Greedy Algorithms, Graphs, Minimum Spanning Trees

Lecture 13

Graphs (review)

Definition. A directed graph (digraph)

G = (V, E) is an ordered pair consisting of

- a set *V* of *vertices* (singular: *vertex*),
- a set $E \subseteq V \times V$ of *edges*.

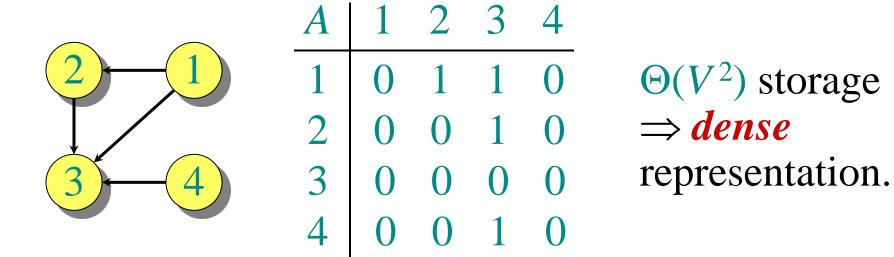
In an *undirected graph* G = (V, E), the edge set E consists of *unordered* pairs of vertices.

In either case, we have $|E| = O(V^2)$. Moreover, if G is connected, then $|E| \ge |V| - 1$, which implies that $\lg |E| = \Theta(\lg V)$.

Adjacency-matrix representation

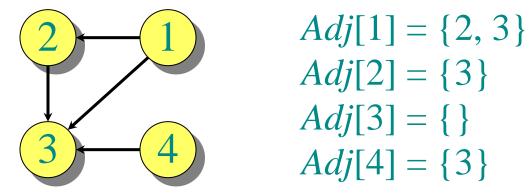
The *adjacency matrix* of a graph G = (V, E), where $V = \{1, 2, ..., n\}$, is the matrix A[1 ... n, 1 ... n] given by

$$A[i,j] = \begin{cases} 1 & \text{if } (i,j) \in E, \\ 0 & \text{if } (i,j) \notin E. \end{cases}$$



Adjacency-list representation

An *adjacency list* of a vertex $v \in V$ is the list Adj[v] of vertices adjacent to v.



For undirected graphs, |Adj[v]| = degree(v). For digraphs, |Adj[v]| = out-degree(v).

Handshaking Lemma: $\sum_{v \in V} = 2|E|$ for undirected graphs \Rightarrow adjacency lists use $\Theta(V + E)$ storage — a *sparse* representation (for either type of graph).

Minimum spanning trees

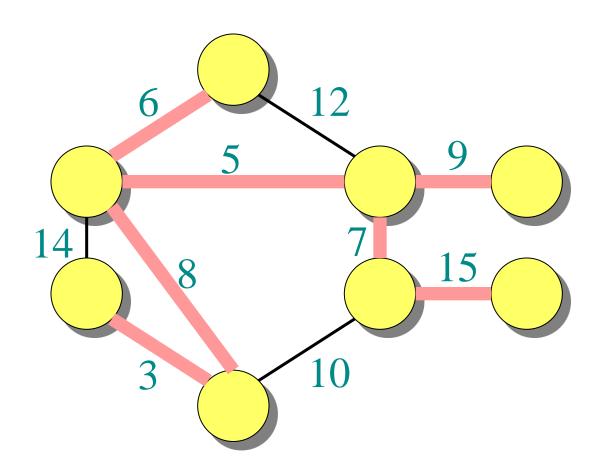
Input: A connected, undirected graph G = (V, E) with weight function $w : E \to \mathbb{R}$.

