Relation of BSTs to Quicksort,
Analysis of Random BST

_ecture 9



Binary-search-tree sort

T« O > Create an empty BST
fori=1ton

do TRee-INSERT(T, A[i])
Perform an inorder tree walk of T.

Example:
A=[3182675]

Tree-walk time = O(n),
but how long does it
take to build the BST?
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Analysis of BST sort

BST sort performs the same comparisons as
quicksort, but in a different order!

The expected time to build the tree Is asymptot-
Ically the same as the running time of quicksort.
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Node depth

The depth of a node = the number of comparisons

made during

TREE-INSERT. Assuming all input

permutations are equally likely, we have
Average node depth

- 1
n

n
> (#comparisons to insert node i)

RE

=10o(nIgn) (quicksort analysis)
N

=0O(gn) .
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Expected tree height

But, average node depth of a randomly built
BST = O(lg n) does not necessarily mean that its
expected height is also O(lg n) (although it is).

Example.

I

<lgn

|

Ave. depth < 1(n lgn+
n

Vn-+/n
2

=0O(lgn)

L9.5



Height of a randomly built
binary search tree

Outline of the analysis:

* Prove Jensen’s inequality, which says that
f(E[X]) < E[f(X)] for any convex function f and
random variable X.

» Analyze the exponential height of a randomly
built BST on n nodes, which is the random
variable Y = 2%, where X_ is the random
variable denoting the height of the BST.

- Prove that 25l < E[2%n] = E[Y ] = O(nd),
and hence that E[X | = O(lg n).
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Convex functions

A function f: R — R 1s convex If for all
o,3 > 0such that oo + 3 = 1, we have

fox + By) < af(x) + Bi(y)
forall x,y € R.

af(x) + Bi(y)

(%)
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Convexity lemma

Lemma. Letf: R — R be a convex function,
and let {o,, o, ..., o} be a set of nonnegative

constants such that >, o, = 1. Then, for any set
{X{, X, ..., X} of real numbers, we have

f[Zakxkj£Zakf(xk).
k=1 k=1

Proof. By induction onn. Forn =1, we have
a, = 1, and hence f(ax,) < a,f(x,) trivially.
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Proof (continued)

Inductive step:

n n-1 o
f Zakxk = f anxn+(1—an)z KX,
k=1 11— @

N

Algebra.
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Proof (continued)

Inductive step:

n n-1 o
f Zakxk = f anxn+(1—05n)z KX,
k=1 cl—a

n

<a f(x)+(1-a )f(nZl %K xj
— MUn n n 1 K

k=11~ &n

Convexity.
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Proof (continued)

Inductive step:

n n-1 o
f(Zakxkj: f(ananr(l—an)Z “ xkj
k=1 k=1

1-a,

<a f(x)+(1-a )f[nZl %K x)
= Yn n n 1 K

k=11~ &n

n—1 o
Sanf(xn)+(1—an)zl .
k=1~ “n

Induction.
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Proof (continued)

Inductive step:

n n-1 o
f(Zakaj: f(ananr(l—an)Z “ Xk]
k=1 k=1

1-a,

<a f(x.)+(l-a )f[ni %K xj
= Yn n n K

n—1 o,
Sanf(xn)+(1—an)21 .
k=1~ “n

n
= Zak f (Xk)- Algebra.
k=1
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Jensen’s inequality

Lemma. Letf be aconvex function, and let X
be a random variable. Then, f(E[X]) < E[f(X)].

Proof.

f(E[X]) = f[ ik-Pr{X :k}j

K=—00

Definition of expectation.
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Jensen’s inequality

Lemma. Letf be aconvex function, and let X

be a random variable. Then, f(E[X]) < E[f(X)].

Proof.

£ (E[XT) = f[ k- Pr{X :k}]
kK=—00

< if(k).Pr{xzk}

K=—00

Convexity lemma (generalized).
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Jensen’s inequality

Lemma. Letf be aconvex function, and let X

be a random variable. Then, f(E[X]) < E[f(X)].

Proof.

f(E[X]) = f[ ik-Pr{X :k}j

K=—00

< 3£ (k)-Pr{X =K}

K=—00

= E[ f (X)].

Tricky step, but true—think about It.
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Analysis of BST height

Let X, be the random variable denoting
the height of a randomly built binary
search tree on n nodes, and let Y = 2%
be its exponential height.

If the root of the tree has rank k, then
Xn =1+ maX{Xk_l, Xn—k} :

since each of the left and right subtrees

of the root are randomly built. Hence,
we have

Yn =2 maX{Yk_l, Yn—k} :
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Analysis (continued)

Define the indicator random variable Z ., as

1 if the root has rank K,

Znk = | 0 otherwise.

