
Shortest Paths I: Properties,
Dijkstra's Algorithm

Lecture 14

L14.2

Paths in graphs

Consider a digraph G = (V, E) with edge-weight

function w : E  R. The weight of path p = v1 
v2  L  vk is defined to be







1

1
1),()(

k

i
ii vvwpw .

v
1 v

2

v
3 v

4

v
5

4 –2 –5 1

Example:

w(p) = –2

L14.3

Shortest paths

A shortest path from u to v is a path of

minimum weight from u to v. The shortest-

path weight from u to v is defined as

d(u, v) = min{w(p) : p is a path from u to v}.

Note: d(u, v) =  if no path from u to v exists.

L14.4

Optimal substructure

Theorem. A subpath of a shortest path is a
shortest path.

Proof. Cut and paste:

L14.5

Triangle inequality

Theorem. For all u, v, x  V, we have

d(u, v)  d(u, x) + d(x, v).

u

Proof.

x

v
d(u, v)

d(u, x) d(x, v)

L14.6

Well-definedness of shortest
paths

If a graph G contains a negative-weight cycle,
then some shortest paths may not exist.

Example:

u v

…

< 0

L14.7

Single-source shortest paths

Problem. From a given source vertex s  V, find
the shortest-path weights d(s, v) for all v  V.

If all edge weights w(u, v) are nonnegative, all
shortest-path weights must exist.

IDEA: Greedy.
1. Maintain a set S of vertices whose shortest-

path distances from s are known.
2. At each step add to S the vertex v  V – S

whose distance estimate from s is minimal.
3. Update the distance estimates of vertices

adjacent to v.

L14.8

Dijkstra’s algorithm

d[s]  0
for each v  V – {s}

do d[v]  
S  
Q  V ⊳ Q is a priority queue maintaining V – S

while Q  
do u  EXTRACT-MIN(Q)

S  S  {u}
for each v  Adj[u]

do if d[v] > d[u] + w(u, v)
then d[v]  d[u] + w(u, v)

relaxation
step

Implicit DECREASE-KEY

L14.9

Example of Dijkstra’s
algorithm

A

B D

C E

10

3

1 4 7 9
8

2

2

Graph with
nonnegative
edge weights:

L14.10

Example of Dijkstra’s
algorithm

A

B D

C E

10

3

1 4 7 9
8

2

2

Initialize:

A B C D E Q:

0    

S: {}

0



 



L14.11

Example of Dijkstra’s
algorithm

A

B D

C E

10

3

1 4 7 9
8

2

2 A B C D E Q:

0    

S: { A }

0



 


“A”  EXTRACT-MIN(Q):

L14.12

Example of Dijkstra’s
algorithm

A

B D

C E

10

3

1 4 7 9
8

2

2 A B C D E Q:

0    

S: { A }

0

10

3 



10 3  

Relax all edges leaving A:

L14.13

Example of Dijkstra’s
algorithm

A

B D

C E

10

3

1 4 7 9
8

2

2 A B C D E Q:

0    

S: { A, C }

0

10

3 



10 3  

“C”  EXTRACT-MIN(Q):

L14.14

Example of Dijkstra’s
algorithm

A

B D

C E

10

3

1 4 7 9
8

2

2 A B C D E Q:

0    

S: { A, C }

0

7

3 5

11

10 3  

7 11 5

Relax all edges leaving C:

L14.15

Example of Dijkstra’s
algorithm

A

B D

C E

10

3

1 4 7 9
8

2

2 A B C D E Q:

0    

S: { A, C, E }

0

7

3 5

11

10 3  

7 11 5

“E”  EXTRACT-MIN(Q):

L14.16

Example of Dijkstra’s
algorithm

A

B D

C E

10

3

1 4 7 9
8

2

2 A B C D E Q:

0    

S: { A, C, E }

0

7

3 5

11

10 3  

7 11 5

7 11

Relax all edges leaving E:

L14.17

Example of Dijkstra’s
algorithm

A

B D

C E

10

3

1 4 7 9
8

2

2 A B C D E Q:

0    

S: { A, C, E, B }

0

7

3 5

11

10 3  

7 11 5

7 11

“B”  EXTRACT-MIN(Q):

L14.18

Example of Dijkstra’s
algorithm

A

B D

C E

10

3

1 4 7 9
8

2

2 A B C D E Q:

0    

S: { A, C, E, B }

0

7

3 5

9

10 3  

7 11 5

7 11

Relax all edges leaving B:

9

L14.19

Example of Dijkstra’s
algorithm

A

B D

C E

10

3

1 4 7 9
8

2

2 A B C D E Q:

0    

S: { A, C, E, B, D }

0

7

3 5

9

10 3  

7 11 5

7 11

9

“D”  EXTRACT-MIN(Q):

L14.20

Correctness — Part I

Lemma. Initializing d[s]  0 and d[v]   for all
v  V – {s} establishes d[v]  d(s, v) for all v  V,
and this invariant is maintained over any sequence
of relaxation steps.
Proof. Suppose not. Let v be the first vertex for
which d[v] < d(s, v), and let u be the vertex that
caused d[v] to change: d[v] = d[u] + w(u, v). Then,

d[v] < d(s, v) supposition
 d(s, u) + d(u, v) triangle inequality
 d(s,u) + w(u, v) sh. path  specific path
 d[u] + w(u, v) v is first violation

Contradiction.

L14.21

Correctness — Part II

Theorem. Dijkstra’s algorithm terminates with
d[v] = d(s, v) for all v  V.

Proof. It suffices to show that d[v] = d(s, v) for every v
 V when v is added to S. Suppose u is the first vertex
added to S for which d[u]  d(s, u). Let y be the first
vertex in V – S along a shortest path from s to u, and
let x be its predecessor:

s
x y

u

S, just before
adding u.

L14.22

Correctness — Part II
(continued)

Since u is the first vertex violating the claimed invariant,
we have d[x] = d(s, x). Since subpaths of shortest paths
are shortest paths, it follows that d[y] was set to d(s, x) +
w(x, y) = d(s, y) when (x, y) was relaxed just after x was
added to S. Consequently, we have d[y] = d(s, y)  d(s, u)
 d[u]. But, d[u]  d[y] by our choice of u, and hence d[y]
= d(s, y)  d(s, u)  d[u]. Contradiction.

s
x y

u S

L14.23

Analysis of Dijkstra

degree(u)
times

|V |
times

Handshaking Lemma  Q(E) implicit DECREASE-KEY’s.

Time = Q(V)·TEXTRACT-MIN + Q(E)·TDECREASE-KEY

Note: Same formula as in the analysis of Prim’s
minimum spanning tree algorithm.

while Q  
do u  EXTRACT-MIN(Q)

S  S  {u}
for each v  Adj[u]

do if d[v] > d[u] + w(u, v)
then d[v]  d[u] + w(u, v)

L14.24

Analysis of Dijkstra
(continued)

Time = Q(V)·TEXTRACT-MIN + Q(E)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total

array O(V) O(1) O(V2)

binary
heap

O(lg V) O(lg V) O(E lg V)

Fibonacci
heap

O(lg V)
amortized

O(1)
amortized

O(E + V lg V)
worst case