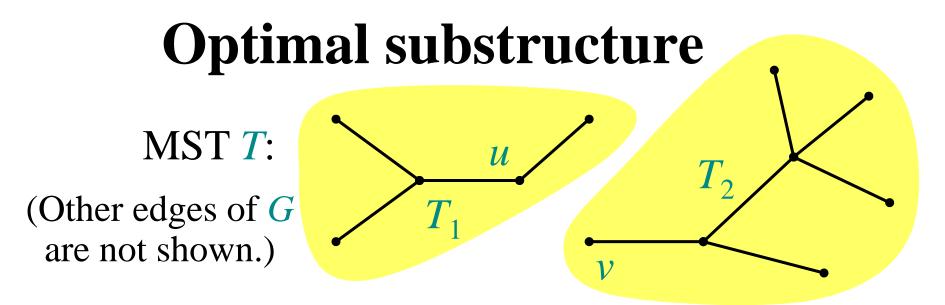
• For simplicity, assume that all edge weights are distinct. (cormen book covers the general case.)

Output: A *spanning tree* T — a tree that connects all vertices — of minimum weight:

$$w(T) = \sum_{(u,v)\in T} w(u,v).$$

Example of MST





Remove any edge $(u, v) \in T$. Then, T is partitioned into two subtrees T_1 and T_2 .

Theorem. The subtree T_1 is an MST of $G_1 = (V_1, E_1)$, the subgraph of G induced by the vertices of T_1 :

$$V_1 = \text{vertices of } T_1,$$

 $E_1 = \{ (x, y) \in E : x, y \in V_1 \}.$

Similarly for T_2 .

Proof of optimal substructure

Proof. Cut and paste:

$$w(T) = w(u, v) + w(T_1) + w(T_2).$$

If T_1' were a lower-weight spanning tree than T_1 for G_1 , then $T' = \{(u, v)\} \cup T_1' \cup T_2$ would be a lower-weight spanning tree than T for G.

Do we also have overlapping subproblems?

• Yes.

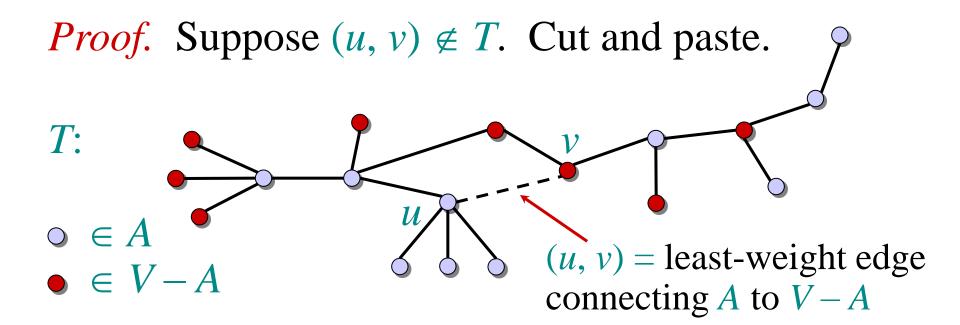
Great, then dynamic programming may work!

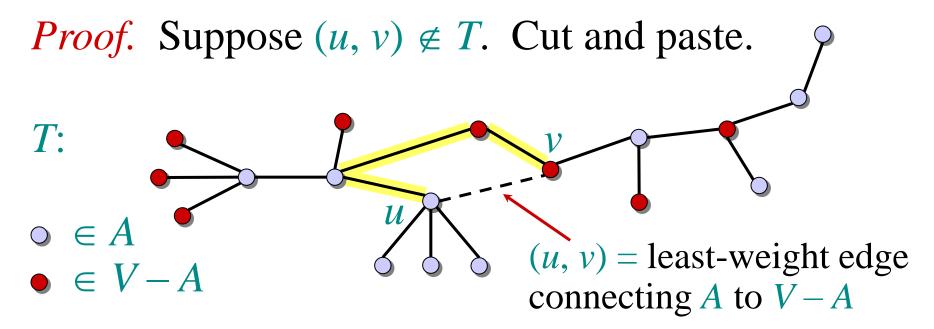
• Yes, but MST exhibits another powerful property which leads to an even more efficient algorithm.

