Decision Tree, Linear-time Sorting, Lower Bounds, Counting Sort, Radix Sort

How fast can we sort?

All the sorting algorithms we have seen so far are *comparison sorts*: only use comparisons to determine the relative order of elements.

- *E.g.*, insertion sort, merge sort, quicksort, heapsort.
- The best worst-case running time that we've seen for comparison sorting is $O(n \lg n)$.

Is O(n lg n) the best we can do?

Decision trees can help us answer this question.

Each leaf contains a permutation $\langle \pi(1), \pi(2), ..., \pi(n) \rangle$ to indicate that the ordering $a_{\pi(1)} \leq a_{\pi(2)} \leq \Lambda \leq a_{\pi(n)}$ has been established.

Decision-tree model

A decision tree can model the execution of any comparison sort:

- One tree for each input size *n*.
- View the algorithm as splitting whenever it compares two elements.
- The tree contains the comparisons along all possible instruction traces.
- The running time of the algorithm = the length of the path taken.
- Worst-case running time = height of tree.

Lower bound for decisiontree sorting

Theorem. Any decision tree that can sort *n* elements must have height $\Omega(n \lg n)$.

Proof. The tree must contain $\ge n!$ leaves, since there are n! possible permutations. A height-h binary tree has $\le 2^h$ leaves. Thus, $n! \le 2^h$.

 $\therefore h \ge \lg(n!) \qquad (\lg \text{ is mono. increasing}) \\ \ge \lg ((n/e)^n) \qquad (Stirling's formula) \\ = n \lg n - n \lg e \\ = \Omega(n \lg n). \square$

Lower bound for comparison sorting

Corollary. Heapsort and merge sort are asymptotically optimal comparison sorting algorithms.

Sorting in linear time

Counting sort: No comparisons between elements.

- *Input*: A[1 ..., n], where $A[j] \in \{1, 2, ..., k\}$.
- *Output*: *B*[1 . . *n*], sorted.
- Auxiliary storage: C[1..k].

Counting sort

for $i \leftarrow 1$ to k do $C[i] \leftarrow 0$ for $i \leftarrow 1$ to n do $C[A[j]] \leftarrow C[A[j]] + 1 \quad \triangleright C[i] = |\{\text{key} = i\}|$ for $i \leftarrow 2$ to k **do** $C[i] \leftarrow C[i] + C[i-1]$ $\triangleright C[i] = |\{\text{key} \le i\}|$ for $j \leftarrow n$ downto 1 **do** $B[C[A[j]]] \leftarrow A[j]$ $C[A[j]] \leftarrow C[A[j]] - 1$

Counting-sort example

for $i \leftarrow 1$ to kdo $C[i] \leftarrow 0$

for $i \leftarrow 2$ to kdo $C[i] \leftarrow C[i] + C[i-1] \triangleright C[i] = |\{\text{key} \le i\}|$

for $i \leftarrow 2$ to kdo $C[i] \leftarrow C[i] + C[i-1]$ $\triangleright C[i] = |\{\text{key} \le i\}|$

for $i \leftarrow 2$ to kdo $C[i] \leftarrow C[i] + C[i-1] \triangleright C[i] = |\{\text{key} \le i\}|$

 $\Theta(n+k)$

Running time

If k = O(n), then counting sort takes $\Theta(n)$ time.

- But, sorting takes $\Omega(n \lg n)$ time!
- Where's the fallacy?

Answer:

- *Comparison sorting* takes $\Omega(n \lg n)$ time.
- Counting sort is not a *comparison sort*.
- In fact, not a single comparison between elements occurs!

Stable sorting

Counting sort is a *stable* sort: it preserves the input order among equal elements.

Exercise: What other sorts have this property?

Radix sort

- *Origin*: Herman Hollerith's card-sorting machine for the 1890 U.S. Census.
- Digit-by-digit sort.
- Hollerith's original (bad) idea: sort on most-significant digit first.
- Good idea: Sort on *least-significant digit first* with auxiliary *stable* sort.

Operation of radix sort

	329
4 5 7 3 5 5 3 2 9	3 5 5
657436436	436
83 <mark>9</mark> 457 839	4 5 7
43 <mark>6</mark> 65735	657
7 2 <mark>0</mark> 3 2 9 4 5 7	720
3 5 5 8 3 9 6 5 7	839
V V V)

Correctness of radix sort

Induction on digit position

- Assume that the numbers are sorted by their low-order t - 1 digits.
- Sort on digit *t*

Correctness of radix sort

Induction on digit position

- Assume that the numbers are sorted by their low-order t - 1 digits.
- Sort on digit *t*
 - Two numbers that differ in digit *t* are correctly sorted.

Correctness of radix sort

Induction on digit position

- Assume that the numbers are sorted by their low-order t - 1 digits.
- Sort on digit *t*
 - Two numbers that differ in digit *t* are correctly sorted.
 - Two numbers equal in digit *t* are put in the same order as the input ⇒ correct order.

Analysis of radix sort

- Assume counting sort is the auxiliary stable sort.
- Sort *n* computer words of *b* bits each.
- Each word can be viewed as having b/r base- 2^r digits. 8 8 8 8

Example: 32-bit word

 $r = 8 \Rightarrow b/r = 4$ passes of counting sort on base-2⁸ digits; or $r = 16 \Rightarrow b/r = 2$ passes of counting sort on base-2¹⁶ digits.

How many passes should we make?

Analysis (continued)

Recall: Counting sort takes $\Theta(n + k)$ time to sort *n* numbers in the range from 0 to k - 1. If each *b*-bit word is broken into *b/r* equal pieces, each pass of counting sort takes $\Theta(n + 2^r)$ time. Since there are *b/r* passes, we have

$$T(n,b) = \Theta\left(\frac{b}{r}\left(n+2^r\right)\right)$$

Choose *r* to minimize T(n, b):

• Increasing *r* means fewer passes, but as $r \gg \lg n$, the time grows exponentially.

Choosing *r*
$$T(n,b) = \Theta\left(\frac{b}{r}(n+2^r)\right)$$

Minimize T(n, b) by differentiating and setting to 0.

Or, just observe that we don't want $2^r \gg n$, and there's no harm asymptotically in choosing *r* as large as possible subject to this constraint.

Choosing $r = \lg n$ implies $T(n, b) = \Theta(bn/\lg n)$.

• For numbers in the range from 0 to $n^d - 1$, we have $b = d \lg n \Rightarrow$ radix sort runs in $\Theta(dn)$ time.

Conclusions

In practice, radix sort is fast for large inputs, as well as simple to code and maintain.

Example (32-bit numbers):

- At most 3 passes when sorting ≥ 2000 numbers.
- Merge sort and quicksort do at least $\lceil \lg 2000 \rceil =$ 11 passes.

Downside: Unlike quicksort, radix sort displays little locality of reference, and thus a well-tuned quicksort fares better on modern processors, which feature steep memory hierarchies.