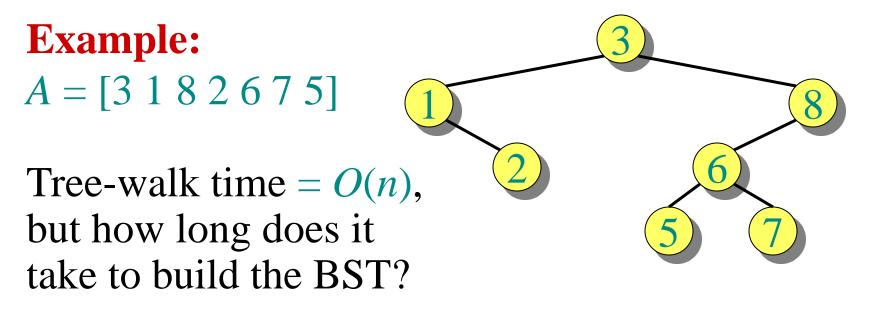
Relation of BSTs to Quicksort, Analysis of Random BST

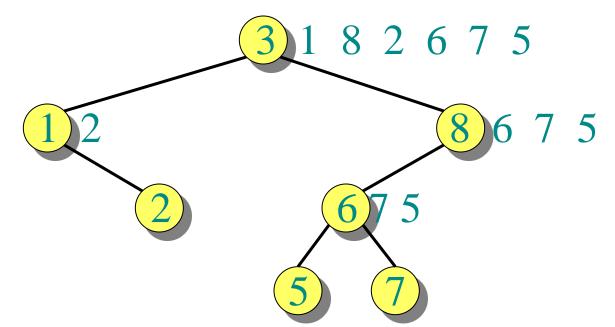
Binary-search-tree sort

 $T \leftarrow \emptyset \qquad \rhd \text{ Create an empty BST}$ for i = 1 to ndo TREE-INSERT(T, A[i]) Perform an inorder tree walk of T.



Analysis of BST sort

BST sort performs the same comparisons as quicksort, but in a different order!



The expected time to build the tree is asymptotically the same as the running time of quicksort.

Node depth

The depth of a node = the number of comparisons made during TREE-INSERT. Assuming all input permutations are equally likely, we have

Average node depth

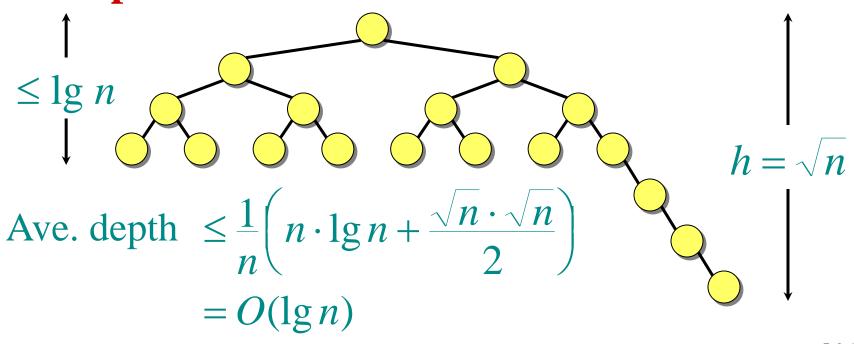
$$= \frac{1}{n} E \left[\sum_{i=1}^{n} (\text{\# comparisons to insert node } i) \right]$$

- $=\frac{1}{n}O(n\lg n) \qquad (quicksort analysis)$
- $= O(\lg n)$.

Expected tree height

But, average node depth of a randomly built BST = $O(\lg n)$ does not necessarily mean that its expected height is also $O(\lg n)$ (although it is).

Example.



Height of a randomly built binary search tree

Outline of the analysis:

- Prove *Jensen's inequality*, which says that $f(E[X]) \le E[f(X)]$ for any convex function *f* and random variable *X*.
- Analyze the *exponential height* of a randomly built BST on *n* nodes, which is the random variable $Y_n = 2^{X_n}$, where X_n is the random variable denoting the height of the BST.
- Prove that $2^{E[X_n]} \le E[2^{X_n}] = E[Y_n] = O(n^3)$, and hence that $E[X_n] = O(\lg n)$.