Thus, Pr{Z.,, =1} =E[Z.] = 1/n, and

n
Yn — Zznk (2 ' maX{Yk—liYn—k}) :
k=1
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Exponential height recurrence

n

E[Yn ] =E Z an (2 ' maX{Yk—liYn—k})
k=1

Take expectation of both sides.
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Exponential height recurrence

n

E[Yn ] =E Z an (2 ' maX{Yk—liYn—k})
k=1

= > E[Zy(2- max{Y,_y, Yo 3]

k=1

Linearity of expectation.
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Exponential height recurrence

n

E[Yn]: E zznk (2 ' maX{Yk—LYn—k})
k=1

- z E[an (2 ' maX{Yk—l’Yn—k})]

~

]
2> E[Zn 1 E[max{Y, 1, Yn_i 3]
k=1

Independence of the rank of the root
from the ranks of subtree roots.
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Exponential height recurrence

n

E[Yn]: E Zznk (2 ' maX{Yk—liYn—k})
k=1

=Y E[Zn(2-max{Y,_1,Yn_})]

k=1

2> E[Zn ] E[max{Y, 1, Yn_i 3]
k=1

IN
N

n
Z E[Yk—l + Yn—k]
k=1

N

The max of two nonnegative numbers
Is at most their sum, and E[Z, ] = 1/n.

L9.21



Exponential height recurrence

E[Yn] E Zznk(z'maX{Yk—liYn—k})

n
k=1

- Z E[an (2 ' maX{Yk—l’Yn—k})]

] Each term appears
twice, and reindex.
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Solving the recurrence

Use substitution to =
show that E[Y ] < cn’ ElYn]= ﬁ 2 EY]
for some positive =0
constant c, which we

can pick sufficiently

large to handle the

Initial conditions.
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Solving the recurrence

Use substitution to 4=
show that E[Y ] < cn’ ElYn]= . 2 ElY,]
for some positive i:j
constant c, which we 4 3
. ! <* % ck

can pick sufficiently n =

large to handle the o
initial conditions. Substitution.
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Solving the recurrence

Use substitution to 4 -1
show that E[Y ] < cn’ EYa]=" 2 ElY]

) Mo
for some positive

i n-1
constant ¢, which we <4 Y ck3
can pick sufficiently N
large to handle the Ac (r
initial conditions. <7 | xax

Integral method.
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Solving the recurrence

Use substitution to
show that E[Y ] < cn’
for some positive
constant c, which we
can pick sufficiently
large to handle the
Initial conditions.

n-1

E[Yn]: 4 Z E[Yk]
Ny —o
n—1

§4ch3

Ny —o

SAijnx?’dx
n Jo

:4c(n4)
n\4

Solve the integral.
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Solving the recurrence

Use substitution to A n-1
show that E[Y ] < cn’ E[Y, = h kz_:,) E[Y]

for some positive

i n-1
constant c, which we <4 3" ck3
can pick sufficiently ne
large to handle the Ac (0
initial conditions. <€ | x%dx

=cn®.  Algebra.
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The grand finale

Putting It all together, we have
2EDnl < E[2%n]

Jensen’s inequality, since
f(x) = 2% is convex.
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The grand finale

Putting It all together, we have
2EXnl < E[2%n]
= E[Y,]

Definition.
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The grand finale

Putting It all together, we have
2EDnl < E[2%n]
= E[Y,]
<cns.

What we just showed.
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The grand finale

Putting It all together, we have
2EDnl < E[2%n]
= E[Y,]
<cns.
Taking the Ig of both sides yields
E[X,]<3lgn+0(1).
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Post mortem

Q. Does the analysis have to be this hard?

Q. Why bother with analyzing exponential
height?

Q. Why not just develop the recurrence on
Xn =1+ maX{Xk_l, Xn—k}
directly?

L9.32



Post mortem (continued)

A. The Inequality
max{a, b} <a+Db.
provides a poor upper bound, since the RHS
approaches the LHS slowly as |a — b| Increases.
The bound

max{22, 20} < 22 4 2D
allows the RHS to approach the LHS far more
quickly as |a — b| Iincreases. By using the
convexity of f(x) = 2° via Jensen’s inequality,
we can manipulate the sum of exponentials,
resulting in a tight analysis.
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Thought exercises

 See what happens when you try to do the
analysis on X, directly.

* Try to understand better why the proof
uses an exponential. Will a quadratic do?

» See If you can find a simpler argument.
(This argument is a little simpler than the
one in the book—I hope it’s correct!)
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