Dynamic Programming,
Longest Common
Subsequence

L_ecture 12

Dynamic programming

Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)

 Given two sequences x[1 .. m]and y[1 . . n], find
a longest subsequence common to them both.
\ ¢6a99 not “the’,

~~

xx A B C B D A B BCBA =
| \ | g LCS(X,y)
y B D C A B A J - |
functional notation,
but not a function

L12.2

Brute-force LCS algorithm

Check every subsequence of x[1 .. m] to see
If It 1s also a subsequence of y[1 .. n].

Analysis
» Checking = O(n) time per subsequence.

» 2™ subsequences of x (each bit-vector of
length m determines a distinct subsequence
of x).

Worst-case running time = O(n2™)

= exponential time.

L12.3

Towards a better algorithm

Simplification:

1. Look at the length of a longest-common
subsequence.

2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s

by |s]|.

Strategy: Consider prefixes of x and v.

e Define c[i, J] = |LCS(x[1 .. 1], y[1..]])|

* Then, c[m, n] = | LCS(X, y) |.

L12.4

Recursive formulation

Theorem.
o c[i-1, j-1] + 1 It x[i] = y[l,
cli, J] = { max{c[i—1, j], c[i, j-1]} otherwise.
Proof. Case x[i] =y[J]

1 2 m

Letz[1.. k] =LCS(x[1..1],y[1..]]),wherecli, |]
= k. Then, z[k] = x[i], or else z could be extended.
Thus, z[1 .. k=1]1sCSof x[1..1-1]and y[1 .. |-1].

L12.5

Proof (continued)

Claim: z[1..k-1]=LCS(x[1..1-1],y[1..}-1]).
Suppose w is a longer CS of x[1 . . 1-1] and
y[1..]-1], thatis, |w|>k-1. Then, cut and
paste: w || z[k] (w concatenated with z[k]) Is a
common subsequence of x and y with

lw || z[K] | > k. Contradiction, proving claim.

Thus, c[1-1, |-1] = k-1, which implies that c[i, ||
— C[i—l, J—l] + 1.

Other cases are similar.

L12.6

Dynamic-programming
hallmark #1

o0

© Optimal substructure

An optimal solution to a problem
(Instance) contains optimal
solutions to subproblems.

—/

If z = LCS(X, y), then any prefix of z Is
an LCS of a prefix of x and a prefix of y.

L12.7

Recursive algorithm for LCS

LCS(x, v, 1, |)
It x[i] =yl]}
thenci, J]] « LCS(x,y, -1,]-1) + 1
else c[i, j] <« max{ LCS(x, vy, i-1, j),
LCS(x,y, i, j-1)}

Worst-case: x[1] = y[], in which case the
algorithm evaluates two subproblems, each
with only one parameter decremented.

L12.8

Recursion tree
=3 n=4: @
@ same @
subproblem

19 23 23) . (3g) men
139) (22 139) (22

Height = m + n = work potentially exponential,
but we’re solving subproblems already solved!

L12.9

Dynamic-programming
hallmark #2

o0

(B Overlapping subproblems
A recursive solution contains a
“small” number of distinct
subproblems repeated many times.

—/

The number of distinct LCS subproblems for
two strings of lengths m and n is only mn.

L12.10

Memoization algorithm

Memoization: After computing a solution to a
subproblem, store it in a table. Subsequent calls
check the table to avoid redoing work.

LCS(x, v, 1,)
if c[i, j] = NIL
then if x[i] = y[j]
then c[i, j] < LCS(x,y, i-1, j-1) + 1 | @M€
else c[i, j] < max{LCS(x, y, i-1,]j), (&
. before
LCS(x, v, i, j-1)}
/

Time = ®(mn) = constant work per table entry.
Space = ®(mn).

'\

L12.11

Dynamic-programming

algorithm

IDEA: A B CB D A B
Compute the 0,0/0/0/0]0|040
_ AN AN N

ta-ble bottom-up. Blolol1l1 1\1 1 N1
Time=0(mn). piglol1l1l1l2]2]2

\

c,oj0|1|2|22/12)|2

A 0\1 1122 2\3 3

B|O 1\2 2\3 3 3\4

N N

Al0(1(2[233 4 4

Dynamic-programming

algorithm

IDEA: B C B A
Compute the 0,040 O\O 0 O\O
ta-ble bottom-up. Bloloft 1M 1111 ™1
Time = ©(mn). olola]1]1l2]2]2
Reconstruct N

LCS by tracing CLOJ0 11122 2\2 2
backwards. 011 2\2 2 3\3
Space=0(mn). B|0J1|2|2]|3 3\3 4
Exercise: Al0[1|2|2|3[3/4)|4

O(min{m, n}).

