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Longest Common 
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Lecture 12 



L12.2 

Dynamic programming 

Design technique, like divide-and-conquer. 

Example: Longest Common Subsequence (LCS) 
• Given two sequences x[1 . . m] and y[1 . . n], find

a longest subsequence common to them both.

x: A B C B D A B 

y: B D C A B A 

“a” not  “the” 

BCBA = 
LCS(x, y) 

functional notation, 
but not a function 
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Brute-force LCS algorithm 

Check every subsequence of x[1 . . m] to see 
if it is also a subsequence of y[1 . . n]. 

Analysis 

• Checking = O(n) time per subsequence.

• 2m subsequences of x (each bit-vector of
length m determines a distinct subsequence
of x).

Worst-case running time = O(n2m) 

= exponential time. 
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Towards a better algorithm 

Simplification: 

1. Look at the length of a longest-common
subsequence.

2. Extend the algorithm to find the LCS itself.

Strategy: Consider prefixes of x and y. 

• Define c[i, j] = | LCS(x[1 . . i], y[1 . . j]) |.

• Then, c[m, n] = | LCS(x, y) |.

Notation: Denote the length of a sequence s 
by | s |. 
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Recursive formulation 

Theorem. 

c[i, j] = 
c[i–1, j–1] + 1 if x[i] = y[j], 

max{c[i–1, j], c[i, j–1]} otherwise.

Let z[1 . . k] = LCS(x[1 . . i], y[1 . . j]), where c[i, j] 
= k.  Then, z[k] = x[i], or else z could be extended.  
Thus, z[i . . k–1] is CS of x[1 . . i–1] and y[1 . . j–1]. 

Proof.  Case x[i] = y[ j]: 

L 
1 2 i m 

L 
1 2 j n 

x: 

y: 
= 
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Proof (continued) 

Claim: z[1 . . k–1] = LCS(x[1 . . i–1], y[1 . . j–1]).  
Suppose w is a longer CS of x[1 . . i–1] and 
y[1 . . j–1], that is, | w | > k–1.  Then, cut and 
paste: w || z[k] (w concatenated with z[k]) is a 
common subsequence of x and y with 

| w || z[k] | > k. Contradiction, proving claim. 

Thus, c[i–1, j–1] = k–1, which implies that c[i, j] 
= c[i–1, j–1] + 1. 

Other cases are similar. 
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Dynamic-programming 
hallmark #1 

Optimal substructure 
An optimal solution to a problem 

(instance) contains optimal 
solutions to subproblems. 

If z = LCS(x, y), then any prefix of z is 
an LCS of a prefix of x and a prefix of y. 
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Recursive algorithm for LCS 

LCS(x, y, i, j) 

if x[i] = y[ j] 

then c[i, j]  LCS(x, y, i–1, j–1) + 1 

else c[i, j]  max{ LCS(x, y, i–1, j),

LCS(x, y, i, j–1)} 

Worst-case: x[i]  y[ j], in which case the 
algorithm evaluates two subproblems, each 
with only one parameter decremented. 
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same 
subproblem 

, 
but we’re solving subproblems already solved! 

Recursion tree 

m = 3, n = 4: 3,4 

2,4 

1,4 

3,3 

3,2 2,3 

1,3 2,2 

Height = m + n  work potentially exponential. 

2,3 

1,3 2,2 

m+n 
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Dynamic-programming 
hallmark #2 

Overlapping subproblems 
A recursive solution contains a 

“small” number of distinct 
subproblems repeated many times. 

The number of distinct LCS subproblems for 
two strings of lengths m and n is only m n. 
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Memoization algorithm 

Memoization:  After computing a solution to a 
subproblem, store it in a table.  Subsequent calls 
check the table to avoid redoing work. 

Time = Q(m n) = constant work per table entry. 
Space = Q(m n).  

LCS(x, y, i, j) 

if c[i, j] = NIL 

then if x[i] = y[j] 

then c[i, j]  LCS(x, y, i–1, j–1) + 1 

else c[i, j]  max{ LCS(x, y, i–1, j),

LCS(x, y, i, j–1)} 

same 
as 
before 
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0 0 0 0 0 

0 0 1 1 1 

0 0 0 

1 1 1 

0 0 1 1 1 2 2 D 2 

0 0 1 2 2 2 2 C 2 

0 1 1 2 2 2 3 A 3 

0 1 2 2 3 3 3 B 4 

0 1 2 2 3 3 

A 

Dynamic-programming 
algorithm 

IDEA: 

Compute the 
table bottom-up. 

A B C B D B 

B 

A 4 4 

Time = Q(m n). 
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0 0 0 0 0 0 0 0 

0 0 1 1 1 1 1 1 

0 0 1 1 1 2 2 D 2 

0 0 1 2 2 2 2 C 2 

0 1 1 2 2 2 3 A 3 

0 1 2 2 3 3 3 B 4 

0 1 2 2 3 3 

A 

Dynamic-programming 
algorithm 

IDEA: 

Compute the 
table bottom-up. 

A B C B D B 

B 

A 4 4 

Time = Q(m n). 

Reconstruct 
LCS by tracing 
backwards. 

0 

A 

4 

0 

B 

B 

1 

C 

C 

2 

B 

B 

3 

A 

A 

D 

1 

A 

2 

D 

3 

B 

4 

Space = Q(m n). 

Exercise: 
O(min{m, n}). 


