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Negative-weight cycles 

Recall: If a graph G = (V, E) contains a negative-
weight cycle, then some shortest paths may not exist. 

Example: 

u v 

… 

< 0 

Bellman-Ford algorithm: Finds all shortest-path 
lengths from a source s  V to all v  V or 
determines that a negative-weight cycle exists. 
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Bellman-Ford algorithm 

d[s]  0 
for each v  V – {s} 

do d[v]   

for i  1 to | V | – 1

do for each edge (u, v)  E 
do if d[v] > d[u] + w(u, v) 

then d[v]  d[u] + w(u, v) 

for each edge (u, v)  E 
do if d[v] > d[u] + w(u, v) 

then report that a negative-weight cycle exists 

initialization 

At the end, d[v] = d(s, v).  Time = O(V E). 

relaxation 
step 



L15.4 

Example of Bellman-Ford 
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Correctness 

Theorem.  If G = (V, E) contains no negative-
weight cycles, then after the Bellman-Ford 
algorithm executes, d[v] = d(s, v) for all v  V.  
Proof.  Let v  V be any vertex, and consider a shortest 
path p from s to v with the minimum number of edges. 

v
1 v

2 

v
3 

v
k v0 

… 

s 
v 

p: 

Since p is a shortest path, we have 

d(s, vi) = d(s, vi–1) + w(vi–1, vi) . 
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Correctness (continued) 

v
1 v

2 

v
3 

v
k v0 

… 

s 
v 

p: 

Initially, d[v0] = 0 = d(s, v0), and d[s] is unchanged by 
subsequent relaxations (because of the lemma from 
Lecture 17 that d[v]  d(s, v)). 

• After 1 pass through E, we have d[v1] = d(s, v1).
• After 2 passes through E, we have d[v2] = d(s, v2).

M
• After k passes through E, we have d[vk] = d(s, vk).

Since G contains no negative-weight cycles, p is simple. 
Longest simple path has  | V | – 1 edges. 
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Detection of negative-weight 
cycles 

Corollary.  If a value d[v] fails to converge after 
| V | – 1 passes, there exists a negative-weight 
cycle in G reachable from s. 
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DAG shortest paths 

If the graph is a directed acyclic graph (DAG), we first 
topologically sort the vertices. 

Walk through the vertices u  V in this order, relaxing 
the edges in Adj[u], thereby obtaining the shortest paths 
from s in a total of O(V + E) time. 

• Determine f : V  {1, 2, …, | V |} such that (u, v)  E

 f (u) < f (v).

• O(V + E) time using depth-first search.

3 5 6 

4 

2 s 

7 

9 

8 1 
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Linear programming 

Let A be an mn matrix, b be an m-vector, and c 
be an n-vector.  Find an n-vector x that maximizes 
cTx subject to Ax  b, or determine that no such 
solution exists. 

.  . maximizing m 

n 

A x  b cT x 
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Linear-programming 
algorithms 

Algorithms for the general problem 

• Simplex methods — practical, but worst-case
exponential time.

• Ellipsoid algorithm — polynomial time, but
slow in practice.

• Interior-point methods — polynomial time and
competes with simplex.

Feasibility problem: No optimization criterion.  
Just find x such that Ax  b. 
• In general, just as hard as ordinary LP.
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Solving a system of difference 
constraints 

Linear programming where each row of A contains 
exactly one 1, one –1, and the rest 0’s.  

Example: 

x1 – x2  3 
x2 – x3  –2 
x1 – x3  2 

xj – xi  wij

Solution: 

x1 = 3 
x2 = 0 
x3 = 2 

Constraint graph: 

vjvixj – xi  wij

wij

(The “A” 
matrix has 
dimensions 
|E |  |V |.)
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Unsatisfiable constraints 

Theorem.  If the constraint graph contains 
a negative-weight cycle, then the system of 
differences is unsatisfiable. 
Proof.  Suppose that the negative-weight cycle is 
v1  v2  L  vk  v1.  Then, we have

x2 – x1  w12

x3 – x2  w23
M 

xk – xk–1  wk–1, k

x1 – xk  wk1

Therefore, no 
values for the xi 
can satisfy the 
constraints. 

0  weight of cycle 
< 0
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Satisfying the constraints 

Theorem.  Suppose no negative-weight cycle 
exists in the constraint graph.  Then, the 
constraints are satisfiable. 
Proof.  Add a new vertex s to V with a 0-weight edge 
to each vertex vi  V. 

v
1 

v
4 

v

v
9 

v
3 

s 

0 Note: 
No negative-weight 
cycles introduced  
shortest paths exist. 
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The triangle inequality gives us d(s,vj)  d(s, vi) + wij.  
Since xi = d(s, vi) and xj = d(s, vj), the constraint xj – xi 
 wij is satisfied. 

Proof (continued) 

Claim: The assignment xi = d(s, vi) solves the constraints. 

s 

vj

vi

d(s, vi) 

d(s, vj) 
wij

Consider any constraint xj – xi  wij, and consider the 
shortest paths from s to vj and vi: 
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Bellman-Ford and linear 
programming 

Corollary.  The Bellman-Ford algorithm can 
solve a system of m difference constraints on n 
variables in O(m n) time.   

Single-source shortest paths is a simple LP 
problem. 

In fact, Bellman-Ford maximizes x1 + x2 + L + xn 

subject to the constraints xj – xi  wij and xi  0 
(exercise). 

Bellman-Ford also minimizes maxi{xi} – mini{xi} 
(exercise). 