Convex functions

A function $f : \mathbb{R} \to \mathbb{R}$ is *convex* if for all $\alpha, \beta \ge 0$ such that $\alpha + \beta = 1$, we have $f(\alpha x + \beta y) \le \alpha f(x) + \beta f(y)$ for all $x, y \in \mathsf{R}$. f(y) $\alpha f(x) + \beta f(y)$ f(x) $f(\alpha x + \beta y)$ $\alpha x + \beta y$ X V

Convexity lemma

Lemma. Let $f : \mathbb{R} \to \mathbb{R}$ be a convex function, and let $\{\alpha_1, \alpha_2, ..., \alpha_n\}$ be a set of nonnegative constants such that $\sum_k \alpha_k = 1$. Then, for any set $\{x_1, x_2, ..., x_n\}$ of real numbers, we have

$$f\left(\sum_{k=1}^{n} \alpha_k x_k\right) \leq \sum_{k=1}^{n} \alpha_k f(x_k).$$

Proof. By induction on *n*. For n = 1, we have $\alpha_1 = 1$, and hence $f(\alpha_1 x_1) \le \alpha_1 f(x_1)$ trivially.

Inductive step:

$$f\left(\sum_{k=1}^{n} \alpha_k x_k\right) = f\left(\alpha_n x_n + (1 - \alpha_n)\sum_{k=1}^{n-1} \frac{\alpha_k}{1 - \alpha_n} x_k\right)$$

Algebra.

Inductive step:

$$f\left(\sum_{k=1}^{n} \alpha_k x_k\right) = f\left(\alpha_n x_n + (1 - \alpha_n)\sum_{k=1}^{n-1} \frac{\alpha_k}{1 - \alpha_n} x_k\right)$$
$$\leq \alpha_n f(x_n) + (1 - \alpha_n) f\left(\sum_{k=1}^{n-1} \frac{\alpha_k}{1 - \alpha_n} x_k\right)$$

Convexity.

Inductive step:

$$\begin{aligned} f\left(\sum_{k=1}^{n} \alpha_k x_k\right) &= f\left(\alpha_n x_n + (1 - \alpha_n) \sum_{k=1}^{n-1} \frac{\alpha_k}{1 - \alpha_n} x_k\right) \\ &\leq \alpha_n f(x_n) + (1 - \alpha_n) f\left(\sum_{k=1}^{n-1} \frac{\alpha_k}{1 - \alpha_n} x_k\right) \\ &\leq \alpha_n f(x_n) + (1 - \alpha_n) \sum_{k=1}^{n-1} \frac{\alpha_k}{1 - \alpha_n} f(x_k) \end{aligned}$$

Induction.

Inductive step:

$$f\left(\sum_{k=1}^{n} \alpha_{k} x_{k}\right) = f\left(\alpha_{n} x_{n} + (1 - \alpha_{n})\sum_{k=1}^{n-1} \frac{\alpha_{k}}{1 - \alpha_{n}} x_{k}\right)$$
$$\leq \alpha_{n} f(x_{n}) + (1 - \alpha_{n}) f\left(\sum_{k=1}^{n-1} \frac{\alpha_{k}}{1 - \alpha_{n}} x_{k}\right)$$
$$\leq \alpha_{n} f(x_{n}) + (1 - \alpha_{n})\sum_{k=1}^{n-1} \frac{\alpha_{k}}{1 - \alpha_{n}} f(x_{k})$$
$$= \sum_{k=1}^{n} \alpha_{k} f(x_{k}). \quad \square \quad \text{Algebra.}$$

Jensen's inequality

Lemma. Let *f* be a convex function, and let *X* be a random variable. Then, $f(E[X]) \leq E[f(X)]$.

Proof. $f(E[X]) = f\left(\sum_{k=-\infty}^{\infty} k \cdot \Pr\{X = k\}\right)$

Definition of expectation.

Jensen's inequality

Lemma. Let *f* be a convex function, and let *X* be a random variable. Then, $f(E[X]) \leq E[f(X)]$.

Proof. $f(E[X]) = f\left(\sum_{k=-\infty}^{\infty} k \cdot \Pr\{X = k\}\right)$ $\leq \sum_{k=-\infty}^{\infty} f(k) \cdot \Pr\{X = k\}$

Convexity lemma (generalized).

