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How large should a hash 
table be? 

Problem: What if we don’t know the proper size 
in advance? 

Goal: Make the table as small as possible, but 
large enough so that it won’t overflow (or 
otherwise become inefficient). 

IDEA: Whenever the table overflows, “grow” it 
by allocating (via malloc or new) a new, larger 
table.  Move all items from the old table into the 
new one, and free the storage for the old table. 

Solution: Dynamic tables. 
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Example of a dynamic table 

1. INSERT 1 

2. INSERT overflow 
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Example of a dynamic table 
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Example of a dynamic table 
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Example of a dynamic table 
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Example of a dynamic table 
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Example of a dynamic table 

1. INSERT

2. INSERT

3. INSERT

4. INSERT

6. INSERT 6 

5. INSERT 5 
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Worst-case analysis 

Consider a sequence of n insertions.  The 
worst-case time to execute one insertion is 
Q(n).  Therefore, the worst-case time for n 
insertions is n · Q(n) = Q(n2). 

WRONG!  In fact, the worst-case cost for 
n insertions is only Q(n) ≪ Q(n2). 

Let’s see why. 
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Tighter analysis 

i 1 2 3 4 5 6 7 8 9 10 

sizei 1 2 4 4 8 8 8 8 16 16 

ci 1 2 3 1 5 1 1 1 9 1 

Let ci =  the cost of the i th insertion

= 
i if i – 1 is an exact power of 2, 

1 otherwise. 
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Tighter analysis 

Let ci =  the cost of the i th insertion

= 
i if i – 1 is an exact power of 2, 

1 otherwise. 

i 1 2 3 4 5 6 7 8 9 10 

sizei 1 2 4 4 8 8 8 8 16 16 

1 1 1 1 1 1 1 1 1 1 

1 2 4 8 
ci
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Tighter analysis (continued) 
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Thus, the average cost of each dynamic-table 
operation is Q(n)/n = Q(1). 
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Amortized analysis 

An amortized analysis is any strategy for 
analyzing a sequence of operations to 
show that the average cost per operation is 
small, even though a single operation 
within the sequence might be expensive. 

Even though we’re taking averages, however, 
probability is not involved! 

• An amortized analysis guarantees the
average performance of each operation in
the worst case.
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Types of amortized analyses 

Three common amortization arguments: 

• the aggregate method,

• the accounting method,

• the potential method.

We’ve just seen an aggregate analysis.  

The aggregate method, though simple, lacks the 
precision of the other two methods.  In particular, 
the accounting and potential methods allow a 
specific amortized cost to be allocated to each 
operation. 
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Accounting method 

• Charge i th operation a fictitious amortized cost
ĉi, where $1 pays for 1 unit of work (i.e., time).

• This fee is consumed to perform the operation.
• Any amount not immediately consumed is stored

in the bank for use by subsequent operations.
• The bank balance must not go negative!  We

must ensure that
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for all n. 
• Thus, the total amortized costs provide an upper

bound on the total true costs.
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$0 $0 $0 $0 $2 $2 

Example: 

$2 $2 

Accounting analysis of 
dynamic tables 

Charge an amortized cost of ĉi = $3 for the i th
insertion. 
• $1 pays for the immediate insertion.

• $2 is stored for later table doubling.

When the table doubles, $1 pays to move a 
recent item, and $1 pays to move an old item. 

overflow 
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Example: 

Accounting analysis of 
dynamic tables 

Charge an amortized cost of ĉi = $3 for the i th
insertion. 
• $1 pays for the immediate insertion.

• $2 is stored for later table doubling.

When the table doubles, $1 pays to move a 
recent item, and $1 pays to move an old item. 

overflow 

$0 $0 $0 $0 $0 $0 $0 $0 
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Example: 

Accounting analysis of 
dynamic tables 

Charge an amortized cost of ĉi = $3 for the i th
insertion. 
• $1 pays for the immediate insertion.

• $2 is stored for later table doubling.

When the table doubles, $1 pays to move a 
recent item, and $1 pays to move an old item. 

$0 $0 $0 $0 $0 $0 $0 $0 $2 $2 $2 
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Accounting analysis 
(continued) 

Key invariant: Bank balance never drops below 0.  
Thus, the sum of the amortized costs provides an 
upper bound on the sum of the true costs. 

i 1 2 3 4 5 6 7 8 9 10 

sizei 1 2 4 4 8 8 8 8 16 16 

ci 1 2 3 1 5 1 1 1 9 1 

ĉi 2 3 3 3 3 3 3 3 3 3 

banki 1 2 2 4 2 4 6 8 2 4 

* 

*Okay, so I lied.  The first operation costs only $2, not $3.
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Potential method 

IDEA: View the bank account as the potential 
energy (à la physics) of the dynamic set. 

Framework:   

• Start with an initial data structure D0.

• Operation i transforms Di–1 to Di.

• The cost of operation i is ci.

• Define a potential function F : {Di}  R,
such that F(D0 ) = 0 and F(Di )  0 for all i.

• The amortized cost ĉi with respect to F is

defined to be ĉi = ci + F(Di) – F(Di–1).
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Understanding potentials 

ĉi = ci + F(Di) – F(Di–1)

potential difference DFi

• If  DFi > 0, then ĉi > ci.  Operation i stores
work in the data structure for later use.

• If  DFi < 0, then ĉi < ci.  The data structure
delivers up stored work to help pay for
operation i.
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The amortized costs bound 
the true costs 

The total amortized cost of n operations is 
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Summing both sides. 
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The amortized costs bound 
the true costs 

The total amortized cost of n operations is 
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The series telescopes. 
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The amortized costs bound 
the true costs 

The total amortized cost of n operations is 
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since F(Dn)  0 and

F(D0 ) = 0.
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Potential analysis of table 
doubling 

Define the potential of the table after the ith 

insertion by F(Di) = 2i – 2lg i.  (Assume that

2lg 0 = 0.) 

Note: 

• F(D0 ) = 0,

• F(Dn)  0 for all i.

Example: 

• • • • • • F = 2·6 + 23 = 4

$0 $0 $0 $0 $2 $2 accounting method) ( 
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Calculation of amortized costs 

The amortized cost of the i th insertion is 

ĉi = ci + F(Di) – F(Di–1)

i + (2i – 2lg i) – (2(i –1) – 2lg (i–1)) 
if i – 1 is an exact power of 2, 

1 + (2i – 2lg i) – (2(i –1) – 2lg (i–1)) 
otherwise. 

= 
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Calculation (Case 1) 

Case 1: i – 1 is an exact power of 2. 

ĉi = i + (2i – 2lg i) – (2(i –1) – 2lg (i–1)) 

= i + 2 – (2lg i – 2lg (i–1)) 

= i + 2 – (2(i – 1) – (i – 1)) 
= i + 2 – 2i + 2 + i – 1 

= 3 
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Calculation (Case 2) 

Case 2: i – 1 is not an exact power of 2. 

ĉi = 1 + (2i – 2lg i) – (2(i –1) – 2lg (i–1)) 

= 1 + 2 – (2lg i – 2lg (i–1)) 
= 3 

Therefore, n insertions cost Q(n) in the worst case. 

Exercise:  Fix the bug in this analysis to show that 
the amortized cost of the first insertion is only 2. 
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Conclusions 

• Amortized costs can provide a clean abstraction
of data-structure performance.

• Any of the analysis methods can be used when
an amortized analysis is called for, but each
method has some situations where it is arguably
the simplest.

• Different schemes may work for assigning
amortized costs in the accounting method, or
potentials in the potential method, sometimes
yielding radically different bounds.




