Decision Tree, Linear-time
Sorting, Lower Bounds,
Counting Sort, Radix Sort
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How fast can we sort?

All the sorting algorithms we have seen so far
are comparison sorts: only use comparisons to
determine the relative order of elements.

 E.Q., Insertion sort, merge sort, quicksort,
heapsort.

The best worst-case running time that we’ve
seen for comparison sorting i1s O(nlgn).

Is O(nlgn) the best we can do?

Decision trees can help us answer this question.
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Decision-tree example

Sort (a,, a,, ...

Each internal node is labeled i:j for 1, | € {1, 2,..., n}.
* The left subtree shows subsequent comparisons If a; < a;.
* The right subtree shows subsequent comparisons If a; > a;.
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Decision-tree example

Sort <al1 a2’ a3>
=(9,4,6):

Each internal node is labeled i:j for 1, | € {1, 2,..., n}.
* The left subtree shows subsequent comparisons If a; < a;.
* The right subtree shows subsequent comparisons If a; > a;.
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Decision-tree example

Sort <al1 a2’ a3>
=(9,4,6):

Each internal node is labeled i:j for 1, | € {1, 2,..., n}.
* The left subtree shows subsequent comparisons If a; < a;.
* The right subtree shows subsequent comparisons If a; > a;.
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Decision-tree example

Sort <a11 a21 a3>
=(9,4,0):

Each leaf contains a permutation {rt(1), 7(2),..., m(n)) to
Indicate that the ordering a ;) <a,, < A <a,, has been
established.
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Decision-tree model

A decision tree can model the execution of
any comparison sort:

 One tree for each input size n.

 View the algorithm as splitting whenever
It compares two elements.

 The tree contains the comparisons along
all possible instruction traces.

* The running time of the algorithm = the
length of the path taken.

 WWorst-case running time = height of tree.
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_ower bound for decision-
tree sorting

Theorem. Any decision tree that can sort n
elements must have height Q(nlgn).

Proof. The tree must contain > n! leaves, since
there are n! possible permutations. A height-h
binary tree has < 2" leaves. Thus, n! < 2",

- h >lg(n') (Ig I1s mono. increasing)
> Ig ((n/e)") (Stirling’s formula)
=nlgn-nlge
=Q(nlgn).
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L_ower bound for comparison
sorting

Corollary. Heapsort and merge sort are
asymptotically optimal comparison sorting
algorithms.
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Sorting In linear time

Counting sort: No comparisons between elements.

o Input: A[1..n], where A[j]e{], 2, ..., k}.
e Output: B[1 .. n], sorted.
e Auxiliary storage: C[1 .. K].

L5.11



Counting sort

fori< 1tok

do C[i] <O
forj<« 1ton

do C[A[]]] < C[A[JI]+1 & C[i] =Kkey =1}
fori< 2tok

do C[i] «- C[i] + C[i-1] = C[i] = [{key <i}]
for | « ndownto 1

do B[C[A[]]]] < All]

CIAL]] < C[A[J]] -1
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Counting-sort example
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fori< 1tok
do C[i] <~ 0
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forj«< 1ton
do C[A[JI] «- C[A[JII+1 = C[i] =[{key = 1}]
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forj«< 1ton
do C[A[JI] «- C[A[JII+1 = C[i] =[{key = 1}]
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forj«< 1ton
do C[A[JI] «- C[A[JII+1 = C[i] =[{key = 1}]
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forj«< 1ton
do C[A[JI] «- C[A[JII+1 = C[i] =[{key = 1}]
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forj«< 1ton
do C[A[JI] «- C[A[JII+1 = C[i] =[{key = 1}]

L5.19



fori < 2tok
do C[i] « CJi] + C[I-1]

> Cl1] = [{key <1}
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fori < 2tok
do C[i] « CJi] + C[I-1]

> Cl1] = [{key <1}
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fori < 2tok
do C[i] « CJi] + C[I-1]