Hallmark for "greedy" algorithms

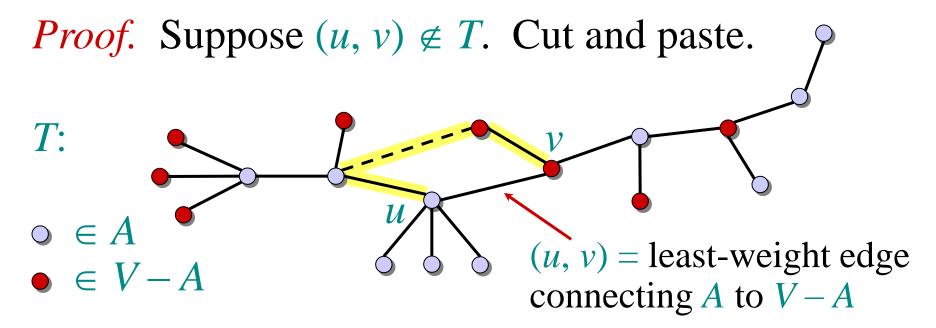
Greedy-choice property
A locally optimal choice
is globally optimal.

Theorem. Let T be the MST of G = (V, E), and let $A \subseteq V$. Suppose that $(u, v) \in E$ is the least-weight edge connecting A to V - A. Then, $(u, v) \in T$.

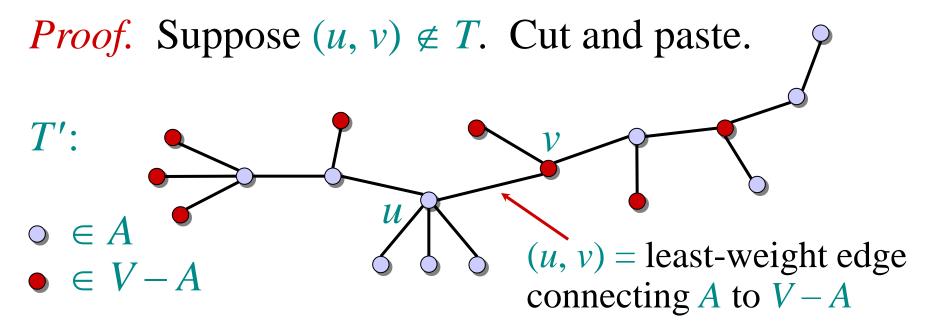




Consider the unique simple path from u to v in T.



Consider the unique simple path from u to v in T. Swap (u, v) with the first edge on this path that connects a vertex in A to a vertex in V - A.



Consider the unique simple path from u to v in T.

Swap (u, v) with the first edge on this path that connects a vertex in A to a vertex in V-A.

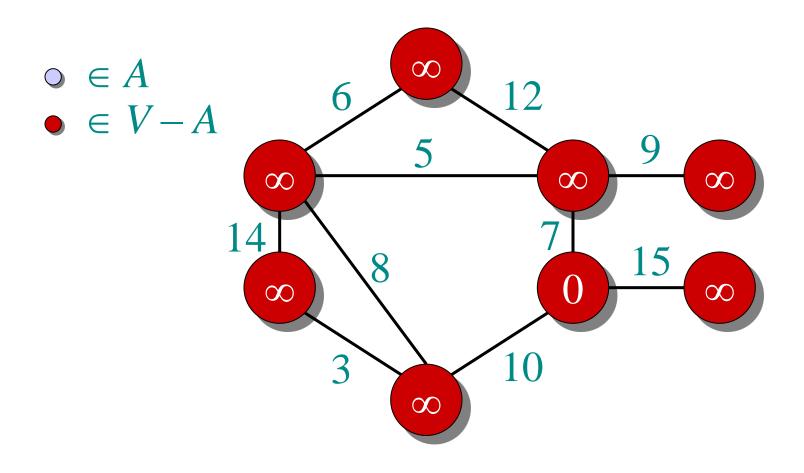
A lighter-weight spanning tree than *T* results.

