Median, Order Statistics

Lecture 6

Order statistics

Select the ith smallest of n elements (the
element with rank 1).

o | =1: minimum;
° | =N maximum:

o i = (n+1)/2]or| (n+1)/2 |: median.

Naive algorithm: Sort and index ith element.

Worst-case running time = ®(n lg n) + ©(1)
=0O(n Ign),

using merge sort or heapsort (not quicksort).

L6.2

Randomized divide-and-
conquer algorithm

RAND-SELECT(A, p, 0,1) o ithsmallest of A[p..

q]
If p=q then return A p]

r < RAND-PARTITION(A, p,)

Ke—r—p+1
If 1 =k then return A[r]
if 1<k

then return RAND-SELECT(A, p, r—1, 1)
else returrp(RAND-SELECT(A, r+1,0,1—k)

< Alr] > Alr] |

p r G

L6.3

Example

Select the 1 = 7th smallest:

6 10|13 | 5 |8 | 3|2 |11} 1=7
pivot
Partition:
21513 6|8 |13|]10|11}) k=4
g ~- J

Select the 7 — 4 = 3rd smallest recursively.

L6.4

Intuition for analysis

(All our analyses today assume that all elements
are distinct.)

Lucky:
T(n) = T(9n/10) + B(n) n'%Gw0el = n0 =1
= O(n) CASE 3
Unlucky:
T(n)=T(h-1) + B(n) arithmetic series
= O(n?)

Worse than sorting!

L6.5

Analysis of expected time

The analysis follows that of randomized
quicksort, but 1t’s a little different.

Let T(n) = the random variable for the running
time of RAND-SELECT on an input of size n,
assuming random numbers are independent.

Fork=20, 1, ..., n—1, define the indicator
random variable

“ - { 1 if PARTITION generates a k : n—k—1 split,
< |0 otherwise.

L6.6

Analysis (continued)

To obtain an upper bound, assume that the ith
element always falls in the larger side of the
partition:

" T(max{0, n-1}) + ©(n) if 0:n-1 split,

T(n) =< T(m:ax{l, n-2}) +6n) 1f 1:n-2 split,

_T(max{n-1, 0}) + ®(n) if n—1: 0 split,

n—1

= > Xy (T (max{k,n —k —1}) + ©(n)).
k=0

L6.7

Calculating expectation

E[T(n)]= E[nlek(T(max{k, n-k-13)+ G)(n))J

k=0

Take expectations of both sides.

L6.8

Calculating expectation

E[T(n)]= ELnZle(T (max{k,n—k —1}) + @(n))J

k=0

= r]Z_‘dlE[Xk(T (max{k,n—k —1}) + ©(n))]
k=0

Linearity of expectation.

L6.9

Calculating expectation

E[T (n)]= ELnZle(T (max{k,n—k —1}) + @(n))J

k=0

= nilE[Xk(T (max{k,n—k —1}) + ©(n))]
k=0

— nz_:lE[Xk]- E[T (max{k,n—k —1}) + ©(n)]
k=0

Independence of X, from other random
choices.

L6.10

Calculating expectation

E[T(n)]= ELnZlXK(T (max{k,n—k —1}) + @(n))J

k=0

nz_:lE[Xk(T (max{k,n—k —1}) + ®(n))|]

=0
-1

=S5 AN

E[X, |- E[T (max{k,n—k —1}) + ©(n)]

\HX

0
ni E[T (max{k,n—k — l})]+ Z@(n)

Ny=o

Linearity of expectation; E[X,| = 1/n.

L6.11

Calculating expectation

E[T(n)]= E[nilxk(T (max{k,n—k —1}) + @(n))J

k=0

nZ_llE[Xk(T (max{k,n—k —1}) + ®(n))|]
0
1

=S5 AN

E[X,] E[T (max{k,n—k —1}) + ©(n)]
0

~

n-1 n-1
= LS E[T (max{k,n—k -1)]+ 1 T 0(n)
o, 1 M=o
<2 SEfFM)]+0
nkzwzj[()]+6M) Upper terms

appear twice.

L6.12

Hairy recurrence

(But not quite as hairy as the quicksort one.)

E[T (n)] = Z E[T (K)]+ O(n)
M= =n/2]

Prove: E[T(n)] <cn for constant ¢ > 0.

* The constant ¢ can be chosen large enough
so that E[T(n)] < cn for the base cases.

n—-1
Use fact: Dk < gnz (exercise).
k=/n/2|

L6.13

Substitution method

E[T(n)] g ch+®(n)
M= ={n/2

Substitute inductive hypothesis.

