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Balanced search trees 

Balanced search tree: A search-tree data 
structure for which a height of O(lg n) is 
guaranteed when implementing a dynamic 
set of n items. 

Examples: 

• AVL trees

• 2-3 trees

• 2-3-4 trees

• B-trees

• Red-black trees
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Red-black trees 

This data structure requires an extra one-
bit color field in each node. 

Red-black properties: 

1. Every node is either red or black.

2. The root and leaves (NIL’s) are black.

3. If a node is red, then its parent is black.

4. All simple paths from any node x to a
descendant leaf have the same number
of black nodes = black-height(x).
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Example of a red-black tree 
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Example of a red-black tree 
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1. Every node is either red or black.
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Example of a red-black tree 
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2. The root and leaves (NIL’s) are black.
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Example of a red-black tree 
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3. If a node is red, then its parent is black.
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Example of a red-black tree 

4. All simple paths from any node x to a
descendant leaf have the same number of
black nodes = black-height(x).
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Height of a red-black tree 

Theorem.  A red-black tree with n keys has height 

h  2 lg(n + 1). 

Proof.  (The book uses induction.  Read carefully.) 

INTUITION: 

• Merge red nodes
into their black
parents.
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Height of a red-black tree 

Theorem.  A red-black tree with n keys has height 
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• Merge red nodes
into their black
parents.
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Height of a red-black tree 

Theorem.  A red-black tree with n keys has height 

h  2 lg(n + 1). 

Proof.  (The book uses induction.  Read carefully.) 

INTUITION: 

• Merge red nodes
into their black
parents.
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Height of a red-black tree 

Theorem.  A red-black tree with n keys has height 

h  2 lg(n + 1). 

Proof.  (The book uses induction.  Read carefully.) 

INTUITION: 

• Merge red nodes
into their black
parents.
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Height of a red-black tree 

Theorem.  A red-black tree with n keys has height 

h  2 lg(n + 1). 

Proof.  (The book uses induction.  Read carefully.) 

INTUITION: 

• Merge red nodes
into their black
parents.
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Height of a red-black tree 

Theorem.  A red-black tree with n keys has height 

h  2 lg(n + 1). 

Proof.  (The book uses induction.  Read carefully.) 

• This process produces a tree in which each node
has 2, 3, or 4 children.

• The 2-3-4 tree has uniform depth h of leaves.

INTUITION: 

• Merge red nodes
into their black
parents.

h 
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Proof (continued) 

h 

h 

• We have
h  h/2, since
at most half
the leaves on any path
are red.

• The number of leaves
in each tree is n + 1
 n + 1  2h'

 lg(n + 1)  h'  h/2
 h  2 lg(n + 1).
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Query operations 

Corollary.  The queries SEARCH, MIN, 

MAX, SUCCESSOR, and PREDECESSOR 

all run in O(lg n) time on a red-black 

tree with n nodes. 



   L10.17 

Modifying operations 

The operations INSERT and DELETE cause 
modifications to the red-black tree: 

• the operation itself,

• color changes,

• restructuring the links of the tree:
“rotations”.
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Rotations 

A 

B 

a b 

g 

RIGHT-ROTATE(A) 

B 

A 

g b 

a 

LEFT-ROTATE(B) 

Rotations maintain the inorder ordering of keys: 
• a  a, b  b, c  g    a  A  b  B  c.

A rotation can be performed in O(1) time. 
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Insertion into a red-black tree 

8 

10 

18 

26 

22 

7 

Example: 
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IDEA: Insert x in tree.  Color x red.  Only red-
black property 3 might be violated.  Move the 
violation up the tree by recoloring until it can 
be fixed with rotations and recoloring. 
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Insertion into a red-black tree 
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Example: 

• Insert x =15.

• Recolor, moving the
violation up the tree.

3 

IDEA: Insert x in tree.  Color x red.  Only red-
black property 3 might be violated.  Move the 
violation up the tree by recoloring until it can 
be fixed with rotations and recoloring. 
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Insertion into a red-black tree 
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Example: 

• Insert x =15.

• Recolor, moving the
violation up the tree.

• RIGHT-ROTATE(10).

3 

IDEA: Insert x in tree.  Color x red.  Only red-
black property 3 might be violated.  Move the 
violation up the tree by recoloring until it can 
be fixed with rotations and recoloring. 
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Insertion into a red-black tree 
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Example: 

• Insert x =15.

• Recolor, moving the
violation up the tree.

• RIGHT-ROTATE(10).

• LEFT-ROTATE(7) and recolor.

3 

IDEA: Insert x in tree.  Color x red.  Only red-
black property 3 might be violated.  Move the 
violation up the tree by recoloring until it can 
be fixed with rotations and recoloring. 
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Insertion into a red-black tree 
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Example: 

• Insert x =15.

• Recolor, moving the
violation up the tree.

• RIGHT-ROTATE(10).

• LEFT-ROTATE(7) and recolor.

3 

IDEA: Insert x in tree.  Color x red.  Only red-
black property 3 might be violated.  Move the 
violation up the tree by recoloring until it can 
be fixed with rotations and recoloring. 



    L10.24 

Insertion into a red-black tree 

IDEA: Insert x in tree.  Color x red.  Only red-
black property 3 might be violated.  Move the 
violation up the tree by recoloring until it can 
be fixed with rotations and recoloring. 
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Example: 

• Insert x =15.

• Recolor, moving the
violation up the tree.

• RIGHT-ROTATE(10).

• LEFT-ROTATE(7) and recolor.
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Pseudocode 

RB-INSERT(T, x) 

TREE-INSERT(T, x) 

color[x]  RED  ⊳ only RB property 3 can be violated 

while x  root[T] and color[p[x]] = RED 

do if p[x] = left[p[p[x]] 

then y  right[p[p[x]]  ⊳ y = aunt/uncle of x 

if color[y] = RED 

 then Case 1 

 else  if x = right[p[x]] 

 then Case 2 ⊳ Case 2 falls into Case 3 

Case 3 

else “then” clause with “left” and “right” swapped 

color[root[T]]  BLACK 
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Graphical notation 

Let denote a subtree with a black root. 

All ’s have the same black-height. 
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Case 1 

B 

C 

D A 

x 

y 

(Or, children of 
A are swapped.) 

B 

C 

D A 

new x 

Push C’s black onto 
A and D, and recurse, 
since C’s parent may 
be red. 

Recolor 
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Case 2 

B 

C 

A 

x 

y 
LEFT-ROTATE(A) 

A 

C 

B 

x 

y 

Transform to Case 3. 
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Case 3 

A 

C 

B 

x 

y 

RIGHT-ROTATE(C) 

A 

B 

C 

Done!  No more 
violations of RB 
property 3 are 
possible. 
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Analysis 

• Go up the tree performing Case 1, which only
recolors nodes.

• If Case 2 or Case 3 occurs, perform 1 or 2
rotations, and terminate.

Running time: O(lg n) with O(1) rotations. 

RB-DELETE — same asymptotic running time 
(see textbook). 