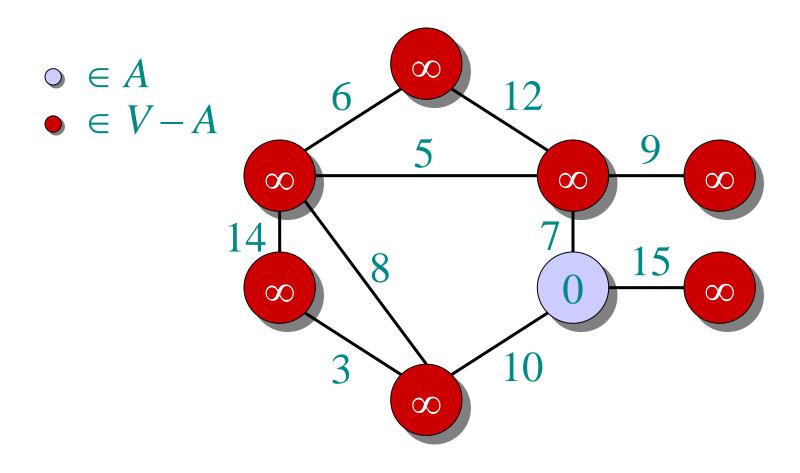
Prim's algorithm

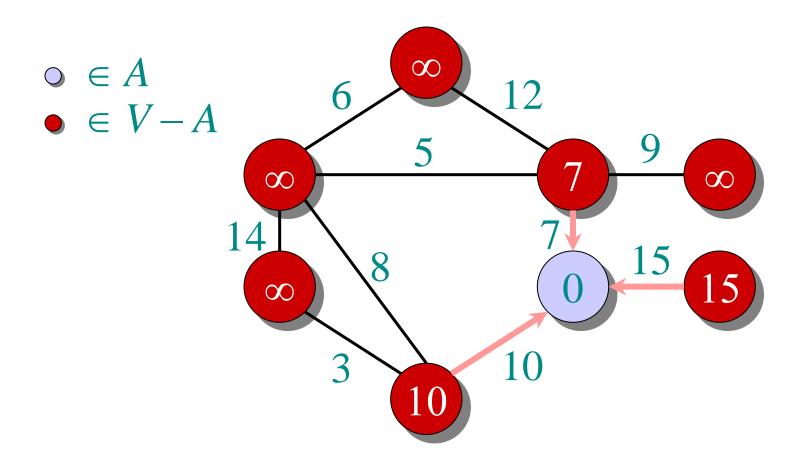
IDEA: Maintain V-A as a priority queue Q. Key each vertex in Q with the weight of the leastweight edge connecting it to a vertex in A.

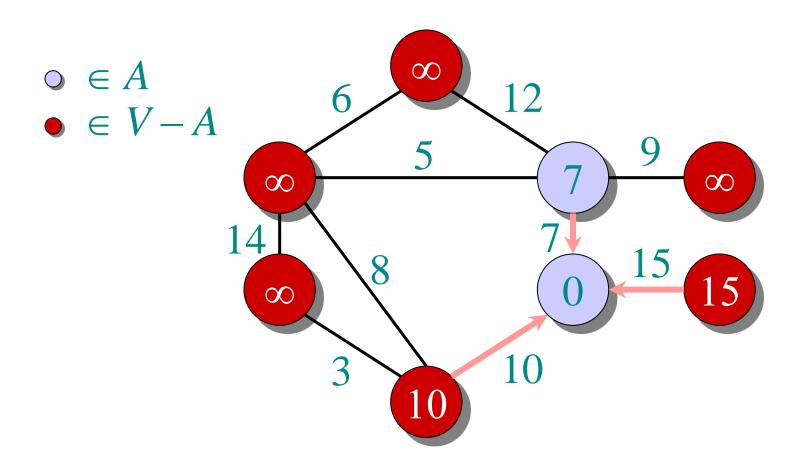
```
Q \leftarrow V
key[v] \leftarrow \infty for all v \in V
key[s] \leftarrow 0 for some arbitrary s \in V
while Q \neq \emptyset
do u \leftarrow \text{EXTRACT-MIN}(Q)
for each v \in Adj[u]
do if v \in Q and w(u, v) < key[v]
then key[v] \leftarrow w(u, v)
\triangleright \text{DECREASE-KEY}
\pi[v] \leftarrow u
```

