
Shortest Paths II: Bellman-
Ford, Topological Sort, DAG
Shortest Paths, Linear
Programming, Difference
Constraints

Lecture 15

L15.2

Negative-weight cycles

Recall: If a graph G = (V, E) contains a negative-
weight cycle, then some shortest paths may not exist.

Example:

u v

…

< 0

Bellman-Ford algorithm: Finds all shortest-path
lengths from a source s  V to all v  V or
determines that a negative-weight cycle exists.

L15.3

Bellman-Ford algorithm

d[s]  0
for each v  V – {s}

do d[v]  

for i  1 to | V | – 1

do for each edge (u, v)  E
do if d[v] > d[u] + w(u, v)

then d[v]  d[u] + w(u, v)

for each edge (u, v)  E
do if d[v] > d[u] + w(u, v)

then report that a negative-weight cycle exists

initialization

At the end, d[v] = d(s, v). Time = O(V E).

relaxation
step

L15.4

Example of Bellman-Ford

A

B

E

C D

–1

4

1
2

–3

2

5

3

A B C D E

0    



0 

 

L15.5

 –1

0 –1   

Example of Bellman-Ford

A

B

E

C D

–1

4

1
2

–3

2

5

3

A B C D E

0    

0 

 

L15.6

 –1

0 –1   

Example of Bellman-Ford

A

B

E

C D

–1

4

1
2

–3

2

5

3

A B C D E

0    

0 

 4

0 –1 4  

L15.7

4

0 –1 2  

2

 –1

0 –1   

Example of Bellman-Ford

A

B

E

C D

–1

4

1
2

–3

2

5

3

A B C D E

0    

0 



0 –1 4  

L15.8

 –1

Example of Bellman-Ford

A

B

E

C D

–1

4

1
2

–3

2

5

3

0 

 2

0 –1 2  

0 –1   

A B C D E

0    

0 –1 4  

L15.9

 –1

Example of Bellman-Ford

A

B

E

C D

–1

4

1
2

–3

2

5

3

0

 2

0 –1 2  

0 –1   

A B C D E

0    

0 –1 4  

1

0 –1 2  1

L15.10

 0 –1 2 1 1 1

 –1

Example of Bellman-Ford

A

B

E

C D

–1

4

1
2

–3

2

5

3

0

2

0 –1 2  

0 –1   

A B C D E

0    

0 –1 4  

1

0 –1 2  1

L15.11

1

0 –1 2 –2 1

–2 0 –1 2 1 1

 –1

Example of Bellman-Ford

A

B

E

C D

–1

4

1
2

–3

2

5

3

0

2

0 –1 2  

0 –1   

A B C D E

0    

0 –1 4  

1

0 –1 2  1

L15.12

1

0 –1 2 –2 1

–2 0 –1 2 1 1

 –1

Example of Bellman-Ford

A

B

E

C D

–1

4

1
2

–3

2

5

3

0

2

0 –1 2  

0 –1   

A B C D E

0    

0 –1 4  

1

0 –1 2  1

Note: Values decrease
monotonically.

L15.13

Correctness

Theorem. If G = (V, E) contains no negative-
weight cycles, then after the Bellman-Ford
algorithm executes, d[v] = d(s, v) for all v  V.
Proof. Let v  V be any vertex, and consider a shortest
path p from s to v with the minimum number of edges.

v
1 v

2

v
3

v
k v0

…

s
v

p:

Since p is a shortest path, we have

d(s, vi) = d(s, vi–1) + w(vi–1, vi) .

L15.14

Correctness (continued)

v
1 v

2

v
3

v
k v0

…

s
v

p:

Initially, d[v0] = 0 = d(s, v0), and d[s] is unchanged by
subsequent relaxations (because of the lemma from
Lecture 17 that d[v]  d(s, v)).

• After 1 pass through E, we have d[v1] = d(s, v1).
• After 2 passes through E, we have d[v2] = d(s, v2).

M
• After k passes through E, we have d[vk] = d(s, vk).

Since G contains no negative-weight cycles, p is simple.
Longest simple path has  | V | – 1 edges.

L15.15

Detection of negative-weight
cycles

Corollary. If a value d[v] fails to converge after
| V | – 1 passes, there exists a negative-weight
cycle in G reachable from s.

L15.16

DAG shortest paths

If the graph is a directed acyclic graph (DAG), we first
topologically sort the vertices.

Walk through the vertices u  V in this order, relaxing
the edges in Adj[u], thereby obtaining the shortest paths
from s in a total of O(V + E) time.

• Determine f : V  {1, 2, …, | V |} such that (u, v)  E

 f (u) < f (v).

• O(V + E) time using depth-first search.

3 5 6

4

2 s

7

9

8 1

L15.17

Linear programming

Let A be an mn matrix, b be an m-vector, and c
be an n-vector. Find an n-vector x that maximizes
cTx subject to Ax  b, or determine that no such
solution exists.

.  . maximizing m

n

A x  b cT x

L15.18

Linear-programming
algorithms

Algorithms for the general problem

• Simplex methods — practical, but worst-case
exponential time.

• Ellipsoid algorithm — polynomial time, but
slow in practice.

• Interior-point methods — polynomial time and
competes with simplex.

Feasibility problem: No optimization criterion.
Just find x such that Ax  b.
• In general, just as hard as ordinary LP.

L15.19

Solving a system of difference
constraints

Linear programming where each row of A contains
exactly one 1, one –1, and the rest 0’s.

Example:

x1 – x2  3
x2 – x3  –2
x1 – x3  2

xj – xi  wij

Solution:

x1 = 3
x2 = 0
x3 = 2

Constraint graph:

vjvixj – xi  wij

wij

(The “A”
matrix has
dimensions
|E |  |V |.)

 L15.20

Unsatisfiable constraints

Theorem. If the constraint graph contains
a negative-weight cycle, then the system of
differences is unsatisfiable.
Proof. Suppose that the negative-weight cycle is
v1  v2  L  vk  v1. Then, we have

x2 – x1  w12

x3 – x2  w23
M

xk – xk–1  wk–1, k

x1 – xk  wk1

Therefore, no
values for the xi
can satisfy the
constraints.

0  weight of cycle
< 0

7
L15.21

Satisfying the constraints

Theorem. Suppose no negative-weight cycle
exists in the constraint graph. Then, the
constraints are satisfiable.
Proof. Add a new vertex s to V with a 0-weight edge
to each vertex vi  V.

v
1

v
4

v

v
9

v
3

s

0 Note:
No negative-weight
cycles introduced 
shortest paths exist.

 L15.22

The triangle inequality gives us d(s,vj)  d(s, vi) + wij.
Since xi = d(s, vi) and xj = d(s, vj), the constraint xj – xi
 wij is satisfied.

Proof (continued)

Claim: The assignment xi = d(s, vi) solves the constraints.

s

vj

vi

d(s, vi)

d(s, vj)
wij

Consider any constraint xj – xi  wij, and consider the
shortest paths from s to vj and vi:

L15.23

Bellman-Ford and linear
programming

Corollary. The Bellman-Ford algorithm can
solve a system of m difference constraints on n
variables in O(m n) time.

Single-source shortest paths is a simple LP
problem.

In fact, Bellman-Ford maximizes x1 + x2 + L + xn

subject to the constraints xj – xi  wij and xi  0
(exercise).

Bellman-Ford also minimizes maxi{xi} – mini{xi}
(exercise).

