
Dynamic Programming,
Longest Common
Subsequence

Lecture 12

L12.2

Dynamic programming

Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)
• Given two sequences x[1 . . m] and y[1 . . n], find

a longest subsequence common to them both.

x: A B C B D A B

y: B D C A B A

“a” not “the”

BCBA =
LCS(x, y)

functional notation,
but not a function

L12.3

Brute-force LCS algorithm

Check every subsequence of x[1 . . m] to see
if it is also a subsequence of y[1 . . n].

Analysis

• Checking = O(n) time per subsequence.

• 2m subsequences of x (each bit-vector of
length m determines a distinct subsequence
of x).

Worst-case running time = O(n2m)

= exponential time.

 L12.4

Towards a better algorithm

Simplification:

1. Look at the length of a longest-common
subsequence.

2. Extend the algorithm to find the LCS itself.

Strategy: Consider prefixes of x and y.

• Define c[i, j] = | LCS(x[1 . . i], y[1 . . j]) |.

• Then, c[m, n] = | LCS(x, y) |.

Notation: Denote the length of a sequence s
by | s |.

L12.5

Recursive formulation

Theorem.

c[i, j] =
c[i–1, j–1] + 1 if x[i] = y[j],

max{c[i–1, j], c[i, j–1]} otherwise.

Let z[1 . . k] = LCS(x[1 . . i], y[1 . . j]), where c[i, j]
= k. Then, z[k] = x[i], or else z could be extended.
Thus, z[i . . k–1] is CS of x[1 . . i–1] and y[1 . . j–1].

Proof. Case x[i] = y[j]:

L
1 2 i m

L
1 2 j n

x:

y:
=

L12.6

Proof (continued)

Claim: z[1 . . k–1] = LCS(x[1 . . i–1], y[1 . . j–1]).
Suppose w is a longer CS of x[1 . . i–1] and
y[1 . . j–1], that is, | w | > k–1. Then, cut and
paste: w || z[k] (w concatenated with z[k]) is a
common subsequence of x and y with

| w || z[k] | > k. Contradiction, proving claim.

Thus, c[i–1, j–1] = k–1, which implies that c[i, j]
= c[i–1, j–1] + 1.

Other cases are similar.

L12.7

Dynamic-programming
hallmark #1

Optimal substructure
An optimal solution to a problem

(instance) contains optimal
solutions to subproblems.

If z = LCS(x, y), then any prefix of z is
an LCS of a prefix of x and a prefix of y.

L12.8

Recursive algorithm for LCS

LCS(x, y, i, j)

if x[i] = y[j]

then c[i, j]  LCS(x, y, i–1, j–1) + 1

else c[i, j]  max{ LCS(x, y, i–1, j),

LCS(x, y, i, j–1)}

Worst-case: x[i]  y[j], in which case the
algorithm evaluates two subproblems, each
with only one parameter decremented.

L12.9

same
subproblem

,
but we’re solving subproblems already solved!

Recursion tree

m = 3, n = 4: 3,4

2,4

1,4

3,3

3,2 2,3

1,3 2,2

Height = m + n  work potentially exponential.

2,3

1,3 2,2

m+n

L12.10

Dynamic-programming
hallmark #2

Overlapping subproblems
A recursive solution contains a

“small” number of distinct
subproblems repeated many times.

The number of distinct LCS subproblems for
two strings of lengths m and n is only m n.

L12.11

Memoization algorithm

Memoization: After computing a solution to a
subproblem, store it in a table. Subsequent calls
check the table to avoid redoing work.

Time = Q(m n) = constant work per table entry.
Space = Q(m n).

LCS(x, y, i, j)

if c[i, j] = NIL

then if x[i] = y[j]

then c[i, j]  LCS(x, y, i–1, j–1) + 1

else c[i, j]  max{ LCS(x, y, i–1, j),

LCS(x, y, i, j–1)}

same
as
before

L12.12

0 0 0 0 0

0 0 1 1 1

0 0 0

1 1 1

0 0 1 1 1 2 2 D 2

0 0 1 2 2 2 2 C 2

0 1 1 2 2 2 3 A 3

0 1 2 2 3 3 3 B 4

0 1 2 2 3 3

A

Dynamic-programming
algorithm

IDEA:

Compute the
table bottom-up.

A B C B D B

B

A 4 4

Time = Q(m n).

L12.13

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 D 2

0 0 1 2 2 2 2 C 2

0 1 1 2 2 2 3 A 3

0 1 2 2 3 3 3 B 4

0 1 2 2 3 3

A

Dynamic-programming
algorithm

IDEA:

Compute the
table bottom-up.

A B C B D B

B

A 4 4

Time = Q(m n).

Reconstruct
LCS by tracing
backwards.

0

A

4

0

B

B

1

C

C

2

B

B

3

A

A

D

1

A

2

D

3

B

4

Space = Q(m n).

Exercise:
O(min{m, n}).