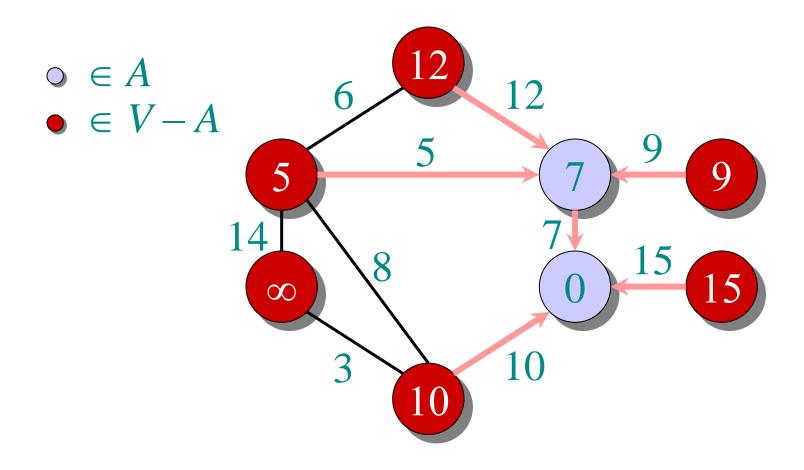
At the end, $\{(v, \pi[v])\}$ forms the MST.

