Shortest Paths III: All-pairs Shortest Paths, Dynamic Programming, Matrix Multiplication, Floyd-Warshall, Johnson

Lecture 16

Shortest paths

Single-source shortest paths

- Nonnegative edge weights
 - Dijkstra's algorithm $O(E + V \lg V)$
- General
 - Bellman-Ford O(VE)
- DAG
 - One pass of Bellman-Ford O(V + E)

All-pairs shortest paths

- Nonnegative edge weights
 - Dijkstra's algorithm |V| times $O(VE + V^2 \lg V)$
- General
 - Three algorithms today.

All-pairs shortest paths

Input: Digraph G = (V, E), where |V| = n, with edge-weight function $w : V \to \mathbb{R}$. **Output:** $n \times n$ matrix of shortest-path lengths

T_ _ . 114

IDEA #1:

- Run Bellman-Ford once from each vertex.
- Time = $O(V^2E)$.

 $\delta(i,j)$ for all $i,j \in V$.

• Dense graph \Rightarrow $O(V^4)$ time. Good first try!

Dynamic programming

Consider the $n \times n$ adjacency matrix $A = (a_{ij})$ of the digraph, and define

 $d_{ij}^{(m)}$ = weight of a shortest path from i to j that uses at most m edges.

Claim: We have

$$d_{ij}^{(0)} = \begin{cases} 0 & \text{if } i = j, \\ \infty & \text{if } i \neq j; \end{cases}$$

and for m = 1, 2, ..., n - 1,

$$d_{ij}^{(m)} = \min_{k} \{ d_{ik}^{(m-1)} + a_{kj} \}.$$

Note: No negative-weight cycles implies
$$\delta(i,j) = d_{ij}^{(n-1)} = d_{ij}^{(n)} = d_{ij}^{(n+1)} = \cdots$$

Matrix multiplication

Compute $C = A \cdot B$, where C, A, and B are $n \times n$ matrices:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Time = $\Theta(n^3)$ using the standard algorithm.

What if we map "+" \rightarrow "min" and "·" \rightarrow "+"?

$$c_{ij} = \min_k \left\{ a_{ik} + b_{kj} \right\}.$$

Thus, $D^{(m)} = D^{(m-1)}$ "×" A.

Identity matrix = I =
$$\begin{bmatrix} 0 & \infty & \infty & \infty \\ \infty & 0 & \infty & \infty \\ \infty & \infty & 0 & \infty \\ \infty & \infty & \infty & 0 \end{bmatrix} = D^0 = (d_{ij}^{(0)}).$$

Matrix multiplication (continued)

The (min, +) multiplication is *associative*, and with the real numbers, it forms an algebraic structure called a *closed semiring*.

Consequently, we can compute

$$D^{(1)} = D^{(0)} \cdot A = A^{1}$$

$$D^{(2)} = D^{(1)} \cdot A = A^{2}$$

$$\vdots \qquad \vdots$$

$$D^{(n-1)} = D^{(n-2)} \cdot A = A^{n-1},$$

yielding $D^{(n-1)} = (\delta(i, j))$.

Time = $\Theta(n \cdot n^3) = \Theta(n^4)$. No better than $n \times B$ -F.

Improved matrix multiplication algorithm

Repeated squaring: $A^{2k} = A^k \times A^k$. Compute $A^2, A^4, \dots, A^{2^{\lceil \lg(n-1) \rceil}}$. $O(\lg n)$ squarings Note: $A^{n-1} = A^n = A^{n+1} = \cdots$. Time = $\Theta(n^3 \lg n)$.

To detect negative-weight cycles, check the diagonal for negative values in O(n) additional time.

Floyd-Warshall algorithm

Also dynamic programming, but faster!

Define $c_{ij}^{(k)}$ = weight of a shortest path from i to j with intermediate vertices belonging to the set $\{1, 2, ..., k\}$.

Thus, $\delta(i, j) = c_{ij}^{(n)}$. Also, $c_{ij}^{(0)} = a_{ij}$.

Floyd-Warshall recurrence

$$c_{ij}^{(k)} = \min_{k} \{c_{ij}^{(k-1)}, c_{ik}^{(k-1)} + c_{kj}^{(k-1)}\}$$

intermediate vertices in $\{1, 2, ..., k\}$

Pseudocode for Floyd-Warshall

```
\begin{array}{c} \text{for } k \leftarrow 1 \text{ to } n \\ \text{do for } i \leftarrow 1 \text{ to } n \\ \text{do for } j \leftarrow 1 \text{ to } n \\ \text{do if } c_{ij} > c_{ik} + c_{kj} \\ \text{then } c_{ij} \leftarrow c_{ik} + c_{kj} \end{array} \right\} \quad \begin{array}{c} relaxation \end{array}
```

Notes:

- Okay to omit superscripts, since extra relaxations can't hurt.
- Runs in $\Theta(n^3)$ time.
- Simple to code.
- Efficient in practice.

Transitive closure of a directed graph

Compute $t_{ij} = \begin{cases} 1 & \text{if there exists a path from } i \text{ to } j, \\ 0 & \text{otherwise.} \end{cases}$

IDEA: Use Floyd-Warshall, but with (\lor, \land) instead of $(\min, +)$:

$$t_{ij}^{(k)} = t_{ij}^{(k-1)} \vee (t_{ik}^{(k-1)} \wedge t_{kj}^{(k-1)}).$$

Time = $\Theta(n^3)$.

Graph reweighting

Theorem. Given a label h(v) for each $v \in V$, reweight each edge $(u, v) \in E$ by

$$\hat{w}(u, v) = w(u, v) + h(u) - h(v).$$

Then, all paths between the same two vertices are reweighted by the same amount.

Proof. Let $p = v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_k$ be a path in the graph.

Then, we have
$$\hat{w}(p) = \sum_{i=1}^{k-1} \hat{w}(v_i, v_{i+1})$$

$$= \sum_{i=1}^{k-1} \left(w(v_i, v_{i+1}) + h(v_i) - h(v_{i+1}) \right)$$

$$= \sum_{i=1}^{k-1} w(v_i, v_{i+1}) + h(v_k) - h(v_1)$$

$$= w(p) + h(v_k) - h(v_1).$$

Johnson's algorithm

1. Find a vertex labeling h such that $\hat{w}(u, v) \ge 0$ for all $(u, v) \in E$ by using Bellman-Ford to solve the difference constraints

$$h(v) - h(u) \le w(u, v),$$

or determine that a negative-weight cycle exists.

- Time = O(VE).
- 2. Run Dijkstra's algorithm from each vertex using \hat{w} .
 - Time = $O(VE + V^2 \lg V)$.
- 3. Reweight each shortest-path length $\hat{w}(p)$ to produce the shortest-path lengths w(p) of the original graph.
 - Time = $O(V^2)$.

Total time = $O(VE + V^2 \lg V)$.