Jensen's inequality

Lemma. Let *f* be a convex function, and let *X* be a random variable. Then, $f(E[X]) \le E[f(X)]$.

Proof. $f(E[X]) = f\left(\sum_{k=-\infty}^{\infty} k \cdot \Pr\{X = k\}\right)$ $\leq \sum_{k=-\infty}^{\infty} f(k) \cdot \Pr\{X = k\}$ = E[f(X)].

Tricky step, but true—think about it.

Analysis of BST height

Let X_n be the random variable denoting the height of a randomly built binary search tree on *n* nodes, and let $Y_n = 2^{X_n}$ be its exponential height.

If the root of the tree has rank k, then

 $X_n = 1 + \max\{X_{k-1}, X_{n-k}\}$,

since each of the left and right subtrees of the root are randomly built. Hence, we have

$$Y_n = 2 \cdot \max\{Y_{k-1}, Y_{n-k}\}$$
.

Analysis (continued)

Define the indicator random variable Z_{nk} as

 $Z_{nk} = \begin{cases} 1 & \text{if the root has rank } k, \\ 0 & \text{otherwise.} \end{cases}$

Thus,
$$\Pr\{Z_{nk} = 1\} = \mathbb{E}[Z_{nk}] = 1/n$$
, and
 $Y_n = \sum_{k=1}^n Z_{nk} (2 \cdot \max\{Y_{k-1}, Y_{n-k}\})$

$$E[Y_n] = E\left[\sum_{k=1}^n Z_{nk} (2 \cdot \max\{Y_{k-1}, Y_{n-k}\})\right]$$

Take expectation of both sides.

$$E[Y_n] = E\left[\sum_{k=1}^n Z_{nk} (2 \cdot \max\{Y_{k-1}, Y_{n-k}\})\right]$$
$$= \sum_{k=1}^n E[Z_{nk} (2 \cdot \max\{Y_{k-1}, Y_{n-k}\})]$$

Linearity of expectation.

k=1

$$E[Y_n] = E\left[\sum_{k=1}^n Z_{nk} (2 \cdot \max\{Y_{k-1}, Y_{n-k}\})\right]$$
$$= \sum_{k=1}^n E[Z_{nk} (2 \cdot \max\{Y_{k-1}, Y_{n-k}\})]$$
$$= 2\sum_{k=1}^n E[Z_{nk}] \cdot E[\max\{Y_{k-1}, Y_{n-k}\}]$$

Independence of the rank of the root from the ranks of subtree roots.

k=1

$$E[Y_n] = E\left[\sum_{k=1}^n Z_{nk} \left(2 \cdot \max\{Y_{k-1}, Y_{n-k}\}\right)\right]$$

= $\sum_{k=1}^n E[Z_{nk} \left(2 \cdot \max\{Y_{k-1}, Y_{n-k}\}\right)]$
= $2\sum_{k=1}^n E[Z_{nk}] \cdot E[\max\{Y_{k-1}, Y_{n-k}\}]$
 $\leq \frac{2}{n} \sum_{k=1}^n E[Y_{k-1} + Y_{n-k}]$

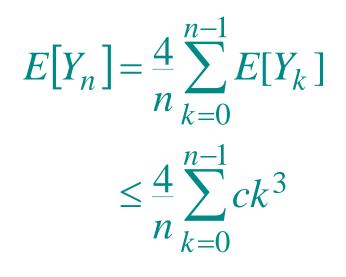
The max of two nonnegative numbers is at most their sum, and $E[Z_{nk}] = 1/n$.

$$E[Y_{n}] = E\left[\sum_{k=1}^{n} Z_{nk} (2 \cdot \max\{Y_{k-1}, Y_{n-k}\})\right]$$

= $\sum_{k=1}^{n} E[Z_{nk} (2 \cdot \max\{Y_{k-1}, Y_{n-k}\})]$
= $2\sum_{k=1}^{n} E[Z_{nk}] \cdot E[\max\{Y_{k-1}, Y_{n-k}\}]$
 $\leq \frac{2}{n} \sum_{k=1}^{n} E[Y_{k-1} + Y_{n-k}]$
= $\frac{4}{n} \sum_{k=0}^{n-1} E[Y_{k}]$ Each term appears twice, and reindex.

