Amortized Algorithms, Table Doubling, Potential Method

Lecture 19

How large should a hash table be?

Goal: Make the table as small as possible, but large enough so that it won't overflow (or otherwise become inefficient).

Problem: What if we don't know the proper size in advance?

Solution: *Dynamic tables.*

IDEA: Whenever the table overflows, "grow" it by allocating (via **malloc** or **new**) a new, larger table. Move all items from the old table into the new one, and free the storage for the old table.

INSERT
 INSERT

INSERT
 INSERT

INSERT
 INSERT

- 1. INSERT
- 2. INSERT
- 3. INSERT

- 1. INSERT
- 2. INSERT
- 3. INSERT

- 1. INSERT
- 2. INSERT
- 3. INSERT

- 1. INSERT
- 2. INSERT
- 3. INSERT
- 4. INSERT

- 1. INSERT
- 2. INSERT
- 3. INSERT
- 4. INSERT
- 5. INSERT

- 1. INSERT
- 2. INSERT
- 3. INSERT
- 4. INSERT
- 5. INSERT

- 1. INSERT
- 2. INSERT
- 3. INSERT
- 4. INSERT
- 5. INSERT

- 1. INSERT
- 2. Insert
- 3. INSERT
- 4. INSERT
- 5. INSERT
- 6. INSERT
- 7. INSERT

Worst-case analysis

Consider a sequence of *n* insertions. The worst-case time to execute one insertion is $\Theta(n)$. Therefore, the worst-case time for *n* insertions is $n \cdot \Theta(n) = \Theta(n^2)$.

WRONG! In fact, the worst-case cost for *n* insertions is only $\Theta(n) \ll \Theta(n^2)$.

Let's see why.

Tighter analysis

Let c_i = the cost of the *i* th insertion = $\begin{cases} i & \text{if } i-1 \text{ is an exact power of } 2, \\ 1 & \text{otherwise.} \end{cases}$

i	1	2	3	4	5	6	7	8	9	10
size _i	1	2	4	4	8	8	8	8	16	16
c _i	1	2	3	1	5	1	1	1	9	1

Tighter analysis

Let c_i = the cost of the *i* th insertion = $\begin{cases} i & \text{if } i - 1 \text{ is an exact power of } 2, \\ 1 & \text{otherwise.} \end{cases}$

Tighter analysis (continued)

Thus, the average cost of each dynamic-table operation is $\Theta(n)/n = \Theta(1)$.

Amortized analysis

An *amortized analysis* is any strategy for analyzing a sequence of operations to show that the average cost per operation is small, even though a single operation within the sequence might be expensive.

Even though we're taking averages, however, probability is not involved!

• An amortized analysis guarantees the average performance of each operation in the *worst case*.

Types of amortized analyses

Three common amortization arguments:

- the *aggregate* method,
- the *accounting* method,
- the *potential* method.

We've just seen an aggregate analysis.

The aggregate method, though simple, lacks the precision of the other two methods. In particular, the accounting and potential methods allow a specific *amortized cost* to be allocated to each operation.

Accounting method

- Charge *i* th operation a fictitious *amortized cost* \hat{c}_i , where \$1 pays for 1 unit of work (*i.e.*, time).
- This fee is consumed to perform the operation.
- Any amount not immediately consumed is stored in the *bank* for use by subsequent operations.
- The bank balance must not go negative! We must ensure that

$$\sum_{i=1}^{n} c_i \le \sum_{i=1}^{n} \hat{c}_i$$

for all *n*.

• Thus, the total amortized costs provide an upper bound on the total true costs.

Accounting analysis of dynamic tables

Charge an amortized cost of $\hat{c}_i = \$3$ for the *i* th insertion.

- \$1 pays for the immediate insertion.
- \$2 is stored for later table doubling.

When the table doubles, \$1 pays to move a recent item, and \$1 pays to move an old item.

Example:

Accounting analysis of dynamic tables

Charge an amortized cost of $\hat{c}_i = \$3$ for the *i* th insertion.

- \$1 pays for the immediate insertion.
- \$2 is stored for later table doubling.

When the table doubles, \$1 pays to move a recent item, and \$1 pays to move an old item.

Example:

Accounting analysis of dynamic tables

Charge an amortized cost of $\hat{c}_i = \$3$ for the *i* th insertion.

- \$1 pays for the immediate insertion.
- \$2 is stored for later table doubling.

When the table doubles, \$1 pays to move a recent item, and \$1 pays to move an old item.

Example:

\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$2 \$2

Accounting analysis (continued)

Key invariant: Bank balance never drops below 0. Thus, the sum of the amortized costs provides an upper bound on the sum of the true costs.

i	1	2	3	4	5	6	7	8	9	10
size _i	1	2	4	4	8	8	8	8	16	16
c _i	1	2	3	1	5	1	1	1	9	1
\hat{c}_i	2*	3	3	3	3	3	3	3	3	3
bank _i	1	2	2	4	2	4	6	8	2	4

*Okay, so I lied. The first operation costs only \$2, not \$3.

