
Median, Order Statistics 

Lecture 6 
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Order statistics 

Select the i th smallest of n elements (the 
element with rank i). 

• i = 1: minimum;

• i = n: maximum;

• i = (n+1)/2 or (n+1)/2: median.

Naive algorithm: Sort and index i th element. 

Worst-case running time = Q(n lg n) + Q(1) 

= Q(n lg n), 

using merge sort or heapsort (not quicksort). 
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Randomized divide-and-
conquer algorithm 

RAND-SELECT(A, p, q, i) ⊳ i th smallest of A[ p . .
q]  
if  p = q  then return A[ p] 
r  RAND-PARTITION(A, p, q) 
k  r – p + 1 
if  i = k  then return A[ r] 
if  i < k   

then return RAND-SELECT( A, p, r – 1, i ) 
else return RAND-SELECT( A, r + 1, q, i – k ) 

 A[r]  A[r] 

r p q 

k 
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Example 

pivot 
i = 7 6 10 13 5 8 3 2 11 

k = 4 

Select the 7 – 4 = 3rd smallest recursively. 

Select the i = 7th smallest: 

2 5 3 6 8 13 10 11 

Partition: 
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Intuition for analysis 

Lucky: 

101log 9/10  nn
CASE 3 

T(n) = T(9n/10) + Q(n) 

= Q(n) 

Unlucky: 
T(n) = T(n – 1) + Q(n) 

= Q(n2) 

arithmetic series 

Worse than sorting! 

(All our analyses today assume that all elements 

are distinct.) 
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Analysis of expected time 

Let T(n) = the random variable for the running 
time of RAND-SELECT on an input of size n, 
assuming random numbers are independent. 

For k = 0, 1, …, n–1, define the indicator 
random variable 

Xk = 
1 if PARTITION generates a k : n–k–1 split, 

0 otherwise. 

The analysis follows that of randomized 
quicksort, but it’s a little different. 
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Analysis (continued) 

T(n) = 

T(max{0, n–1}) + Q(n) if 0 : n–1 split, 

T(max{1, n–2}) + Q(n) if 1 : n–2 split, 
M 

T(max{n–1, 0}) + Q(n) if n–1 : 0 split, 
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To obtain an upper bound, assume that the i th 
element always falls in the larger side of the 
partition: 
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Calculating expectation 
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Take expectations of both sides. 
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Calculating expectation 
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Linearity of expectation. 
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Calculating expectation 
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Independence of Xk from other random 
choices. 
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Calculating expectation 
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Linearity of expectation; E[Xk] = 1/n . 
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Calculating expectation 
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Upper terms 
appear twice. 
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Hairy recurrence 
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• The constant c can be chosen large enough
so that E[T(n)]  c n for the base cases.

(But not quite as hairy as the quicksort one.) 
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Substitution method 
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Substitution method 
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Substitution method 

Express as desired – residual. 
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Substitution method 
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Summary of randomized 
order-statistic selection 

• Works fast: linear expected time.

• Excellent algorithm in practice.

• But, the worst case is very bad: Q(n2).

Q. Is there an algorithm that runs in linear 
time in the worst case? 

IDEA: Generate a good pivot recursively. 

A. Yes, due to Blum, Floyd, Pratt, Rivest, 
and Tarjan [1973]. 
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Worst-case linear-time order 
statistics 

if  i = k then return x
elseif  i < k

then recursively SELECT the i th 
 smallest element in the lower part 

else recursively SELECT the (i–k)th 
smallest element in the upper part 

SELECT(i, n) 
1. Divide the n elements into groups of 5.  Find

the median of each 5-element group by rote.

2. Recursively SELECT the median x of the n/5
group medians to be the pivot.

3. Partition around the pivot x.  Let k = rank(x).

4.   

 Same as 
RAND-
SELECT



 L6.20 

Choosing the pivot 
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Choosing the pivot 

1. Divide the n elements into groups of 5.
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Choosing the pivot 

lesser 

greater 

1. Divide the n elements into groups of 5.  Find
the median of each 5-element group by rote.
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Choosing the pivot 

lesser 

greater 

1. Divide the n elements into groups of 5.  Find
the median of each 5-element group by rote.

2. Recursively SELECT the median x of the  n/5
group medians to be the pivot.

x 
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Analysis 

lesser 

greater 

x 

At least half the group medians are  x, which 
is at least   n/5 /2 =  n/10 group medians.  
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Analysis 

lesser 

greater 

x 

At least half the group medians are  x, which 
is at least   n/5 /2 =  n/10 group medians. 

• Therefore, at least 3  n/10 elements are  x.

(Assume all elements are distinct.) 
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Analysis 

lesser 

greater 

x 

At least half the group medians are  x, which 
is at least   n/5 /2 =  n/10 group medians. 

• Therefore, at least 3  n/10 elements are  x.

• Similarly, at least 3  n/10 elements are  x.

(Assume all elements are distinct.) 



    L6.27 

Minor simplification 

• For n  50, we have 3  n/10  n/4.

• Therefore, for n  50 the recursive call to
SELECT in Step 4 is executed recursively
on  3n/4 elements.

• Thus, the recurrence for running time
can assume that Step 4 takes time
T(3n/4) in the worst case.

• For n < 50, we know that the worst-case
time is T(n) = Q(1).
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Developing the recurrence 

if  i = k then return x
elseif  i < k

then recursively SELECT the i th 
 smallest element in the lower part 

else recursively SELECT the (i–k)th 
smallest element in the upper part 

SELECT(i, n) 
1. Divide the n elements into groups of 5.  Find

the median of each 5-element group by rote.

2. Recursively SELECT the median x of the n/5
group medians to be the pivot.

3. Partition around the pivot x.  Let k = rank(x).

4.   

 

T(n) 

Q(n) 

T(n/5) 

Q(n) 

T(3n/4) 
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Solving the recurrence 
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Substitution: 

T(n)  cn 
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Conclusions 

• Since the work at each level of recursion
is a constant fraction (19/20) smaller, the
work per level is a geometric series
dominated by the linear work at the root.

• In practice, this algorithm runs slowly,
because the constant in front of n is large.

• The randomized algorithm is far more
practical.

Exercise: Why not divide into groups of 3? 


