Shortest Paths 111: All-pairs
Shortest Paths, Dynamic
Programming, Matrix
Multiplication, Floyd-
Warshall, Johnson

L_ecture 16

Shortest paths

Single-source shortest paths
» Nonnegative edge weights

* Dijkstra’s algorithm — O(E + V Ig V)
 General

+ Bellman-Ford — O(VE)
* DAG

+ One pass of Bellman-Ford O(V + E)
All-pairs shortest paths
» Nonnegative edge weights

* Dijkstra’s algorithm |V| times — O(VE + V2 Ig V)
 General

+ Three algorithms today.

L16.2

All-pairs shortest paths

Input: Digraph G = (V, E), where [V| = n, with
edge-weight functionw : V — R.

Output: n x n matrix of shortest-path lengths
o(l,]) forall1,] € V.

IDEA #1:

« Run Bellman-Ford once from each vertex.
« Time = O(V°E).

 Dense graph = O(V %) time.

Good first try!

L16.3

Dynamic programming

Consider the n x n adjacency matrix A = (a;;)
of the digraph, and define

d;;(™ = weight of a shortest path from
| to] that uses at most m edges.

Claim: We have
©o=J0 =y
dj o If1#];
and form=1,2,....n—1,
d;;™ = min {d; ™ + a; }.

L16.4

Proof of claim

Relaxation!
fork <~ 1ton
doifd; >d, + By
then dij < di + a <m -1 edges

Note: No negative-weight cycles implies
8(|1 J) - dij (1) = dij (M) = dij (n+1) = ...

L16.5

Matrix multiplication
Compute C=A - B, where C, A,and B aren xn

matrices:

Zakbkj

Time = ©(n®) using the standard algorithm.
What if we map “+” — “min” and “-” — “+7?

Cij =
Thus, DM = D(M-1) x> A

(0 000000)
o0 0 00 o0

ldentity matrix=1= | o ..

(0o 0

= M 18 + by

=D%=(d (0))

L16.6

Matrix multiplication
(continued)

The (min, +) multiplication Is associative, and
with the real numbers, it forms an algebraic
structure called a closed semiring.

Consequently, we can compute

DO = DO . A = Al
D@ = DO .A = A2

D1 = p(-2) . A= A1
yielding D™D = (5(i, })).
Time = ©(n-n?) = ®(n*). No better than n x B-F.

L16.7

Improved matrix
multiplication algorithm

Repeated squaring: A%< = Ak x Ak
Compute A?, A p2 190D
ALAL o AT .
O(lg n) squarings
Note: AM 1= AN =AML = ..
Time = ©(n3lg n).

_/

To detect negative-weight cycles, check the
diagonal for negative values in O(n) additional
time.

L16.8

Floyd-Warshall algorithm

Also dynamic programming, but faster!

Define c;;) = weight of a shortest path from i
to | with intermediate vertices
belonging to the set {1, 2, ..., k}.

Thus, (i, J) = ;. Also, ¢;{) = a; .

L16.9

Floyd-Warshall recurrence

Cij(k) = min, {Cij(k_l)’ Cy,) + ij(k—l)}

k_
Cix!

Intermediate vertices in {1, 2, ..., k}

L16.10

Pseudocode for Floyd-
Warshall

fork < 1ton
dofori<«<1ton
doforj<« 1ton
do if Cjj > Cik + Cyg

then c;; < ¢, + ©; } relaxation

Notes:

» Okay to omit superscripts, since extra relaxations
can’t hurt.

« Runs in ©(n3) time.

 Simple to code.

» Efficient in practice.

L16.11

Transitive closure of a

directed graph
_ [1 if there exists a path from i to |,
Compute G = 3 5 gtherwise.

IDEA: Use Floyd-Warshall, but with (v, A) Instead
of (min, +):

;00 = 6D v (D A D).

Time = ®(n3).

L16.12

Graph reweighting

Theorem. Given a label h(v) for each v € V, reweight
each edge (u, v) € E by

w(u, v) =w(u, v) + h(u) — h(v).
Then, all paths between the same two vertices are
reweighted by the same amount.

Proof. Letp=v, — v2 —> - — Vv, be a path in the graph.

Then, we have Ww(p) = ZW(V Vi)
=1
Kk

-1
= 1(W(V Vi) +Hh(vi)— h(V|+1))

|:
k-1

2, W(Vi Visg) + (V) = h(vy)
(p) +h(v,) —h(v,).

L16.13

Johnson’s algorithm

1. Find a vertex labeling h such that v (u, v) > O for all
(U, v) € E by using Bellman-Ford to solve the
difference constraints

h(v) — h(u) <w(u, v),
or determine that a negative-weight cycle exists.
* Time = O(VE).
2. Run Diyjkstra’s algorithm from each vertex using .
« Time=0O(VE+V?lIgV).

3. Reweight each shortest-path length vi'(p) to produce

the shortest-path lengths w(p) of the original graph.
« Time = O(V?).
Total time = O(VE + V2 lIg V).

L16.14

