
Hashing, Hash Functions 

Lecture 7 
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Symbol-table problem 

Symbol table T holding n records: 

key[x] 

record 
x 

Other fields 
containing 
satellite data 

Operations on T: 

• INSERT(T, x)

• DELETE(T, x)

• SEARCH(T, k)

How should the data structure T be organized? 
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Direct-access table 

IDEA: Suppose that the set of keys is K  {0, 
1, …, m–1}, and keys are distinct.  Set up an 
array T[0 . . m–1]:  

T[k] = 
x if x  K and key[x] = k, 

NIL  otherwise. 

Then, operations take Q(1) time. 

Problem: The range of keys can be large: 
• 64-bit numbers (which represent

18,446,744,073,709,551,616 different keys),
• character strings (even larger!).
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As each key is inserted, h maps it to a slot of T.

Hash functions 

Solution: Use a hash function h to map the 
universe U of all keys into 
{0, 1, …, m–1}: 

U 

K 

k1

k2 k3

k4

k5

0 

m–1 

h(k1) 
h(k4) 

h(k2) 

h(k3) 

When a record to be inserted maps to an already 
occupied slot in T, a collision occurs. 

T

 = h(k5) 
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Resolving collisions by 
chaining 

• Records in the same slot are linked into a list.

h(49) = h(86) = h(52) = i 

T 

49 86 52 i 
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Analysis of chaining 

We make the assumption of simple uniform 
hashing: 

• Each key k  K of keys is equally likely to
be hashed to any slot of table T, independent
of where other keys are hashed.

Let n be the number of keys in the table, and 
let m be the number of slots. 

Define the load factor of T to be 

a = n/m 

= average number of keys per slot. 
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Search cost 

Expected time to search for a record with 
a given key = Q(1 + a). 

apply hash 
function and 
access slot 

search 
the list 

Expected search time = Q(1) if a = O(1), 
or equivalently, if n = O(m). 
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Choosing a hash function 

The assumption of simple uniform hashing 
is hard to guarantee, but several common 
techniques tend to work well in practice as 
long as their deficiencies can be avoided. 

Desirata: 

• A good hash function should distribute the
keys uniformly into the slots of the table.

• Regularity in the key distribution should
not affect this uniformity.
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h(k) 

Division method 

Assume all keys are integers, and define 

h(k) = k mod m. 

Extreme deficiency:  If m = 2r, then the hash 
doesn’t even depend on all the bits of k: 

• If k = 10110001110110102 and r = 6, then

h(k) = 0110102 .

Deficiency:  Don’t pick an m that has a small 
divisor d.  A preponderance of keys that are 
congruent modulo d can adversely affect 
uniformity.  
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Division method (continued) 

h(k) = k mod m. 

Pick m to be a prime not too close to a power 
of 2 or 10 and not otherwise used prominently 
in the computing environment. 

Annoyance: 
• Sometimes, making the table size a prime is

inconvenient.

But, this method is popular, although the next 
method we’ll see is usually superior. 



    L7.11 

Multiplication method 

Assume that all keys are integers, m = 2r, and our 
computer has w-bit words.  Define  

h(k) = (A·k mod 2w) rsh (w – r), 

where rsh is the “bit-wise right-shift” operator 
and A is an odd integer in the range 2w–1 < A < 2w. 

• Don’t pick A too close to 2w.

• Multiplication modulo 2w is fast.

• The rsh operator is fast.
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4 

0 

3 5 
2 6 

1 7 

Modular wheel 

Multiplication method 
example 

h(k) = (A·k mod 2w) rsh (w – r) 

Suppose that m = 8 = 23 and that our computer 
has w = 7-bit words: 

1 0 1 1 0 0 1 

 1 1 0 1 0 1 1 

1 0 0 1 0 1 0 0 1 1 0 0 1 1 

= A 

= k 

h(k) A 
. 

2A 

. 

3A 
. 
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Dot-product method 

Randomized strategy: 

Let m be prime.  Decompose key k into r + 1 
digits, each with value in the set {0, 1, …, m–1}. 
That is, let k = k0, k1, …, km–1, where 0  ki < m. 

Pick a = a0, a1, …, am–1where each ai is chosen 
randomly from {0, 1, …, m–1}. 

mkakh
r

i
iia mod)(

0




Define . 

• Excellent in practice, but expensive to compute.
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Resolving collisions by open 
addressing 

No storage is used outside of the hash table itself. 

• Insertion systematically probes the table until an
empty slot is found.

• The hash function depends on both the key and
probe number:

h : U  {0, 1, …, m–1} {0, 1, …, m–1}. 

• The probe sequence h(k,0), h(k,1), …, h(k,m–1)
should be a permutation of {0, 1, …, m–1}.

• The table may fill up, and deletion is difficult (but
not impossible).
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204 204 

Example of open addressing 

Insert key k = 496: 

0. Probe h(496,0)
586 
133 

481 

T 
0 

m–1 

collision 
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Example of open addressing 

Insert key k = 496: 

0. Probe h(496,0)
586 
133 

204 

481 

T 
0 

m–1 

1. Probe h(496,1) collision 586 
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Example of open addressing 

Insert key k = 496: 

0. Probe h(496,0)
586 
133 

204 

481 

T 
0 

m–1 

1. Probe h(496,1)

insertion 496 

2. Probe h(496,2)
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Example of open addressing 

Search for key k = 496: 

0. Probe h(496,0)
586 
133 

204 

481 

T 
0 

m–1

1. Probe h(496,1)

496 

2. Probe h(496,2)

Search uses the same probe 
sequence, terminating suc- 
cessfully if it finds the key 
and unsuccessfully if it encounters an empty slot. 
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Probing strategies 

Linear probing: 

Given an ordinary hash function h(k), linear 
probing uses the hash function 

h(k,i) = (h(k) + i) mod m. 

This method, though simple, suffers from primary 
clustering, where long runs of occupied slots build 
up, increasing the average search time.  Moreover, 
the long runs of occupied slots tend to get longer. 
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Probing strategies 

Double hashing 

Given two ordinary hash functions h1(k) and h2(k), 
double hashing uses the hash function 

h(k,i) = (h1(k) + ih2(k)) mod m. 

This method generally produces excellent results, 
but h2(k) must be relatively prime to m.  One way 
is to make m a power of 2 and design h2(k) to 
produce only odd numbers. 
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Analysis of open addressing 

We make the assumption of uniform hashing: 

• Each key is equally likely to have any one of
the m! permutations as its probe sequence.

Theorem.  Given an open-addressed hash 
table with load factor a = n/m < 1, the 
expected number of probes in an unsuccessful 
search is at most 1/(1–a). 
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Proof of the theorem 

Proof. 
• At least one probe is always necessary.
• With probability n/m, the first probe hits an

occupied slot, and a second probe is necessary.
• With probability (n–1)/(m–1), the second probe

hits an occupied slot, and a third probe is
necessary.

• With probability (n–2)/(m–2), the third probe
hits an occupied slot, etc.

Observe that a




m

n

im

in for i = 1, 2, …, n. 
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Proof (continued) 

Therefore, the expected number of probes is 
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The textbook has a 
more rigorous proof. 
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Implications of the theorem 

• If a is constant, then accessing an open-
addressed hash table takes constant time.

• If the table is half full, then the expected
number of probes is 1/(1–0.5) = 2.

• If the table is 90% full, then the expected
number of probes is 1/(1–0.9) = 10.


