Augmenting Data Structures,
Dynamic Order Statistics,
Interval Trees

_ecture 11

Dynamic order statistics

OS-SELECT(I, S): returns the 1th smallest element
In the dynamic set S.

OS-RANK(X, S): returns the rank of x € S In the
sorted order of S’s elements.

IDEA: Use a red-black tree for the set S, but keep
subtree sizes in the nodes.

- _ < key)
Notation for nodes: e

L11.2

Example of an OS-tree

size[x] = size[left[x]] + size[right|x]] + 1

L11.3

Selection

Implementation trick: Use a sentinel
(dummy record) for niL such that size[NiL] = 0.

OS-SELECT(X, 1) cith smallest element in the
subtree rooted at x

k < size[left][x]] + 1 & k =rank(x)

If 1=k then return x

if 1<k
then return OS-SeLecT(left[x], 1)
else return OS-SeLecT(right[x], I — k)

(OS-RANK Is In the textbook.)

L11.4

Example
OS-SELECT(root, 5)

Running time = O(h) = O(lg n) for red-black trees.

L11.5

Data structure maintenance

Q. Why not keep the ranks themselves
IN the nodes instead of subtree sizes?

A. They are hard to maintain when the
red-black tree is modified.

Modifying operations: INSERT and DELETE.

Strategy: Update subtree sizes when
Inserting or deleting.

L11.6

Example of insertion

INSERT(“K™)

MY
2104
(C 7P
64 34
(A 7 E NS QY
N Ny \LJ 1S
/D /HY
N \24

L11.7

Handling rebalancing

Don’t forget that RB-INSERT and RB-DELETE may

also need to modify the red-black tree in order to
maintain balance.

 Recolorings: no effect on subtree sizes.
» Rotations: fix up subtree sizes in O(1) time.

Example: & T
15 i> 16
T 4 A
3 4

7 3
".RB-INserRT and RB-DeLETE still run in O(lg n) time.

L11.8

Data-structure augmentation

Methodology: (e.g., order-statistics trees)

1. Choose an underlying data structure (red-
black trees).

2. Determine additional information to be
stored In the data structure (subtree sizes).

3. Verify that this information can be
maintained for modifying operations (RB-
INSERT, RB-DELETE — don t forget rotations).

4. Develop new dynamic-set operations that use
the information (OS-SELECT and OS-RANK).

These steps are guidelines, not rigid rules.

L11.9

Interval trees

Goal: To maintain a dynamic set of intervals,
such as time intervals.

i = [7, 10]
low[i] = 7 #——> 10 = high[i]
5o .11 17 e—e 19
4e X 15 18 20 e—e 23

Query: For agiven query interval I, find an
Interval In the set that overlaps I.

L11.10

Following the methodology

1. Choose an underlying data structure.
 Red-black tree keyed on low (left) endpoint.

2. Determine additional information to be
stored In the data structure.
» Store In each node x the largest value m|x]
In the subtree rooted at x, as well as the
Interval int[x] corresponding to the key.

INt
m

L11.11

Example interval tree

m[x] = max <

" high[int[x]]
m|[left[x]]

_ m[right[x]]

L11.12

Modifying operations

3. Verify that this information can be maintained
for modifying operations.
* INSERT: FIX m’s on the way down.
 Rotations — Fixup = O(1) time per rotation:

Total INSERT time = O(lg n); DELETE similar.

L11.13

New operations

4. Develop new dynamic-set operations that use
the information.

INTERVAL-SEARCH(I)
X <— root
while x = NIL and (low[i] > high[int[x]]
or low[int[x]] > highl[i])
do = i and int[x] don’t overlap
If left[x] = NIL and low[1] < m[left[x]]
then x <« left[x]
else X « right[x]
return x

L11.14

Exam ple 1: INTERVAL-SEARCH([14,16])

X <— oot
[14,16] and [17,19] don’t overlap
14 <18 = x « left[X]

L11.15

Exam ple 1: INTERVAL-SEARCH([14,16])

[14,16] and [5,11] don’t overlap
14 > 8 = x « right[Xx]

L11.16

Exam ple 1: INTERVAL-SEARCH([14,16])

[14,16] and [15,18] overlap
return [15,18]

L11.17

Exam ple 2" INTERVAL-SEARCH([12,14])

X <— oot
[12,14] and [17,19] don’t overlap
12 <18 = x « leftx]

L11.18

Exam ple 2" INTERVAL-SEARCH([12,14])

[12,14] and [5,11] don’t overlap
12 > 8 = X « right[Xx]

L11.19

Exam ple 2" INTERVAL-SEARCH([12,14])

[12,14] and [15,18] don’t overlap
12 > 10 = X « right[x]

L11.20

Exam ple 2" INTERVAL-SEARCH([12,14])

X

X = NIL = no Interval that
overlaps [12,14] exists

L11.21

Analysis

Time = O(h) = O(lg n), since INTERVAL-SEARCH
does constant work at each level as it follows a
simple path down the tree.

List all overlapping intervals:
e Search, list, delete, repeat.

* Insert them all again at the end.
Time = O(k Ig n), where k is the total number of
overlapping intervals.

This 1s an output-sensitive bound.
Best algorithm to date: O(k + Ig n).

L11.22

Correctness

Theorem. Let L be the set of intervals in the
left subtree of node x, and let R be the set of
Intervals in x’s right subtree.
* If the search goes right, then
{1"eL:1"overlapsi } = .
* I the search goes left, then
{I"eL:1"overlapsi } =
= {I'" e R:1"overlapsi } = .
In other words, it’s always safe to take only 1

of the 2 children: we’ll either find something,
or nothing was to be found.

L11.23

Correctness proof

Proof. Suppose first that the search goes right.
o If left[x] = NIL, then we’re done, since L = .

* Otherwise, the code dictates that we must have
low[i] > m[left[x]]. The value m[left[x]]
corresponds to the right endpoint of some
Interval | € L, and no other interval in L can
have a larger right endpoint than high(j).

. . | .
high(j) = m[leftq] = = low(i)
* Therefore, {i’ € L i’ overlapsi } = .

L11.24

Proof (continued)

Suppose that the search goes left, and assume that
{I"eL:1"overlapsi } = .
* Then, the code dictates that low[i] < m[left[x]] =
high[j] for some | € L.
 Since | € L, it does not overlap I, and hence
high[i] < low[j].
 But, the binary-search-tree property implies that

forall I’ € R, we have low[j] < low[i].
*Butthen{i’ € R:i"overlapsi } = .
| J

/
I

L11.25

