
Relation of BSTs to Quicksort, 
Analysis of Random BST 

Lecture 9 
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3 

Binary-search-tree sort 

T    ⊳ Create an empty BST 

for i = 1 to n 

do TREE-INSERT(T, A[i]) 

Perform an inorder tree walk of T. 

Example: 

A = [3 1 8 2 6 7 5] 8 1 

2 6 

5 7 

Tree-walk time = O(n), 
but how long does it 
take to build the BST? 
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Analysis of BST sort 

BST sort performs the same comparisons as 
quicksort, but in a different order! 

3  1  8  2  6  7  5 

1  2 8  6  7  5 

2 6 7 5 

7 5 

The expected time to build the tree is asymptot-
ically the same as the running time of quicksort. 
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Node depth 

The depth of a node = the number of comparisons 
made during TREE-INSERT.  Assuming all input 
permutations are equally likely, we have 
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Expected tree height 

But, average node depth of a randomly built 
BST = O(lg n) does not necessarily mean that its 
expected height is also O(lg n) (although it is). 

Example. 

 lg n 

nh 

)(lg

2
lg1

nO

nnnn
n








 Ave. depth 



    L9.6 

Height of a randomly built 
binary search tree 

• Prove Jensen’s inequality, which says that
f(E[X])  E[f(X)] for any convex function f and
random variable X.

• Analyze the exponential height of a randomly
built BST on n nodes, which is the random
variable Yn = 2Xn, where Xn is the random
variable denoting the height of the BST. 

• Prove that 2E[Xn]  E[2Xn ] = E[Yn] = O(n3),
and hence that E[Xn] = O(lg n).

Outline of the analysis: 
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Convex functions 

A function f : R  R is convex if for all 
a,b  0 such that a + b = 1, we have 

f(ax + by)  af(x) + bf(y) 

for all x,y  R. 

ax + by 

af(x) + bf(y) 

f(ax + by) 

x y 

f(x) 

f(y) 
f 
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Convexity lemma 

Lemma. Let f : R  R be a convex function, 
and let {a1, a2 , …, an} be a set of nonnegative 
constants such that k ak = 1.  Then, for any set 
{x1, x2, …, xn} of real numbers, we have 
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Proof.  By induction on n.  For n = 1, we have 
a1 = 1, and hence f(a1x1)  a1f(x1) trivially. 
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Proof (continued) 
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Inductive step: 

Algebra. 
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Proof (continued) 
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Inductive step: 

Convexity. 
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Proof (continued) 
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Inductive step: 

Induction. 
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Proof (continued) 
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Inductive step: 

Algebra. . 
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Jensen’s inequality 

Lemma.  Let f  be a convex function, and let X 
be a random variable.  Then, f (E[X])  E[ f (X)].  
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Proof. 

Definition of expectation. 
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Jensen’s inequality 
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Proof. 

Convexity lemma (generalized). 

Lemma.  Let f  be a convex function, and let X 
be a random variable.  Then, f (E[X])  E[ f (X)].  
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Jensen’s inequality 
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Proof. 

Tricky step, but true—think about it. 

Lemma.  Let f  be a convex function, and let X 
be a random variable.  Then, f (E[X])  E[ f (X)].  
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Analysis of BST height 

Let Xn be the random variable denoting
the height of a randomly built binary 
search tree on n nodes, and let Yn = 2Xn

be its exponential height. 

If the root of the tree has rank k, then 

Xn = 1 + max{Xk–1, Xn–k} ,

since each of the left and right subtrees 
of the root are randomly built.  Hence, 
we have 

Yn = 2· max{Yk–1, Yn–k} .
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Analysis (continued) 

Define the indicator random variable Znk as

Znk =
1 if the root has rank k, 

0 otherwise. 

Thus, Pr{Znk = 1} = E[Znk] = 1/n, and
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Exponential height recurrence 
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Take expectation of both sides. 
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Exponential height recurrence 
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Linearity of expectation. 
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Exponential height recurrence 
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Independence of the rank of the root 
from the ranks of subtree roots. 
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Exponential height recurrence 
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The max of two nonnegative numbers 
is at most their sum, and E[Znk] = 1/n.
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Exponential height recurrence 
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Each term appears 
twice, and reindex. 
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Solving the recurrence 

Use substitution to 
show that E[Yn]  cn3

for some positive 
constant c, which we 
can pick sufficiently 
large to handle the 
initial conditions. 
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Solving the recurrence 

Use substitution to 
show that E[Yn]  cn3

for some positive 
constant c, which we 
can pick sufficiently 
large to handle the 
initial conditions. 
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Substitution. 



  L9.25 

Solving the recurrence 

Use substitution to 
show that E[Yn]  cn3

for some positive 
constant c, which we 
can pick sufficiently 
large to handle the 
initial conditions. 
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Solving the recurrence 

Use substitution to 
show that E[Yn]  cn3

for some positive 
constant c, which we 
can pick sufficiently 
large to handle the 
initial conditions. 
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Solving the recurrence 

Use substitution to 
show that E[Yn]  cn3

for some positive 
constant c, which we 
can pick sufficiently 
large to handle the 
initial conditions. 
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. Algebra. 



  L9.28 

The grand finale 

2E[Xn]  E[2Xn ] 

Putting it all together, we have 

Jensen’s inequality, since 
f(x) = 2x is convex.
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The grand finale 

2E[Xn]  E[2Xn ] 

= E[Yn]

Putting it all together, we have 

Definition. 
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The grand finale 

2E[Xn]  E[2Xn ] 

= E[Yn]

 cn3
 . 

Putting it all together, we have 

What we just showed. 
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The grand finale 

2E[Xn]  E[2Xn ] 

= E[Yn]

 cn3
 . 

Putting it all together, we have 

Taking the lg of both sides yields 

E[Xn]  3 lg n +O(1) .
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Post mortem 

Q. Does the analysis have to be this hard? 

Q. Why bother with analyzing exponential 
height? 

Q. Why not just develop the recurrence on 

Xn = 1 + max{Xk–1, Xn–k}

directly? 
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Post mortem (continued) 

A. The inequality 
max{a, b}  a + b . 

provides a poor upper bound, since the RHS 
approaches the LHS slowly as |a – b| increases. 
The bound  

max{2a, 2b}  2a + 2b 
allows the RHS to approach the LHS far more 
quickly as |a – b| increases.  By using the 
convexity of f(x) = 2x via Jensen’s inequality,
we can manipulate the sum of exponentials, 
resulting in a tight analysis. 
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Thought exercises 

• See what happens when you try to do the
analysis on Xn directly.

• Try to understand better why the proof
uses an exponential.  Will a quadratic do?

• See if you can find a simpler argument.
(This argument is a little simpler than the
one in the book—I hope it’s correct!)




