
Median, Order Statistics

Lecture 6

 L6.2

Order statistics

Select the i th smallest of n elements (the
element with rank i).

• i = 1: minimum;

• i = n: maximum;

• i = (n+1)/2 or (n+1)/2: median.

Naive algorithm: Sort and index i th element.

Worst-case running time = Q(n lg n) + Q(1)

= Q(n lg n),

using merge sort or heapsort (not quicksort).

 L6.3

Randomized divide-and-
conquer algorithm

RAND-SELECT(A, p, q, i) ⊳ i th smallest of A[p . .
q]
if p = q then return A[p]
r  RAND-PARTITION(A, p, q)
k  r – p + 1
if i = k then return A[r]
if i < k

then return RAND-SELECT(A, p, r – 1, i)
else return RAND-SELECT(A, r + 1, q, i – k)

 A[r]  A[r]

r p q

k

 L6.4

Example

pivot
i = 7 6 10 13 5 8 3 2 11

k = 4

Select the 7 – 4 = 3rd smallest recursively.

Select the i = 7th smallest:

2 5 3 6 8 13 10 11

Partition:

 L6.5

Intuition for analysis

Lucky:

101log 9/10  nn
CASE 3

T(n) = T(9n/10) + Q(n)

= Q(n)

Unlucky:
T(n) = T(n – 1) + Q(n)

= Q(n2)

arithmetic series

Worse than sorting!

(All our analyses today assume that all elements

are distinct.)

 L6.6

Analysis of expected time

Let T(n) = the random variable for the running
time of RAND-SELECT on an input of size n,
assuming random numbers are independent.

For k = 0, 1, …, n–1, define the indicator
random variable

Xk =
1 if PARTITION generates a k : n–k–1 split,

0 otherwise.

The analysis follows that of randomized
quicksort, but it’s a little different.

 L6.7

Analysis (continued)

T(n) =

T(max{0, n–1}) + Q(n) if 0 : n–1 split,

T(max{1, n–2}) + Q(n) if 1 : n–2 split,
M

T(max{n–1, 0}) + Q(n) if n–1 : 0 split,

 




Q
1

0

)(})1,(max{
n

k
k nknkTX .

To obtain an upper bound, assume that the i th
element always falls in the larger side of the
partition:

 L6.8

Calculating expectation

 







Q 





1

0

)(})1,(max{)]([
n

k
k nknkTXEnTE

Take expectations of both sides.

 L6.9

Calculating expectation

 

  











Q









Q

1

0

1

0

)(})1,(max{

)(})1,(max{)]([

n

k
k

n

k
k

nknkTXE

nknkTXEnTE

Linearity of expectation.

 L6.10

Calculating expectation

 

  

   

















Q

Q









Q

1

0

1

0

1

0

)(})1,(max{

)(})1,(max{

)(})1,(max{)]([

n

k
k

n

k
k

n

k
k

nknkTEXE

nknkTXE

nknkTXEnTE

Independence of Xk from other random
choices.

 L6.11

Calculating expectation

 

  

   

  



























Q

Q

Q









Q

1

0

1

0

1

0

1

0

1

0

)(1})1,(max{1

)(})1,(max{

)(})1,(max{

)(})1,(max{)]([

n

k

n

k

n

k
k

n

k
k

n

k
k

n
n

knkTE
n

nknkTEXE

nknkTXE

nknkTXEnTE

Linearity of expectation; E[Xk] = 1/n .

 L6.12

Calculating expectation

 

  

   

 

 
 

)()(2

)(1})1,(max{1

)(})1,(max{

)(})1,(max{

)(})1,(max{)]([

1

2/

1

0

1

0

1

0

1

0

1

0

nkTE
n

n
n

knkTE
n

nknkTEXE

nknkTXE

nknkTXEnTE

n

nk

n

k

n

k

n

k
k

n

k
k

n

k
k

Q

Q

Q

Q









Q



































Upper terms
appear twice.

 L6.13

Hairy recurrence

 
 

)()(2)]([
1

2/

nkTE
n

nTE
n

nk

Q 




Prove: E[T(n)]  c n for constant c > 0 .

Use fact:

 

2
1

2/
8
3nk

n

nk






 (exercise).

• The constant c can be chosen large enough
so that E[T(n)]  c n for the base cases.

(But not quite as hairy as the quicksort one.)