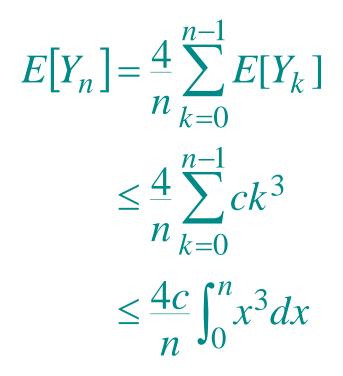
Use substitution to show that $E[Y_n] \le cn^3$ for some positive constant *c*, which we can pick sufficiently large to handle the initial conditions. $E[Y_n] = \frac{4}{n} \sum_{k=0}^{n-1} E[Y_k]$

Use substitution to show that $E[Y_n] \le cn^3$ for some positive constant *c*, which we can pick sufficiently large to handle the initial conditions.



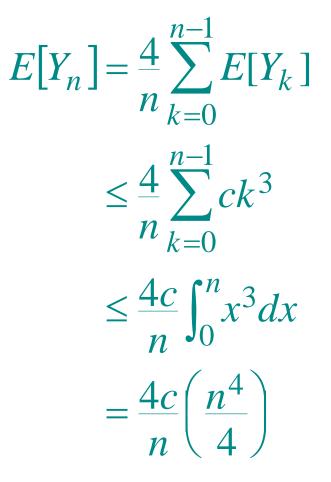
Substitution.

Use substitution to show that $E[Y_n] \le cn^3$ for some positive constant *c*, which we can pick sufficiently large to handle the initial conditions.



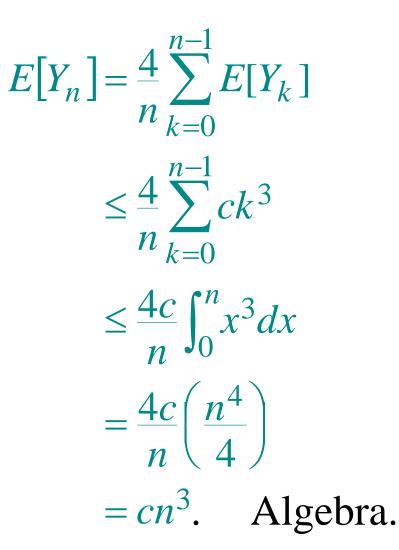
Integral method.

Use substitution to show that $E[Y_n] \le cn^3$ for some positive constant *c*, which we can pick sufficiently large to handle the initial conditions.



Solve the integral.

Use substitution to show that $E[Y_n] \le cn^3$ for some positive constant *c*, which we can pick sufficiently large to handle the initial conditions.



Putting it all together, we have $2^{E[X_n]} \le E[2^{X_n}]$

Jensen's inequality, since $f(x) = 2^x$ is convex.

Putting it all together, we have $2^{E[X_n]} \le E[2^{X_n}]$ $= E[Y_n]$

Definition.

Putting it all together, we have $2^{E[X_n]} \le E[2^{X_n}]$ $= E[Y_n]$ $\le cn^3.$

What we just showed.

Putting it all together, we have $2^{E[X_n]} \le E[2^{X_n}]$ $= E[Y_n]$ $\le cn^3.$

Taking the lg of both sides yields $E[X_n] \le 3 \lg n + O(1).$

Post mortem

- **Q.** Does the analysis have to be this hard?
- **Q.** Why bother with analyzing exponential height?
- **Q.** Why not just develop the recurrence on $X_n = 1 + \max\{X_{k-1}, X_{n-k}\}$ directly?

Post mortem (continued)

A. The inequality

 $\max\{a, b\} \le a + b \,.$

provides a poor upper bound, since the RHS approaches the LHS slowly as |a - b| increases. The bound

 $\max\{2^{a}, 2^{b}\} \le 2^{a} + 2^{b}$

allows the RHS to approach the LHS far more quickly as |a - b| increases. By using the convexity of $f(x) = 2^x$ via Jensen's inequality, we can manipulate the sum of exponentials, resulting in a tight analysis.

Thought exercises

- See what happens when you try to do the analysis on X_n directly.
- Try to understand better why the proof uses an exponential. Will a quadratic do?
- See if you can find a simpler argument. (This argument is a little simpler than the one in the book—I hope it's correct!)