Potential method

IDEA: View the bank account as the potential energy (*à la* physics) of the dynamic set. **Framework:**

- Start with an initial data structure D_0 .
- Operation *i* transforms D_{i-1} to D_i .
- The cost of operation i is c_i .
- Define a *potential function* $\Phi : \{D_i\} \to \mathsf{R}$, such that $\Phi(D_0) = 0$ and $\Phi(D_i) \ge 0$ for all *i*.
- The *amortized cost* \hat{c}_i with respect to Φ is defined to be $\hat{c}_i = c_i + \Phi(D_i) \Phi(D_{i-1})$.

Understanding potentials

$$\hat{c}_i = c_i + \underbrace{\Phi(D_i) - \Phi(D_{i-1})}_{\checkmark}$$

potential difference $\Delta \Phi_i$

- If $\Delta \Phi_i > 0$, then $\hat{c}_i > c_i$. Operation *i* stores work in the data structure for later use.
- If $\Delta \Phi_i < 0$, then $\hat{c}_i < c_i$. The data structure delivers up stored work to help pay for operation *i*.

The amortized costs bound the true costs

The total amortized cost of n operations is

$$\sum_{i=1}^{n} \hat{c}_{i} = \sum_{i=1}^{n} \left(c_{i} + \Phi(D_{i}) - \Phi(D_{i-1}) \right)$$

Summing both sides.

The amortized costs bound the true costs

The total amortized cost of n operations is

$$\sum_{i=1}^{n} \hat{c}_{i} = \sum_{i=1}^{n} \left(c_{i} + \Phi(D_{i}) - \Phi(D_{i-1}) \right)$$
$$= \sum_{i=1}^{n} c_{i} + \Phi(D_{n}) - \Phi(D_{0})$$

The series telescopes.

The amortized costs bound the true costs

The total amortized cost of n operations is

$$\sum_{i=1}^{n} \hat{c}_{i} = \sum_{i=1}^{n} \left(c_{i} + \Phi(D_{i}) - \Phi(D_{i-1}) \right)$$
$$= \sum_{i=1}^{n} c_{i} + \Phi(D_{n}) - \Phi(D_{0})$$
$$\geq \sum_{i=1}^{n} c_{i} \qquad \text{since } \Phi(D_{n}) \ge 0 \text{ and }$$
$$\Phi(D_{0}) = 0.$$

Potential analysis of table doubling

Define the potential of the table after the ith insertion by $\Phi(D_i) = 2i - 2^{\lceil \lg i \rceil}$. (Assume that $2^{\lceil \lg 0 \rceil} = 0$.)

Note:

- $\Phi(D_0) = 0$,
- $\Phi(D_n) \ge 0$ for all *i*.

Example:

$$\Phi = 2 \cdot 6 + 2^3 = 4$$

accounting method)

Calculation of amortized costs

The amortized cost of the *i* th insertion is

$$\hat{c}_{i} = c_{i} + \Phi(D_{i}) - \Phi(D_{i-1})$$

$$= \begin{cases} i + (2i - 2^{\lceil \lg i \rceil}) - (2(i-1) - 2^{\lceil \lg (i-1) \rceil}) \\ \text{if } i - 1 \text{ is an exact power of } 2, \\ 1 + (2i - 2^{\lceil \lg i \rceil}) - (2(i-1) - 2^{\lceil \lg (i-1) \rceil}) \\ \text{otherwise.} \end{cases}$$

Calculation (Case 1)

Case 1: i - 1 is an exact power of 2.

$$\begin{aligned} \hat{c}_{i} &= i + \left(2i - 2^{\lceil \lg i \rceil}\right) - \left(2(i-1) - 2^{\lceil \lg (i-1) \rceil}\right) \\ &= i + 2 - \left(2^{\lceil \lg i \rceil} - 2^{\lceil \lg (i-1) \rceil}\right) \\ &= i + 2 - \left(2(i-1) - (i-1)\right) \\ &= i + 2 - 2i + 2 + i - 1 \\ &= 3 \end{aligned}$$

Calculation (Case 2)

Case 2: i - 1 is not an exact power of 2.

$$\hat{c}_{i} = 1 + (2i - 2^{\lceil \lg i \rceil}) - (2(i-1) - 2^{\lceil \lg (i-1) \rceil})$$
$$= 1 + 2 - (2^{\lceil \lg i \rceil} - 2^{\lceil \lg (i-1) \rceil})$$
$$= 3$$

Therefore, *n* insertions cost $\Theta(n)$ in the worst case.

Exercise: Fix the bug in this analysis to show that the amortized cost of the first insertion is only 2.

Conclusions

- Amortized costs can provide a clean abstraction of data-structure performance.
- Any of the analysis methods can be used when an amortized analysis is called for, but each method has some situations where it is arguably the simplest.
- Different schemes may work for assigning amortized costs in the accounting method, or potentials in the potential method, sometimes yielding radically different bounds.