Shortest Paths I: Properties,
Dijkstra's Algorithm

_ecture 74

Paths Iin graphs

Consider a digraph G = (V, E) with edge-weight

function w : E — R. The weight of pathp =v, —
V, — -+ —V, IS defined to be

k-1
W(p) - ZW(Vi vVi+1)-
i=1

Shortest paths

A shortest path from u to v iIs a path of
minimum weight from u to v. The shortest-
path weight from u to v iIs defined as

o(u, v) = min{w(p) : p Is a path from u to v}.

Note: 6(u, v) = co If no path from u to v exists.

L14.3

Optimal substructure

Theorem. A subpath of a shortest path Is a
shortest path.

Proof. Cut and paste:

\\5 —’
e mm =

L14.4

Triangle inequality

Theorem. Forall u, v, x € V, we have
o(u, v) <o(u, x) + o(x, v).

Proof.

L14.5

Well-definedness of shortest
paths

If a graph G contains a negative-weight cycle,
then some shortest paths may not exist.

Example:

W—0

L14.6

Single-source shortest paths

Problem. From a given source vertex s V, find
the shortest-path weights 6(s, v) forall v € V.

If all edge weights w(u, v) are nonnegative, all
shortest-path weights must exist.

IDEA: Greedy.
1. Maintain a set S of vertices whose shortest-

path distances from s are known.
2. At each step add to S the vertex v e V- S
whose distance estimate from s 1s minimal.
3. Update the distance estimates of vertices

adjacent to v.

L14.7

Dijkstra’s algorithm

d[s] < O
foreachv € V— {s}
do d[v] «— o
S«
Q«V = Q IS a priority gueue maintaining V — S
while Q =
do u <— ExTrRACT-MIN(Q)
S« Su{u}
for each v € Adj|u] _
do if d[v] > d[u] + w(u, v) relaxation
then d[v] <« d[u] + w(u, V) step
\

Implicit DECREASE-KEY

L14.8

Example of Dijkstra’s
algorithm

Graph with
nonnegative
edge weights:

L14.9

Example of Dijkstra’s

algorithm
Initialize: = . =
(8)——D
0 7 9
Q:ABCDE (cF——E
0 0 00 00 o0 0 0

L14.10

Example of Dijkstra’s
algorithm

“A” < EXTRACT-MIN(Q): 2

L14.11

Example of Dijkstra’s
algorithm

Relax all edges leaving A: 7

L14.12

Example of Dijkstra’s
algorithm

“C” < EXTRACT-MIN(Q): ’

L14.13

Example of Dijkstra’s
algorithm

Relax all edges leaving C: 2

QA B CD Own®
0 ow o o o 3 5
10 3 - -
14 11 5

L14.14

Example of Dijkstra’s
algorithm

2
“E” «— EXTRACT-MIN(Q): ’
Oy O

Q: 4~ B C D © -
0 ow o o o 3 5
10 3 - =
14 11

L14.15

Example of Dijkstra’s
algorithm

Relax all edges leaving E: ro, 4
(B)—D
0 e 79
Q B D G E
0 o o o0 3 5

10 3

L14.16

Example of Dijkstra’s
algorithm

“B” «— EXTRACT-MIN(Q): ! ’ 11
(B)——D
0 (A} 1 4 7 9
Q: D G E
0 ow o o o 3 5
10 3 o o
7 11 5
7 11 S:{A CEB}

L14.17

Example of Dijkstra’s
algorithm

Relax all edges leaving B: 9

L14.18

Example of Dijkstra’s
algorithm

“D” < EXTRACT-MIN(Q): ’

© O ® 3 5
11 S:{A, C, E, B,D}

L14.19

Correctness — Part |

Lemma. Initializing d|s] «<— 0 and d[v] <« « for all
v € V —{s} establishes d[v] > &(s, v) forall v € V,
and this invariant Is maintained over any sequence
of relaxation steps.
Proof. Suppose not. Let v be the first vertex for
which d[v] < &(s, v), and let u be the vertex that
caused d[v] to change: d[v] = d[u] + w(u, v). Then,
d[v] < (s, V) supposition

< 0o(s, u) +o(u, v) triangle inequality

< 0o(s,u) + w(u, v) sh. path < specific path

<dfu] +w(u,v) visfirst violation
Contradiction.

L14.20

Correctness — Part I

Theorem. Dijkstra’s algorithm terminates with
dlv] =o(s, v) forall v € V.

Proof. It suffices to show that d[v] = (s, v) for every v
e V when v is added to S. Suppose u is the first vertex

added to S for which dfu] = o(s, u). Let y be the first

vertex in V — S along a shortest path from s to u, and
let x be Its predecessor:

s M
S, Just before
adding u.

L14.21

Correctness — Part I
(continued)

N (U
(s) Q’ﬂ

Since u Is the first vertex violating the claimed invariant,
we have d[x] = (s, X). Since subpaths of shortest paths
are shortest paths, it follows that d[y] was set to 6(s, x) +
W(X, y) = d(s, y) when (x, y) was relaxed just after x was
added to S. Consequently, we have d[y] = o(s, y) < (s, u)
< d[u]. But, d[u] <d[y] by our choice of u, and hence d|y]
=0(s, y) = 0o(s, u) =d[u]. Contradiction.

L14.22

Analysis of Dijkstra

r while Q =
do u «— ExTRACT-MIN(Q)
|V| S« Su {U}
fimes 3 " for each v e Adj[u]
degree(u) J doif d[v] > d[u] + w(u, V)
k tumes | then d[v] « d[u] + w(u, v)

Handshaking Lemma = ©O(E) implicit DecreAse-KEY’s.
Ime = O(V) TexrractMin T ©(BE) Tpecrease-Key

Note: Same formula as in the analysis of Prim’s
minimum spanning tree algorithm.

L14.23

Analysis of Dijkstra
(continued)

Time = O(V) - Texrract-Min T @(E) Tpecrease-Key

Q TEXTRACT—I\/IIN TDECREASE-KEY Total

array O(V) O(1) O(V?)
br'lgggy O(lg V) O(gV) O(ElgV)
Fibonacci O(lg V) O(1) O(E +VIgV)

heap amortized amortized worst case

L14.24

