
Shortest Paths I: Properties, 
Dijkstra's Algorithm

Lecture 14



L14.2 

Paths in graphs 

Consider a digraph G = (V, E) with edge-weight 

function w : E  R.  The weight of path p = v1  
v2  L  vk is defined to be
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Example: 

w(p) = –2 
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Shortest paths 

A shortest path from u to v is a path of 

minimum weight from u to v.  The shortest-

path weight from u to v is defined as 

d(u, v) = min{w(p) : p is a path from u to v}. 

Note: d(u, v) =  if no path from u to v exists. 
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Optimal substructure 

Theorem.  A subpath of a shortest path is a 
shortest path. 

Proof.  Cut and paste: 



L14.5 

Triangle inequality 

Theorem.  For all u, v, x  V, we have 

d(u, v)  d(u, x) + d(x, v). 

u 

Proof. 

x 

v 
d(u, v) 

d(u, x) d(x, v) 
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Well-definedness of shortest 
paths 

If a graph G contains a negative-weight cycle, 
then some shortest paths may not exist. 

Example: 

u v 

… 

< 0 
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Single-source shortest paths 

Problem. From a given source vertex s  V, find 
the shortest-path weights d(s, v) for all v  V. 

If all edge weights w(u, v) are nonnegative, all 
shortest-path weights must exist.  

IDEA: Greedy. 
1. Maintain a set S of vertices whose shortest-

path distances from s are known.
2. At each step add to S the vertex v  V – S

whose distance estimate from s is minimal.
3. Update the distance estimates of vertices

adjacent to v.
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Dijkstra’s algorithm 

d[s]  0 
for each v  V – {s} 

do d[v]   
S   
Q  V  ⊳ Q is a priority queue maintaining V – S 

while Q   
do u  EXTRACT-MIN(Q) 

S  S  {u} 
for each v  Adj[u] 

do if d[v] > d[u] + w(u, v) 
then d[v]  d[u] + w(u, v) 

relaxation 
step 

Implicit DECREASE-KEY
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Example of Dijkstra’s 
algorithm 
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Graph with 
nonnegative 
edge weights: 
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Example of Dijkstra’s 
algorithm 
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Initialize: 

A B C D E Q: 

0     

S: {} 

0 

 

  

 
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Example of Dijkstra’s 
algorithm 
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2 A B C D E Q: 

0     

S: { A } 

0 

 

  

 
“A”  EXTRACT-MIN(Q): 



L14.12 

Example of Dijkstra’s 
algorithm 
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2 A B C D E Q: 

0     

S: { A } 
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Relax all edges leaving A: 
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Example of Dijkstra’s 
algorithm 
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2 A B C D E Q: 

0     

S: { A, C } 
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10 3   

“C”  EXTRACT-MIN(Q): 
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Example of Dijkstra’s 
algorithm 
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2 A B C D E Q: 

0     

S: { A, C } 
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Relax all edges leaving C: 



L14.15 

Example of Dijkstra’s 
algorithm 
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B D 

C E 
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2 A B C D E Q: 

0     

S: { A, C, E } 
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7 11 5 

“E”  EXTRACT-MIN(Q): 
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Example of Dijkstra’s 
algorithm 
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B D 

C E 

10 

3 

1 4 7 9 
8 

2 

2 A B C D E Q: 

0     

S: { A, C, E } 
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Relax all edges leaving E: 
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Example of Dijkstra’s 
algorithm 

A 

B D 

C E 

10 

3 

1 4 7 9 
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2 

2 A B C D E Q: 

0     

S: { A, C, E, B } 
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10 3   

7 11 5 

7 11 

“B”  EXTRACT-MIN(Q): 
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Example of Dijkstra’s 
algorithm 

A 

B D 

C E 
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2 A B C D E Q: 

0     

S: { A, C, E, B } 
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7 11 5 

7 11 

Relax all edges leaving B: 

9 
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Example of Dijkstra’s 
algorithm 

A 

B D 

C E 

10 

3 

1 4 7 9 
8 

2 

2 A B C D E Q: 

0     

S: { A, C, E, B, D } 
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“D”  EXTRACT-MIN(Q): 
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Correctness — Part I 

Lemma.  Initializing d[s]  0 and d[v]    for all 
v  V – {s} establishes d[v]  d(s, v) for all v  V, 
and this invariant is maintained over any sequence 
of relaxation steps. 
Proof.  Suppose not.  Let v be the first vertex for 
which d[v] < d(s, v), and let u be the vertex that 
caused d[v] to change: d[v] = d[u] + w(u, v).  Then,  

d[v] < d(s, v) supposition 
 d(s, u) + d(u, v) triangle inequality 
 d(s,u) + w(u, v) sh. path  specific path 
 d[u] + w(u, v) v is first violation 

Contradiction. 
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Correctness — Part II 

Theorem.  Dijkstra’s algorithm terminates with 
d[v] = d(s, v) for all v  V. 

Proof.  It suffices to show that d[v] = d(s, v) for every v 
 V when v is added to S.  Suppose u is the first vertex 
added to S for which d[u]  d(s, u). Let y be the first 
vertex in V – S along a shortest path from s to u, and 
let x be its predecessor: 

s 
x y 

u 

S, just before 
adding u. 
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Correctness — Part II 
(continued) 

Since u is the first vertex violating the claimed invariant, 
we have d[x] = d(s, x).  Since subpaths of shortest paths 
are shortest paths, it follows that d[y] was set to d(s, x) + 
w(x, y) = d(s, y) when (x, y) was relaxed just after x was 
added to S.  Consequently, we have d[y] = d(s, y)  d(s, u) 
 d[u].  But, d[u]  d[y] by our choice of u, and hence d[y] 
= d(s, y)  d(s, u)  d[u].  Contradiction. 

s 
x y 

u S 



L14.23 

Analysis of Dijkstra 

degree(u) 
times 

|V | 
times 

Handshaking Lemma  Q(E) implicit DECREASE-KEY’s. 

Time = Q(V)·TEXTRACT-MIN + Q(E)·TDECREASE-KEY

Note: Same formula as in the analysis of Prim’s 
minimum spanning tree algorithm. 

while Q   
do u  EXTRACT-MIN(Q) 

S  S  {u} 
for each v  Adj[u] 

do if d[v] > d[u] + w(u, v) 
then d[v]  d[u] + w(u, v) 
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Analysis of Dijkstra 
(continued) 

Time = Q(V)·TEXTRACT-MIN + Q(E)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total 

array O(V) O(1) O(V2) 

binary 
heap 

O(lg V) O(lg V) O(E lg V) 

Fibonacci 
heap 

O(lg V) 
amortized 

O(1) 
amortized 

O(E + V lg V) 
worst case 