L6.14

Substitution method

E[T(n)] g ch+®(n)
M= =n/2]

(a0

Use fact.

L6.15

Substitution method

E[T(n)] g ch+®(n)
M= =n/2]

< 20(3 2) +0O(n)

n \8

=ch— ((Z‘ — @(n))

EXpress as desired — residual.

L6.16

Substitution method

E[T(n)] s ch+@(n)
M= =n/2]

< ch(gnz) +O(n)

=cn —(CZP — @(n))
<cn,

If ¢ Is chosen large enough so
that cn/4 dominates the ®(n).

L6.17

Summary of randomized
order-statistic selection
» Works fast: linear expected time.

» Excellent algorithm In practice.
« But, the worst case is very bad: ®(n?).

0. Is there an algorithm that runs in linear
time In the worst case?

A. Yes, due to Blum, Floyd, Pratt, Rivest,
and Tarjan [1973].

IDEA: Generate a good pivot recursively.

L6.18

Worst-case linear-time order

statistics
SeELECT(I, N)

1. Divide the n elements into groups of 5. Find
the median of each 5-element group by rote.

2. Recursively SeLecT the median x of the |.n/5]
group medians to be the pivot.

3. Partition around the pivot x. Let k = rank(x).

4.1f 1 =k then return x
elseif 1 <k Same as
then recursively SeLecT the ith > RAND-
smallest element in the lower part SELECT
else recursively SeELecT the (I-k)th
smallest element in the upper part

L6.19

Choosing the pivot

L6.20

1.

000000

Choosing the pivot

Ivide the n elements into groups of 5.

L6.21

Choosing the pivot

1. Divide the n elements into groups of 5. Find lesser
the median of each 5-element group by rote. I

greater

L6.22

Choosing the pivot

2 (s (s (sl (s

1. Divide the n elements into groups of 5. Find lesser
the median of each 5-element group by rote.

2. Recursively SeLecT the median x of the | n/5.
group medians to be the pivot. greater

L6.23

Analysis

2 (s (s (oo (s

At least half the group medians are < x, which ~ Iesser
is at least || n/5] /2= n/10] group medians. I

greater

L6.24

Ana|ySiS (Assume all elements are distinct.)

s (5 o (s
L

At least half the group medians are < x, which ~ Iesser
is at least || n/5] /2= n/10] group medians. I

- Therefore, at least 3| n/10 | elements are < x.
greater

L6.25

Ana|ySiS (Assume all elements are distinct.)

A %
{

At least half the group medians are < x, which ~ Iesser
is at least || n/5] /2= n/10] group medians. I

- Therefore, at least 3| n/10 | elements are < x.
» Similarly, at least 3| /10| elements are > x. greater

L6.26

Minor simplification

» For n > 50, we have 3| n/10 | > n/4.

» Therefore, for n > 50 the recursive call to
SELECT In Step 4 Is executed recursively
on < 3n/4 elements.

* Thus, the recurrence for running time
can assume that Step 4 takes time
T(3n/4) In the worst case.

e For n < 50, we know that the worst-case
time 1s T(n) = G(1).

L6.27

Developing the recurrence

T(n) SeLecT(l, n)
" 1. Divide the n elements into groups of 5. Find
O(n) 1 the median of each 5-element group by rote.
- 2. Recursively SeLecT the median x of the [n/5]
T(n75) 1" group medians to be the pivot.
®(n) 3. Partition around the pivot x. Let k = rank(x).
(4. if i=kthen return x
elseif 1 <k -
then recursively SELECT the it
T(3n/4) < smallest e?/ement In the lower part
else recursively SeLecT the (I—k)th
N smallest element in the upper part

L6.28

Solving the recurrence
T(n) =TL1 nJ+TL3 nJ +0(n)

5 4
Substitution: T(n)< lens3Sent O(n)
T(n) <cn 5139 4
cn+O(n)
20
1
=Ch—| =—Ccn—0O(n
(=)
<cn

If ¢ Is chosen large enough to handle both the
®(n) and the initial conditions.

L6.29

Conclusions

» Since the work at each level of recursion
IS a constant fraction (19/20) smaller, the
work per level Is a geometric series
dominated by the linear work at the root.

* In practice, this algorithm runs slowly,
because the constant in front of n Is large.

 The randomized algorithm Is far more
practical.

Exercise: Why not divide into groups of 3?

L6.30

