Shortest Paths II: Bellman-Ford, Topological Sort, DAG Shortest Paths, Linear Programming, Difference **Constraints**

Lecture 15

Negative-weight cycles

Recall: If a graph G = (V, E) contains a negativeweight cycle, then some shortest paths may not exist.

Bellman-Ford algorithm: Finds all shortest-path lengths from a *source* $s \in V$ to all $v \in V$ or determines that a negative-weight cycle exists.

Bellman-Ford algorithm

 $\begin{aligned}
 d[s] \leftarrow 0 \\
 for each v \in V - \{s\} \\
 do d[v] \leftarrow \infty
\end{aligned}$ initialization

for $i \leftarrow 1$ to |V| - 1do for each edge $(u, v) \in E$ do if d[v] > d[u] + w(u, v)then $d[v] \leftarrow d[u] + w(u, v)$ step

for each edge $(u, v) \in E$ do if d[v] > d[u] + w(u, v)then report that a negative-weight cycle exists

At the end, $d[v] = \delta(s, v)$. Time = O(VE).

A	B	\boldsymbol{C}	D	E
0	∞	∞	∞	∞
0	-1	∞	∞	∞

A	B	С	D	E
0	∞	∞	∞	∞
0	-1	∞	∞	∞
0	-1	4	∞	∞
0	-1	2	∞	∞
0	-1	2	∞	1
0	-1	2	1	1

A	B	С	D	E
0	∞	∞	∞	∞
0	-1	∞	∞	∞
0	-1	4	∞	∞
0	-1	2	∞	∞
0	-1	2	∞	1
0	-1	2	1	1
0	-1	2	-2	1

Note: Values decrease monotonically.

A	B	C	D	E
0	∞	∞	∞	∞
0	-1	∞	∞	∞
0	-1	4	∞	∞
0	-1	2	∞	∞
0	-1	2	∞	1
0	-1	2	1	1
0	-1	2	-2	1

Correctness

Theorem. If G = (V, E) contains no negativeweight cycles, then after the Bellman-Ford algorithm executes, $d[v] = \delta(s, v)$ for all $v \in V$. *Proof.* Let $v \in V$ be any vertex, and consider a shortest path *p* from *s* to *v* with the minimum number of edges.

Since *p* is a shortest path, we have $\delta(s, v_i) = \delta(s, v_{i-1}) + w(v_{i-1}, v_i).$

Initially, $d[v_0] = 0 = \delta(s, v_0)$, and d[s] is unchanged by subsequent relaxations (because of the lemma from Lecture 17 that $d[v] \ge \delta(s, v)$).

- After 1 pass through *E*, we have $d[v_1] = \delta(s, v_1)$.
- After 2 passes through *E*, we have $d[v_2] = \delta(s, v_2)$.
- After *k* passes through *E*, we have $d[v_k] = \delta(s, v_k)$. Since *G* contains no negative-weight cycles, *p* is simple. Longest simple path has $\leq |V| - 1$ edges.

Detection of negative-weight cycles

Corollary. If a value d[v] fails to converge after |V| - 1 passes, there exists a negative-weight cycle in *G* reachable from *s*.

DAG shortest paths

If the graph is a *directed acyclic graph* (*DAG*), we first *topologically sort* the vertices.

- Determine $f: V \to \{1, 2, ..., |V|\}$ such that $(u, v) \in E$ $\Rightarrow f(u) < f(v)$.
- O(V + E) time using depth-first search.

Walk through the vertices $u \in V$ in this order, relaxing the edges in Adj[u], thereby obtaining the shortest paths from *s* in a total of O(V + E) time.

Linear programming

Let *A* be an $m \times n$ matrix, *b* be an *m*-vector, and *c* be an *n*-vector. Find an *n*-vector *x* that maximizes $c^{T}x$ subject to $Ax \leq b$, or determine that no such solution exists.

Linear-programming algorithms

Algorithms for the general problem

- Simplex methods practical, but worst-case exponential time.
- Ellipsoid algorithm polynomial time, but slow in practice.
- Interior-point methods polynomial time and competes with simplex.

Feasibility problem: No optimization criterion. Just find *x* such that $Ax \leq b$.

• In general, just as hard as ordinary LP.

Solving a system of difference constraints

Linear programming where each row of A contains exactly one 1, one -1, and the rest 0's.

Example:

Constraint graph: $x_j - x_i \le w_{ij}$ $v_i \xrightarrow{w_{ij}} v_j$ (The "A" matrix has dimensions $|E| \times |V|$.)

Solution:

Unsatisfiable constraints

Theorem. If the constraint graph contains a negative-weight cycle, then the system of differences is unsatisfiable.

Proof. Suppose that the negative-weight cycle is $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_k \rightarrow v_1$. Then, we have

$$\begin{array}{rcl} x_{2} - x_{1} & \leq w_{12} \\ x_{3} - x_{2} & \leq w_{23} \\ & \vdots \\ x_{k} - x_{k-1} & \leq w_{k-1, k} \\ x_{1} - x_{k} & \leq w_{k1} \end{array}$$

Therefore, no values for the x_i can satisfy the constraints.

 $\begin{array}{ll} 0 & \leq \text{weight of cycle} \\ < 0 \end{array}$

Satisfying the constraints

Theorem. Suppose no negative-weight cycle exists in the constraint graph. Then, the constraints are satisfiable. *Proof.* Add a new vertex *s* to *V* with a 0-weight edge to each vertex $v_i \in V$.

Note:

No negative-weight cycles introduced \Rightarrow shortest paths exist.

Proof (continued)

Claim: The assignment $x_i = \delta(s, v_i)$ solves the constraints. Consider any constraint $x_j - x_i \le w_{ij}$, and consider the shortest paths from *s* to v_i and v_i :

The triangle inequality gives us $\delta(s, v_j) \le \delta(s, v_i) + w_{ij}$. Since $x_i = \delta(s, v_i)$ and $x_j = \delta(s, v_j)$, the constraint $x_j - x_i \le w_{ij}$ is satisfied.

Bellman-Ford and linear programming

Corollary. The Bellman-Ford algorithm can solve a system of *m* difference constraints on *n* variables in O(mn) time.

Single-source shortest paths is a simple LP problem.

In fact, Bellman-Ford maximizes $x_1 + x_2 + \cdots + x_n$ subject to the constraints $x_j - x_i \le w_{ij}$ and $x_i \le 0$ (exercise).

Bellman-Ford also minimizes $\max_i \{x_i\} - \min_i \{x_i\}$ (exercise).