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How fast can we sort? 
All the sorting algorithms we have seen so far 
are comparison sorts: only use comparisons to 
determine the relative order of elements. 
• E.g., insertion sort, merge sort, quicksort,

heapsort.
The best worst-case running time that we’ve 
seen for comparison sorting is O(n lg n) . 

Is O(n lg n)  the best we can do? 

Decision trees can help us answer this question. 
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Decision-tree example 

1:2 

2:3 

123 1:3 

132 312 

1:3 

213 2:3 

231 321 

Each internal node is labeled i:j for i, j ∈ {1, 2,…, n}. 
•The left subtree shows subsequent comparisons if ai ≤ aj.
•The right subtree shows subsequent comparisons if ai ≥ aj.

Sort 〈a1, a2, …, an〉 
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Decision-tree example 

1:2 

2:3 

123 1:3 

132 312 

1:3 

213 2:3 

231 321 

Each internal node is labeled i:j for i, j ∈ {1, 2,…, n}. 
•The left subtree shows subsequent comparisons if ai ≤ aj.
•The right subtree shows subsequent comparisons if ai ≥ aj.

9 ≥ 4 Sort 〈a1, a2, a3〉 
= 〈 9, 4, 6 〉: 
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Decision-tree example 

1:2 

2:3 

123 1:3 

132 312 

1:3 

213 2:3 

231 321 

Each internal node is labeled i:j for i, j ∈ {1, 2,…, n}. 
•The left subtree shows subsequent comparisons if ai ≤ aj.
•The right subtree shows subsequent comparisons if ai ≥ aj.

9 ≥ 6 

Sort 〈a1, a2, a3〉 
= 〈 9, 4, 6 〉: 
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Decision-tree example 

1:2 

2:3 

123 1:3 

132 312 

1:3 

213 2:3 

231 321 

Each internal node is labeled i:j for i, j ∈ {1, 2,…, n}. 
•The left subtree shows subsequent comparisons if ai ≤ aj.
•The right subtree shows subsequent comparisons if ai ≥ aj.

4 ≤ 6 

Sort 〈a1, a2, a3〉 
= 〈 9, 4, 6 〉: 



established. 
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Decision-tree example 

1:2 

2:3 

123 1:3 

132 312 

1:3 

213 2:3 

231 321 

Each leaf contains a permutation 〈π(1), π(2),…, π(n)〉 to 
indicate that the ordering aπ(1) ≤ aπ(2) ≤ Λ ≤ aπ(n) has been 

4 ≤ 6 ≤ 9 

Sort 〈a1, a2, a3〉 
= 〈 9, 4, 6 〉: 
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Decision-tree model 
A decision tree can model the execution of 
any comparison sort: 
• One tree for each input size n.
• View the algorithm as splitting whenever

it compares two elements.
• The tree contains the comparisons along

all possible instruction traces.
• The running time of the algorithm = the

length of the path taken.
• Worst-case running time = height of tree.
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Lower bound for decision-
tree sorting 

Theorem.  Any decision tree that can sort n 
elements must have height Ω(n lg n) . 
Proof.  The tree must contain ≥ n! leaves, since 
there are n! possible permutations.  A height-h 
binary tree has ≤ 2h leaves.  Thus, n! ≤ 2h . 
 ∴ h ≥ lg(n!) (lg is mono. increasing) 

≥ lg ((n/e)n) (Stirling’s formula) 
= n lg n – n lg e 
= Ω(n lg n) .  
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Lower bound for comparison 
sorting 

Corollary.  Heapsort and merge sort are 
asymptotically optimal comparison sorting 
algorithms. 
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Sorting in linear time 

Counting sort: No comparisons between elements. 
• Input: A[1 . . n], where A[ j]∈{1, 2, …, k} .
• Output: B[1 . . n], sorted.
• Auxiliary storage: C[1 . . k] .
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Counting sort 

for i ← 1 to k 
do C[i] ← 0 

for j ← 1 to n 
do C[A[ j]] ← C[A[ j]] + 1  ⊳ C[i] = |{key = i}| 

for i ← 2 to k 
do C[i] ← C[i] + C[i–1]  ⊳ C[i] = |{key ≤ i}| 

for j ← n downto 1 
do B[C[A[ j]]] ← A[ j] 

C[A[ j]] ← C[A[ j]] – 1 
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Counting-sort example 

A: 4 1 3 4 3 

B: 

1 2 3 4 5 

C: 
1 2 3 4 
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Loop 1 

A: 4 1 3 4 3 

B: 

1 2 3 4 5 

C: 0 0 0 0 
1 2 3 4 

for i ← 1 to k 
do C[i] ← 0 
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Loop 2 

A: 4 1 3 4 3 

B: 

1 2 3 4 5 

C: 0 0 0 1 
1 2 3 4 

for j ← 1 to n 
do C[A[ j]] ← C[A[ j]] + 1  ⊳ C[i] = |{key = i}| 
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Loop 2 

A: 4 1 3 4 3 

B: 

1 2 3 4 5 

C: 1 0 0 1 
1 2 3 4 

for j ← 1 to n 
do C[A[ j]] ← C[A[ j]] + 1  ⊳ C[i] = |{key = i}| 
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Loop 2 

A: 4 1 3 4 3 

B: 

1 2 3 4 5 

C: 1 0 1 1 
1 2 3 4 

for j ← 1 to n 
do C[A[ j]] ← C[A[ j]] + 1  ⊳ C[i] = |{key = i}| 
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Loop 2 

A: 4 1 3 4 3 

B: 

