

2. INSERT

1

2

3. INSERT overflow

L19.7

Example of a dynamic table

1. INSERT

2. INSERT

3. INSERT

2

1

overflow

L19.8

Example of a dynamic table

1. INSERT

2. INSERT

3. INSERT

2

1

L19.9

Example of a dynamic table

1. INSERT

2. INSERT

3. INSERT

4. INSERT 4

3

2

1

L19.10

Example of a dynamic table

1. INSERT

2. INSERT

3. INSERT

4. INSERT

5. INSERT

4

3

2

1

overflow

L19.11

Example of a dynamic table

1. INSERT

2. INSERT

3. INSERT

4. INSERT

5. INSERT

4

3

2

1

overflow

L19.12

Example of a dynamic table

1. INSERT

2. INSERT

3. INSERT

4. INSERT

5. INSERT

4

3

2

1

L19.13

Example of a dynamic table

1. INSERT

2. INSERT

3. INSERT

4. INSERT

6. INSERT 6

5. INSERT 5

4

3

2

1

7 7. INSERT

L19.14

Worst-case analysis

Consider a sequence of n insertions. The
worst-case time to execute one insertion is
Q(n). Therefore, the worst-case time for n
insertions is n · Q(n) = Q(n2).

WRONG! In fact, the worst-case cost for
n insertions is only Q(n) ≪ Q(n2).

Let’s see why.

L19.15

Tighter analysis

i 1 2 3 4 5 6 7 8 9 10

sizei 1 2 4 4 8 8 8 8 16 16

ci 1 2 3 1 5 1 1 1 9 1

Let ci = the cost of the i th insertion

=
i if i – 1 is an exact power of 2,

1 otherwise.

L19.16

Tighter analysis

Let ci = the cost of the i th insertion

=
i if i – 1 is an exact power of 2,

1 otherwise.

i 1 2 3 4 5 6 7 8 9 10

sizei 1 2 4 4 8 8 8 8 16 16

1 1 1 1 1 1 1 1 1 1

1 2 4 8
ci

L19.17

Tighter analysis (continued)

 

)(

3

2
)1lg(

0

1

n

n

n

c

n

j

j

n

i
i

Q

















Cost of n insertions

.

Thus, the average cost of each dynamic-table
operation is Q(n)/n = Q(1).

L19.18

Amortized analysis

An amortized analysis is any strategy for
analyzing a sequence of operations to
show that the average cost per operation is
small, even though a single operation
within the sequence might be expensive.

Even though we’re taking averages, however,
probability is not involved!

• An amortized analysis guarantees the
average performance of each operation in
the worst case.

L19.19

Types of amortized analyses

Three common amortization arguments:

• the aggregate method,

• the accounting method,

• the potential method.

We’ve just seen an aggregate analysis.

The aggregate method, though simple, lacks the
precision of the other two methods. In particular,
the accounting and potential methods allow a
specific amortized cost to be allocated to each
operation.

L19.20

Accounting method

• Charge i th operation a fictitious amortized cost
ĉi, where $1 pays for 1 unit of work (i.e., time).

• This fee is consumed to perform the operation.
• Any amount not immediately consumed is stored

in the bank for use by subsequent operations.
• The bank balance must not go negative! We

must ensure that





n

i
i

n

i
i cc

11

ˆ

for all n.
• Thus, the total amortized costs provide an upper

bound on the total true costs.

L19.21

$0 $0 $0 $0 $2 $2

Example:

$2 $2

Accounting analysis of
dynamic tables

Charge an amortized cost of ĉi = $3 for the i th
insertion.
• $1 pays for the immediate insertion.

• $2 is stored for later table doubling.

When the table doubles, $1 pays to move a
recent item, and $1 pays to move an old item.

overflow

L19.22

Example:

Accounting analysis of
dynamic tables

Charge an amortized cost of ĉi = $3 for the i th
insertion.
• $1 pays for the immediate insertion.

• $2 is stored for later table doubling.

When the table doubles, $1 pays to move a
recent item, and $1 pays to move an old item.

overflow

$0 $0 $0 $0 $0 $0 $0 $0

L19.23

Example:

Accounting analysis of
dynamic tables

Charge an amortized cost of ĉi = $3 for the i th
insertion.
• $1 pays for the immediate insertion.

