Amortized Algorithms,
Table Doubling, Potential
Method

_ecture 19

How large should a hash

table be?

Goal: Make the table as small as possible, but
large enough so that 1t won’t overflow (or

otherwise become inefficient).
Problem: What if we don’t know the proper size

IN advance?

Solution: Dynamic tables.

IDEA: Whenever the table overflows, “grow™ it
by allocating (viamalloc or new) a new, larger
table. Move all items from the old table into the
new one, and free the storage for the old table.

L19.2

Example of a dynamic table

1. INSERT 3

2. INSERT overflow

L19.3

Example of a dynamic table

1. INSERT E—H

2. INSERT overflow

L19.4

Example of a dynamic table

1. INSERT D 1
2. INSERT 2

L19.5

Example of a dynamic table

1. INSERT D 1
2. INSERT 2

3. INSERT overflow

L19.6

Example of a dynamic table

1. INSERT D 1
2. INSERT 2

3. INSERT overflow

L19.7

Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT

|

5

L19.8

Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT
4. INSERT

|

5

W I

L19.9

O s Wi

Example of a dynamic table

INSERT
INSERT
INSERT
INSERT
INSERT

|

5

QW IN | PF-

4

overflow

L19.10

O s Wi

Example of a dynamic table

INSERT
INSERT
INSERT
INSERT
INSERT

|

5

overflow

W I

L19.11

O s Wi

Example of a dynamic table

INSERT
INSERT
INSERT
INSERT
INSERT

|

5

AT IN |-

L19.12

NOoO koW E

Example of a dynamic table

INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT

|

5

~N OO OB WD

L19.13

Worst-case analysis

Consider a sequence of n insertions. The
worst-case time to execute one insertion IS
®(n). Therefore, the worst-case time for n
insertions is n - ©(n) = G(n?).

WRONG! In fact, the worst-case cost for
n insertions is only ®(n) «< ©(n?).

Let’s see why.

L19.14

Tighter analysis

et Ci

[
~—

ne cost of the 1th insertion

r -

| 1f 1 — 1 1s an exact power of 2,
_1 otherwise.

|
A

L19.15

Tighter analysis

et Ci

[
~—

’le cost of the 1th Insertion

i ifi— 1 is an exact power of 2,
_1 otherwise.

|
A

L19.16

Tighter analysis (continued)

n
Cost of n insertions = » ¢;
=1
oD
<n+ Z 2]
j=0
<3n
=0O(n).

Thus, the average cost of each dynamic-table
operation i1s ®(n)/n = O(1).

L19.17

Amortized analysis

An amortized analysis Is any strategy for
analyzing a sequence of operations to
show that the average cost per operation Is
small, even though a single operation
within the sequence might be expensive.

Even though we’re taking averages, however,
probability is not involved!

* An amortized analysis guarantees the

average performance of each operation In
the worst case.

L19.18

Types of amortized analyses

Three common amortization arguments:
» the aggregate method,

* the accounting method,

» the potential method.

We’ve just seen an aggregate analysis.

The aggregate method, though simple, lacks the
precision of the other two methods. In particular,
the accounting and potential methods allow a
specific amortized cost to be allocated to each
operation.

L19.19

Accounting method

 Charge ith operation a fictitious amortized cost
¢;, where $1 pays for 1 unit of work (i.e., time).

* This fee Is consumed to perform the operation.

* Any amount not iImmediately consumed Is stored
In the bank for use by subsequent operations.

 The bank balance must not go negative! We

must ensure that]]
Z C; < Z "
for all n. =i

* Thus, the total amortized costs provide an upper
bound on the total true costs.

L19.20

Accounting analysis of
dynamic tables

Charge an amortized cost of ¢; = $3 for the ith
Insertion.

« $1 pays for the immediate insertion.
« $2 is stored for later table doubling.

When the table doubles, $1 pays to move a
recent item, and $1 pays to move an old item.

Example:
$0|$0($0($0|$2($2|$2|$20 overflow

ENEEEEEEEEEEEEEN

L19.21

Accounting analysis of
dynamic tables

Charge an amortized cost of ¢; = $3 for the ith
Insertion.

« $1 pays for the immediate insertion.
« $2 is stored for later table doubling.