 L6.14

Substitution method

 
 

)(2)(
1

2/

nck
n

nTE
n

nk

Q 




Substitute inductive hypothesis.

 L6.15

Substitution method

 
 

)(
8

32

)(2)(

2

1

2/

nn
n

c

nck
n

nTE
n

nk

Q







Q 




Use fact.

 L6.16

Substitution method

Express as desired – residual.

 
 






 Q

Q







Q 




)(
4

)(
8

32

)(2)(

2

1

2/

ncncn

nn
n

c

nck
n

nTE
n

nk

 L6.17

Substitution method

 
 

cn

ncncn

nn
n

c

nck
n

nTE
n

nk








 Q

Q







Q 




)(
4

)(
8

32

)(2)(

2

1

2/

if c is chosen large enough so
that cn/4 dominates the Q(n).

,

 L6.18

Summary of randomized
order-statistic selection

• Works fast: linear expected time.

• Excellent algorithm in practice.

• But, the worst case is very bad: Q(n2).

Q. Is there an algorithm that runs in linear
time in the worst case?

IDEA: Generate a good pivot recursively.

A. Yes, due to Blum, Floyd, Pratt, Rivest,
and Tarjan [1973].

 L6.19

Worst-case linear-time order
statistics

if i = k then return x
elseif i < k

then recursively SELECT the i th
 smallest element in the lower part

else recursively SELECT the (i–k)th
smallest element in the upper part

SELECT(i, n)
1. Divide the n elements into groups of 5. Find

the median of each 5-element group by rote.

2. Recursively SELECT the median x of the n/5
group medians to be the pivot.

3. Partition around the pivot x. Let k = rank(x).

4.

 Same as
RAND-
SELECT

 L6.20

Choosing the pivot

 L6.21

Choosing the pivot

1. Divide the n elements into groups of 5.

 L6.22

Choosing the pivot

lesser

greater

1. Divide the n elements into groups of 5. Find
the median of each 5-element group by rote.

 L6.23

Choosing the pivot

lesser

greater

1. Divide the n elements into groups of 5. Find
the median of each 5-element group by rote.

2. Recursively SELECT the median x of the  n/5
group medians to be the pivot.

x

 L6.24

Analysis

lesser

greater

x

At least half the group medians are  x, which
is at least   n/5 /2 =  n/10 group medians.

 L6.25

Analysis

lesser

greater

x

At least half the group medians are  x, which
is at least   n/5 /2 =  n/10 group medians.

• Therefore, at least 3  n/10 elements are  x.

(Assume all elements are distinct.)

 L6.26

Analysis

lesser

greater

x

At least half the group medians are  x, which
is at least   n/5 /2 =  n/10 group medians.

• Therefore, at least 3  n/10 elements are  x.

• Similarly, at least 3  n/10 elements are  x.

(Assume all elements are distinct.)

 L6.27

Minor simplification

• For n  50, we have 3  n/10  n/4.

• Therefore, for n  50 the recursive call to
SELECT in Step 4 is executed recursively
on  3n/4 elements.

• Thus, the recurrence for running time
can assume that Step 4 takes time
T(3n/4) in the worst case.

• For n < 50, we know that the worst-case
time is T(n) = Q(1).

 L6.28

Developing the recurrence

if i = k then return x
elseif i < k

then recursively SELECT the i th
 smallest element in the lower part

else recursively SELECT the (i–k)th
smallest element in the upper part

SELECT(i, n)
1. Divide the n elements into groups of 5. Find

the median of each 5-element group by rote.

2. Recursively SELECT the median x of the n/5
group medians to be the pivot.

3. Partition around the pivot x. Let k = rank(x).

4.

T(n)

Q(n)

T(n/5)

Q(n)

T(3n/4)

 L6.29

Solving the recurrence

)(
4

3

5
1)(nnTnTnT Q















if c is chosen large enough to handle both the
Q(n) and the initial conditions.

cn

ncncn

ncn

ncncnnT









 Q

Q

Q

)(
20
1

)(
20

19

)(
4

3

5
1)(

,

Substitution:

T(n)  cn

L6.30

Conclusions

• Since the work at each level of recursion
is a constant fraction (19/20) smaller, the
work per level is a geometric series
dominated by the linear work at the root.

• In practice, this algorithm runs slowly,
because the constant in front of n is large.

• The randomized algorithm is far more
practical.

Exercise: Why not divide into groups of 3?