> Cl1] = [{key <1}

L5.22



for | «— ndownto 1
do BIC[A[J]]] < AlLJ]
CIA[J]] < C[A[]]] -1
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for | «— ndownto 1
do BIC[A[J]]] < AlLJ]
CIA[J]] < C[A[]]] -1
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for | «— ndownto 1
do BIC[A[J]]] < AlLJ]
CIA[J]] < C[A[]]] -1
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for | «— ndownto 1
do BIC[A[J]]] < AlLJ]
CIA[J]] < C[A[]]] -1
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B:13344| C:10/1]1]3

for | «— ndownto 1
do BIC[A[J]]] < AlLJ]
CIA[J]] < C[A[]]] -1
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Analysis
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Running time

If k = O(n), then counting sort takes ®(n) time.
e But, sorting takes Q2(nlgn) time!
* Where’s the fallacy?

Answer:
e Comparison sorting takes Q(nlgn) time.
 Counting sort Is not a comparison sort.

e In fact, not a single comparison between
elements occurs!
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Stable sorting

Counting sort is a stable sort: it preserves
the Input order among equal elements.

A:41343|

B:13344I

Exercise: What other sorts have this property?
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Radix sort

* Origin: Herman Hollerith’s card-sorting
machine for the 1890 U.S. Census.

e Digit-by-digit sort.

 Hollerith’s original (bad) idea: sort on
most-significant digit first.

» Good Idea: Sort on least-significant digit
first with auxiliary stable sort.
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Operation of radix sort

329
457
657
839
436
720
355

7120
395
430
457
657
329
839

(20
329
436
839
355
45/
657

329
355
436
45/
657
(20
839

N
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Correctness of radix sort

Induction on digit position

« Assume that the numbers
are sorted by their low-order
[ — 1 digits.

e Sort on digit t

720
329
436
839
355
457
657

329
355
430
45/
657
(20
839

__
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Correctness of radix sort

Induction on digit position

720 329
e Assume that the numbers 394 3cC
are sorted by their low-order
t — 1 digits. 436 4306
e Sort on digit t AR j°
= Two numbers that differ in 399 657
digit t are correctly sorted. 457 (20
657 3839

__
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Correctness of radix sort

Induction on digit position

720 329

e Assume that the numbers 394 3cC
are sorted by their low-order

t — 1 digits. 436—>436

e Sort on digit t AR j°

= Two numbers that differ in 399 657

digit t are correctly sorted. 457 (20

= Two numbers equal in digitt 657 839

are put in the same order as
the input = correct order. U
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Analysis of radix sort

e Assume counting sort Is the auxiliary stable sort.
 Sort n computer words of b bits each.

» Each word can be viewed as having b/r base-2"
digits. s g 8 8

Example: 32-bit word
r =8 = b/r = 4 passes of counting sort on
base-28digits; or r = 16 = b/r = 2 passes of
counting sort on base-2'° digits.

How many passes should we make?
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Analysis (continued)

Recall: Counting sort takes ®(n + k) time to
sort n numbers in the range from 0 to k — 1.

If each b-bit word is broken into b/r equal
pieces, each pass of counting sort takes ®(n +
2") time. Since there are b/r passes, we have

T(n,b) :®(b(n+2r)) |

I

Choose r to minimize T(n, b):
* Increasing r means fewer passes, but as
r >>1g n, the time grows exponentially.

L5.37



Choosing r
T(n,b) = @(E(n — ZV)J
Minimize T(n, b) by differentiating and setting to O.

Or, just observe that we don’t want 2" >n, and
there’s no harm asymptotically in choosing r as
large as possible subject to this constraint.

Choosing r = Ign implies T(n,b) = ®(bn/lgn).

 For numbers in the range from 0 to n - 1, we
have b =d Ig n = radix sort runs in ®(dn) time.
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Conclusions

In practice, radix sort Is fast for large inputs, as
well as simple to code and maintain.

Example (32-bit numbers):
* At most 3 passes when sorting > 2000 numbers.

» Merge sort and quicksort do at least | Ig 2000 | =
11 passes.

Downside: Unlike quicksort, radix sort displays
little locality of reference, and thus a well-tuned
quicksort fares better on modern processors,
which feature steep memory hierarchies.
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