When the table doubles, $1 pays to move a
recent item, and $1 pays to move an old item.

Example:

] I I I l I I lloverflow

L19.22

Accounting analysis of
dynamic tables

Charge an amortized cost of ¢; = $3 for the ith
Insertion.

« $1 pays for the immediate insertion.
« $2 is stored for later table doubling.

When the table doubles, $1 pays to move a
recent item, and $1 pays to move an old item.

Example:

]

L19.23

Accounting analysis
(continued)

Key invariant: Bank balance never drops below 0.
Thus, the sum of the amortized costs provides an
upper bound on the sum of the true costs.

11 2 3 5 6 7 8 9 10
size; | 1 8 8 8 16 16
¢i | 1 1 1 1 9 1

3 3 3 3 3

4 6 8 2 4

*Okay, so | lied. The first operation costs only $2, not $3.

L19.24

Potential method

IDEA: View the bank account as the potential
energy (a la physics) of the dynamic set.
Framework:

- Start with an initial data structure D,,.

» Operation | transforms D; , to D;.

» The cost of operation 1 Is c;.

» Define a potential function @ : {D;} — R,
such that d(D;) = 0 and d(D;) > d for all i,

» The amortized cost ¢; with respect to @ Is
defined to be ¢; = c; h O(D;) — O(D;_4).

L19.25

Understanding potentials

éi:C

i+ O(D;) — D(D;_4)

potential difference AD,

¢ If ACDI > O, t
work n the ©

nen ¢; > c;. Operation | stores
ata structure for later use.

’If A(D|<O,t

nen ¢; < ¢;. The data structure

delivers up stored work to help pay for

operation I.

L19.26

The amortized costs bound
the true costs

The total amortized cost of n operations Is
ZC _Z Cj + @ (D;) — D(Dj4))
i=1

Summing both sides.

L19.27

The amortized costs bound
the true costs

The total amortized cost of n operations Is

ZC _Z Ci + (D;) - P(Dj_y))
i1

= ZCi +®(D,,) — D(Dy)
i1

The series telescopes.

L19.28

The amortized costs bound
the true costs

The total amortized cost of n operations Is

ZC —Z (c; + ®(D;) - ®(Dj_y))
1=1

_Zc +®(D,) - D(Dy)
1=1

2 ZCi since (D) = 0 and
1=1 (I)(DO) —

L19.29

Potential analysis of table
doubling

Define the potential of the table after the ith
insertion by ®(D;) = 2i — 2/¢1l, (Assume that
2llgol = Q.)

Note:

+ d(Dy) =0,

* d(D,) =0 forall I.

Example:

([s0[$0

$0

$0

$2

$2

G=26+23=4

accounting method)

L19.30

Calculation of amortized costs

The amortized cost of the 1 th insertion IS

éi — Ci + CD(DI) — (D(Dl—l)

-

/‘

i+ (2i — 2l lg ﬂ) —(2(>i-1) - g (i—lﬂ)
If 1 — 1 1s an exact power of 2,

1+ (2i — 219il) — (2(i—1) — 219 (-D)
otherwise.

L19.31

Calculation (Case 1)

Case 1:1— 1 Is an exact power of 2.
& =i+ (2i—2"i) —(2(i-1) - 28 (-0))
—j+2_ (zﬁg il _ 2llg (i—lﬂ)

=i+2-(2(i-1)—-(i—1))
=1+2-21+2+1-1
=3

L19.32

Calculation (Case 2)

Case 2: 1— 1 Is not an exact power of 2.

G=1+ (2i - [Ig ﬂ) —(23i-1) - 9l 1g (i—lﬂ)
—1+4+2_ (Zﬂg il _ 2llg (i—lﬂ)
=3

herefore, n insertions cost ®(n) in the worst case.

Exercise: Fix the bug in this analysis to show that
the amortized cost of the first insertion is only 2.

L19.33

Conclusions

« Amortized costs can provide a clean abstraction
of data-structure performance.

» Any of the analysis methods can be used when
an amortized analysis Is called for, but each
method has some situations where It is arguably
the simplest.

» Different schemes may work for assigning
amortized costs in the accounting method, or
potentials in the potential method, sometimes
yielding radically different bounds.

L19.34