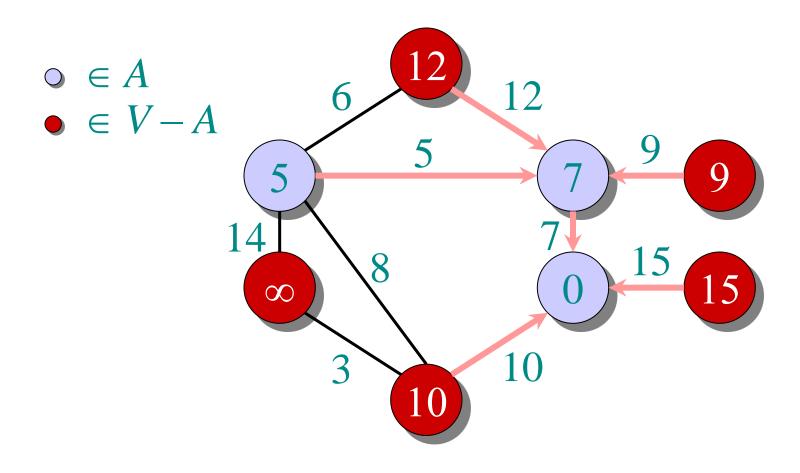


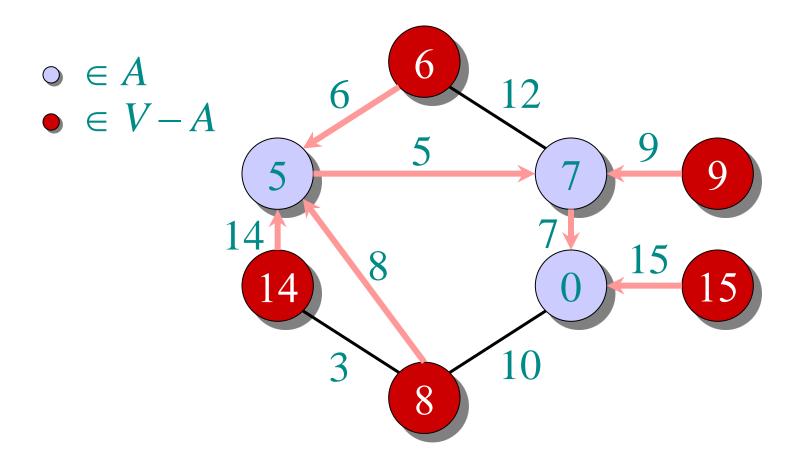


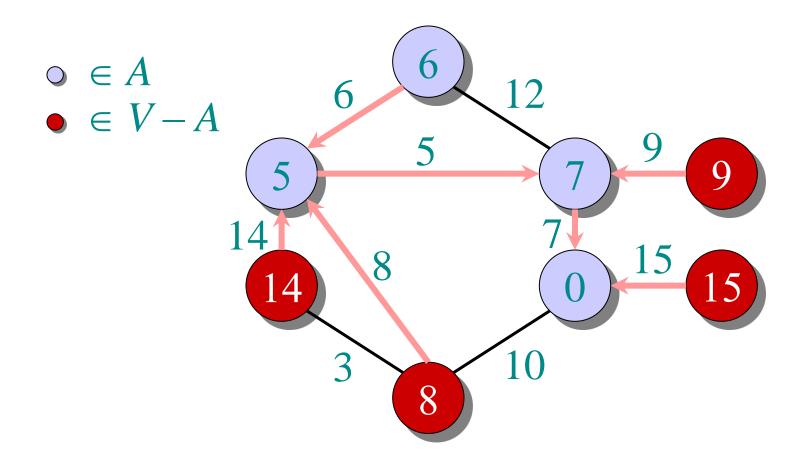


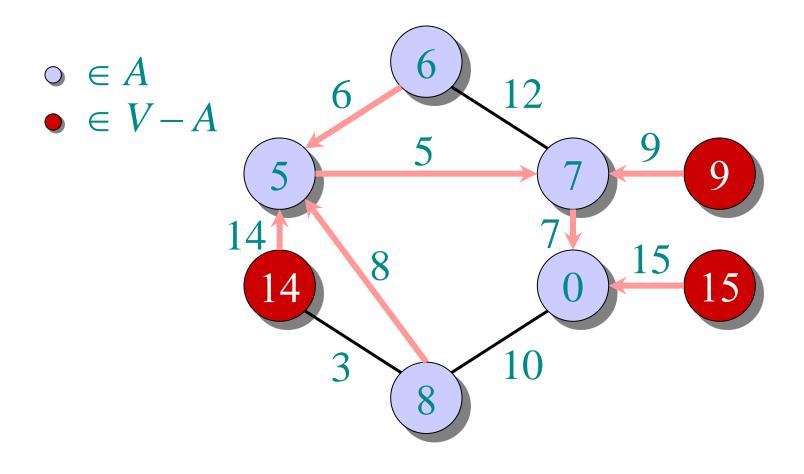


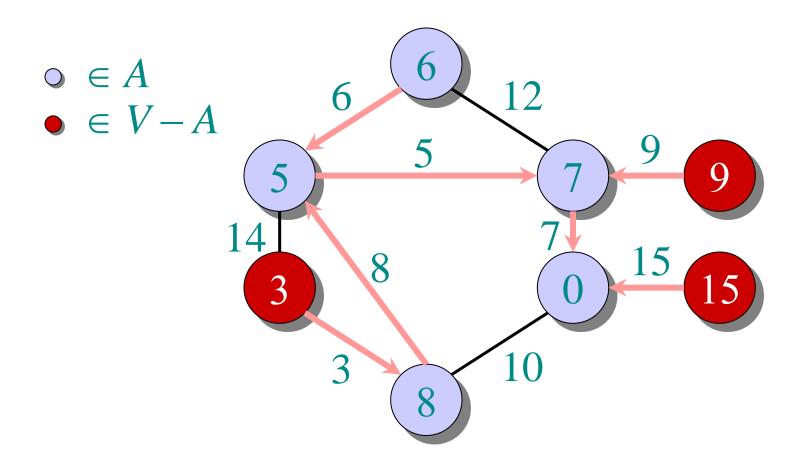


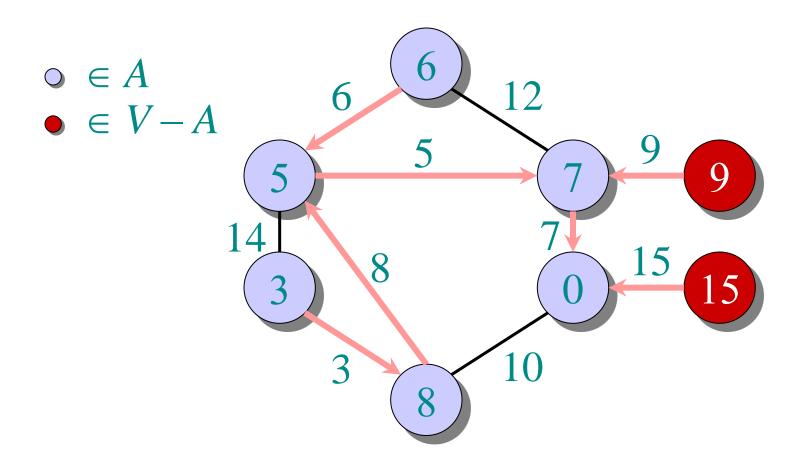


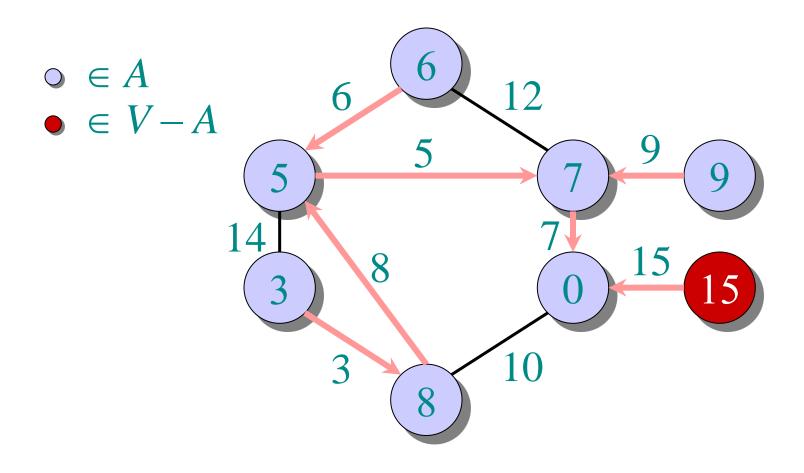


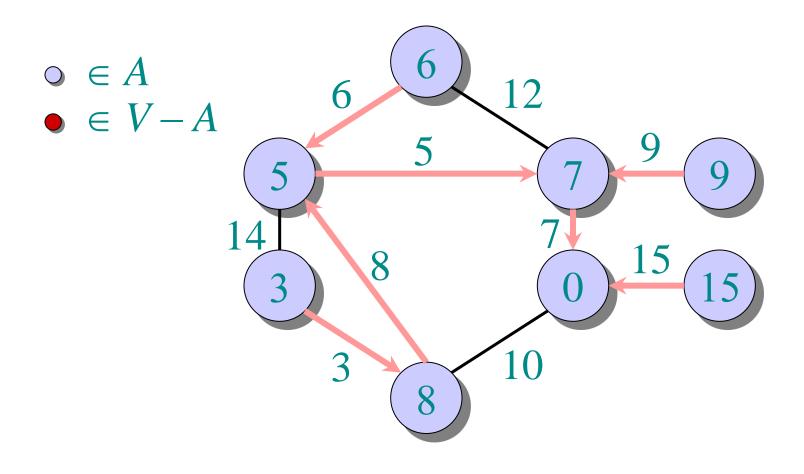












Analysis of Prim

```
\Theta(V) \begin{cases} Q \leftarrow V \\ key[v] \leftarrow \infty \text{ for all } v \in V \\ key[s] \leftarrow 0 \text{ for some arbitrary } s \in V \end{cases}
                  while Q \neq \emptyset
                        \mathbf{do} \ u \leftarrow \text{EXTRACT-MIN}(Q)
                             for each v \in Adj[u]
                                 do if v \in Q and w(u, v) < key[v]
                                               then key[v] \leftarrow w(u, v)
                                                         \pi[v] \leftarrow u
```

Handshaking Lemma $\Rightarrow \Theta(E)$ implicit Decrease-Key's.

$$Time = \Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$$

Analysis of Prim (continued)

$$Time = \Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$$

Q	T _{EXTRACT-MIN}	T _{DECREASE-KE}	Y Total
array	O(V)	<i>O</i> (1)	$O(V^2)$
binary heap	$O(\lg V)$	$O(\lg V)$	$O(E \lg V)$
Fibonacci heap	i $O(\lg V)$ amortized	O(1) amortized	$O(E + V \lg V)$ worst case

MST algorithms

Kruskal's algorithm:

- Uses the disjoint-set data structure.
- Running time = $O(E \lg V)$.

Best to date:

- Karger, Klein, and Tarjan [1993].
- Randomized algorithm.
- O(V + E) expected time.