• $2 is stored for later table doubling.

When the table doubles, $1 pays to move a
recent item, and $1 pays to move an old item.

$0 $0 $0 $0 $0 $0 $0 $0 $2 $2 $2

L19.24

Accounting analysis
(continued)

Key invariant: Bank balance never drops below 0.
Thus, the sum of the amortized costs provides an
upper bound on the sum of the true costs.

i 1 2 3 4 5 6 7 8 9 10

sizei 1 2 4 4 8 8 8 8 16 16

ci 1 2 3 1 5 1 1 1 9 1

ĉi 2 3 3 3 3 3 3 3 3 3

banki 1 2 2 4 2 4 6 8 2 4

*

*Okay, so I lied. The first operation costs only $2, not $3.

L19.25

Potential method

IDEA: View the bank account as the potential
energy (à la physics) of the dynamic set.

Framework:

• Start with an initial data structure D0.

• Operation i transforms Di–1 to Di.

• The cost of operation i is ci.

• Define a potential function F : {Di}  R,
such that F(D0) = 0 and F(Di)  0 for all i.

• The amortized cost ĉi with respect to F is

defined to be ĉi = ci + F(Di) – F(Di–1).

L19.26

Understanding potentials

ĉi = ci + F(Di) – F(Di–1)

potential difference DFi

• If DFi > 0, then ĉi > ci. Operation i stores
work in the data structure for later use.

• If DFi < 0, then ĉi < ci. The data structure
delivers up stored work to help pay for
operation i.

L19.27

The amortized costs bound
the true costs

The total amortized cost of n operations is

 





FF
n

i
iii

n

i
i DDcc

1
1

1

)()(ˆ

Summing both sides.

L19.28

The amortized costs bound
the true costs

The total amortized cost of n operations is

 

)()(

)()(ˆ

0
1

1
1

1

DDc

DDcc

n

n

i
i

n

i
iii

n

i
i

FF

FF












The series telescopes.

L19.29

The amortized costs bound
the true costs

The total amortized cost of n operations is

 


















FF

FF

n

i
i

n

n

i
i

n

i
iii

n

i
i

c

DDc

DDcc

1

0
1

1
1

1

)()(

)()(ˆ

since F(Dn)  0 and

F(D0) = 0.

L19.30

Potential analysis of table
doubling

Define the potential of the table after the ith

insertion by F(Di) = 2i – 2lg i. (Assume that

2lg 0 = 0.)

Note:

• F(D0) = 0,

• F(Dn)  0 for all i.

Example:

• • • • • • F = 2·6 + 23 = 4

$0 $0 $0 $0 $2 $2 accounting method) (

L19.31

Calculation of amortized costs

The amortized cost of the i th insertion is

ĉi = ci + F(Di) – F(Di–1)

i + (2i – 2lg i) – (2(i –1) – 2lg (i–1))
if i – 1 is an exact power of 2,

1 + (2i – 2lg i) – (2(i –1) – 2lg (i–1))
otherwise.

=

L19.32

Calculation (Case 1)

Case 1: i – 1 is an exact power of 2.

ĉi = i + (2i – 2lg i) – (2(i –1) – 2lg (i–1))

= i + 2 – (2lg i – 2lg (i–1))

= i + 2 – (2(i – 1) – (i – 1))
= i + 2 – 2i + 2 + i – 1

= 3

L19.33

Calculation (Case 2)

Case 2: i – 1 is not an exact power of 2.

ĉi = 1 + (2i – 2lg i) – (2(i –1) – 2lg (i–1))

= 1 + 2 – (2lg i – 2lg (i–1))
= 3

Therefore, n insertions cost Q(n) in the worst case.

Exercise: Fix the bug in this analysis to show that
the amortized cost of the first insertion is only 2.

 L19.34

Conclusions

• Amortized costs can provide a clean abstraction
of data-structure performance.

• Any of the analysis methods can be used when
an amortized analysis is called for, but each
method has some situations where it is arguably
the simplest.

• Different schemes may work for assigning
amortized costs in the accounting method, or
potentials in the potential method, sometimes
yielding radically different bounds.

