
Red-black Trees, Rotations,
Insertions, Deletions

Lecture 10

 L10.2

Balanced search trees

Balanced search tree: A search-tree data
structure for which a height of O(lg n) is
guaranteed when implementing a dynamic
set of n items.

Examples:

• AVL trees

• 2-3 trees

• 2-3-4 trees

• B-trees

• Red-black trees

 L10.3

Red-black trees

This data structure requires an extra one-
bit color field in each node.

Red-black properties:

1. Every node is either red or black.

2. The root and leaves (NIL’s) are black.

3. If a node is red, then its parent is black.

4. All simple paths from any node x to a
descendant leaf have the same number
of black nodes = black-height(x).

 L10.4

Example of a red-black tree

h = 4

8 11

10

18

26

22

3

7

NIL NIL

NIL NIL NIL NIL

NIL

NIL NIL

 L10.5

Example of a red-black tree

8 11

10

18

26

22

3

7

NIL NIL

NIL NIL NIL NIL

NIL

NIL NIL

1. Every node is either red or black.

 L10.6

Example of a red-black tree

8 11

10

18

26

22

3

7

NIL NIL

NIL NIL NIL NIL

NIL

NIL NIL

2. The root and leaves (NIL’s) are black.

 L10.7

Example of a red-black tree

8 11

10

18

26

22

3

7

NIL NIL

NIL NIL NIL NIL

NIL

NIL NIL

3. If a node is red, then its parent is black.

 L10.8

Example of a red-black tree

4. All simple paths from any node x to a
descendant leaf have the same number of
black nodes = black-height(x).

8 11

10

18

26

22

3

7

NIL NIL

NIL NIL NIL NIL

NIL

NIL NIL

bh = 2

bh = 1

bh = 1

bh = 2

bh = 0

 L10.9

Height of a red-black tree

Theorem. A red-black tree with n keys has height

h  2 lg(n + 1).

Proof. (The book uses induction. Read carefully.)

INTUITION:

• Merge red nodes
into their black
parents.

 L10.10

Height of a red-black tree

Theorem. A red-black tree with n keys has height

h  2 lg(n + 1).

Proof. (The book uses induction. Read carefully.)

INTUITION:

• Merge red nodes
into their black
parents.

 L10.11

Height of a red-black tree

Theorem. A red-black tree with n keys has height

h  2 lg(n + 1).

Proof. (The book uses induction. Read carefully.)

INTUITION:

• Merge red nodes
into their black
parents.

 L10.12

Height of a red-black tree

Theorem. A red-black tree with n keys has height

h  2 lg(n + 1).

Proof. (The book uses induction. Read carefully.)

INTUITION:

• Merge red nodes
into their black
parents.

 L10.13

Height of a red-black tree

Theorem. A red-black tree with n keys has height

h  2 lg(n + 1).

Proof. (The book uses induction. Read carefully.)

INTUITION:

• Merge red nodes
into their black
parents.

 L10.14

Height of a red-black tree

Theorem. A red-black tree with n keys has height

h  2 lg(n + 1).

Proof. (The book uses induction. Read carefully.)

• This process produces a tree in which each node
has 2, 3, or 4 children.

• The 2-3-4 tree has uniform depth h of leaves.

INTUITION:

• Merge red nodes
into their black
parents.

h

 L10.15

Proof (continued)

h

h

• We have
h  h/2, since
at most half
the leaves on any path
are red.

• The number of leaves
in each tree is n + 1
 n + 1  2h'

 lg(n + 1)  h'  h/2
 h  2 lg(n + 1).

 L10.16

Query operations

Corollary. The queries SEARCH, MIN,

MAX, SUCCESSOR, and PREDECESSOR

all run in O(lg n) time on a red-black

tree with n nodes.

 L10.17

Modifying operations

The operations INSERT and DELETE cause
modifications to the red-black tree:

• the operation itself,

• color changes,

• restructuring the links of the tree:
“rotations”.

 L10.18

Rotations

A

B

a b

g

RIGHT-ROTATE(A)

B

A

g b

a

LEFT-ROTATE(B)

Rotations maintain the inorder ordering of keys:
• a  a, b  b, c  g  a  A  b  B  c.

A rotation can be performed in O(1) time.

 L10.19

Insertion into a red-black tree

8

10

18

26

22

7

Example:
3

11

IDEA: Insert x in tree. Color x red. Only red-
black property 3 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

 L10.20

Insertion into a red-black tree

8 11

10

18

26

22

7

15

Example:

• Insert x =15.

• Recolor, moving the
violation up the tree.

3

IDEA: Insert x in tree. Color x red. Only red-
black property 3 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

 L10.21

Insertion into a red-black tree

8 11

10

18

26

22

7

15

Example:

• Insert x =15.

• Recolor, moving the
violation up the tree.

• RIGHT-ROTATE(10).

3

IDEA: Insert x in tree. Color x red. Only red-
black property 3 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

 L10.22

Insertion into a red-black tree

8

11

10

18

26

22

7

15

Example:

• Insert x =15.

• Recolor, moving the
violation up the tree.

• RIGHT-ROTATE(10).

• LEFT-ROTATE(7) and recolor.

3

IDEA: Insert x in tree. Color x red. Only red-
black property 3 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

 L10.23

Insertion into a red-black tree

8 11

10

18

26

22

7

15

Example:

• Insert x =15.

• Recolor, moving the
violation up the tree.

• RIGHT-ROTATE(10).

• LEFT-ROTATE(7) and recolor.

3

IDEA: Insert x in tree. Color x red. Only red-
black property 3 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

 L10.24

Insertion into a red-black tree

IDEA: Insert x in tree. Color x red. Only red-
black property 3 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

8 11

10

18

26

22

7

15

Example:

• Insert x =15.

• Recolor, moving the
violation up the tree.

• RIGHT-ROTATE(10).

• LEFT-ROTATE(7) and recolor.

3

 L10.25

Pseudocode

RB-INSERT(T, x)

TREE-INSERT(T, x)

color[x]  RED ⊳ only RB property 3 can be violated

while x  root[T] and color[p[x]] = RED

do if p[x] = left[p[p[x]]

then y  right[p[p[x]] ⊳ y = aunt/uncle of x

if color[y] = RED

 then Case 1

 else if x = right[p[x]]

 then Case 2 ⊳ Case 2 falls into Case 3

Case 3

else “then” clause with “left” and “right” swapped

color[root[T]]  BLACK

 L10.26

Graphical notation

Let denote a subtree with a black root.

All ’s have the same black-height.

 L10.27

Case 1

B

C

D A

x

y

(Or, children of
A are swapped.)

B

C

D A

new x

Push C’s black onto
A and D, and recurse,
since C’s parent may
be red.

Recolor

 L10.28

Case 2

B

C

A

x

y
LEFT-ROTATE(A)

A

C

B

x

y

Transform to Case 3.

 L10.29

Case 3

A

C

B

x

y

RIGHT-ROTATE(C)

A

B

C

Done! No more
violations of RB
property 3 are
possible.

 L10.30

Analysis

• Go up the tree performing Case 1, which only
recolors nodes.

• If Case 2 or Case 3 occurs, perform 1 or 2
rotations, and terminate.

Running time: O(lg n) with O(1) rotations.

RB-DELETE — same asymptotic running time
(see textbook).