1 2 3 4 5 

C: 1 0 1 2 
1 2 3 4 

for j ← 1 to n 
do C[A[ j]] ← C[A[ j]] + 1  ⊳ C[i] = |{key = i}| 
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Loop 2 

A: 4 1 3 4 3 

B: 

1 2 3 4 5 

C: 1 0 2 2 
1 2 3 4 

for j ← 1 to n 
do C[A[ j]] ← C[A[ j]] + 1  ⊳ C[i] = |{key = i}| 
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Loop 3 

A: 4 1 3 4 3 

B: 

1 2 3 4 5 

C: 1 0 2 2 
1 2 3 4 

C': 1 1 2 2 

for i ← 2 to k 
do C[i] ← C[i] + C[i–1]  ⊳ C[i] = |{key ≤ i}| 
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Loop 3 

A: 4 1 3 4 3 

B: 

1 2 3 4 5 

C: 1 0 2 2 
1 2 3 4 

C': 1 1 3 2 

for i ← 2 to k 
do C[i] ← C[i] + C[i–1]  ⊳ C[i] = |{key ≤ i}| 
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Loop 3 

A: 4 1 3 4 3 

B: 

1 2 3 4 5 

C: 1 0 2 2 
1 2 3 4 

C': 1 1 3 5 

for i ← 2 to k 
do C[i] ← C[i] + C[i–1]  ⊳ C[i] = |{key ≤ i}| 
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Loop 4 

A: 4 1 3 4 3 

B: 3 

1 2 3 4 5 

C: 1 1 3 5 
1 2 3 4 

C': 1 1 2 5 

for j ← n downto 1 
do B[C[A[ j]]] ← A[ j] 

C[A[ j]] ← C[A[ j]] – 1 
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Loop 4 

A: 4 1 3 4 3 

B: 3 4 

1 2 3 4 5 

C: 1 1 2 5 
1 2 3 4 

C': 1 1 2 4 

for j ← n downto 1 
do B[C[A[ j]]] ← A[ j] 

C[A[ j]] ← C[A[ j]] – 1 
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Loop 4 

A: 4 1 3 4 3 

B: 3 3 4 

1 2 3 4 5 

C: 1 1 2 4 
1 2 3 4 

C': 1 1 1 4 

for j ← n downto 1 
do B[C[A[ j]]] ← A[ j] 

C[A[ j]] ← C[A[ j]] – 1 



   L5.26 

Loop 4 

A: 4 1 3 4 3 

B: 1 3 3 4 

1 2 3 4 5 

C: 1 1 1 4 
1 2 3 4 

C': 0 1 1 4 

for j ← n downto 1 
do B[C[A[ j]]] ← A[ j] 

C[A[ j]] ← C[A[ j]] – 1 
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Loop 4 

A: 4 1 3 4 3 

B: 1 3 3 4 4 

1 2 3 4 5 

C: 0 1 1 4 
1 2 3 4 

C': 0 1 1 3 

for j ← n downto 1 
do B[C[A[ j]]] ← A[ j] 

C[A[ j]] ← C[A[ j]] – 1 
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Analysis 
for i ← 1 to k 

do C[i] ← 0 

Θ(n) 

Θ(k) 

Θ(n) 

Θ(k) 

for j ← 1 to n 
do C[A[ j]] ← C[A[ j]] + 1 

for i ← 2 to k 
do C[i] ← C[i] + C[i–1] 

for j ← n downto 1 
do B[C[A[ j]]] ← A[ j] 

C[A[ j]] ← C[A[ j]] – 1 
Θ(n + k) 
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Running time 

If k = O(n), then counting sort takes Θ(n) time. 
• But, sorting takes Ω(n lg n) time!
• Where’s the fallacy?

Answer: 
• Comparison sorting takes Ω(n lg n) time.
• Counting sort is not a comparison sort.
• In fact, not a single comparison between

elements occurs!
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Stable sorting 

Counting sort is a stable sort: it preserves 
the input order among equal elements. 

A: 4 1 3 4 3 

B: 1 3 3 4 4 

Exercise: What other sorts have this property? 
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Radix sort 

• Origin: Herman Hollerith’s card-sorting 
machine for the 1890 U.S. Census. 

• Digit-by-digit sort.
• Hollerith’s original (bad) idea: sort on

most-significant digit first.
• Good idea: Sort on least-significant digit

first with auxiliary stable sort.
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Operation of radix sort 

3 2 9 
4 5 7 
6 5 7 
8 3 9 
4 3 6 
7 2 0 
3 5 5 

7 2 0 
3 5 5 
4 3 6 
4 5 7 
6 5 7 
3 2 9 
8 3 9 

7 2 0 
3 2 9 
4 3 6 
8 3 9 
3 5 5 
4 5 7 
6 5 7 

3 2 9 
3 5 5 
4 3 6 
4 5 7 
6 5 7 
7 2 0 
8 3 9 
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• Sort on digit t

Correctness of radix sort 
Induction on digit position 
• Assume that the numbers

are sorted by their low-order
t – 1 digits.

7 2 0 
3 2 9 
4 3 6 
8 3 9 
3 5 5 
4 5 7 
6 5 7 

3 2 9 
3 5 5 
4 3 6 
4 5 7 
6 5 7 
7 2 0 
8 3 9 
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• Sort on digit t

Correctness of radix sort 
Induction on digit position 
• Assume that the numbers

are sorted by their low-order
t – 1 digits.

7 2 0 
3 2 9 
4 3 6 
8 3 9 
3 5 5 
4 5 7 
6 5 7 

3 2 9 
3 5 5 
4 3 6 
4 5 7 
6 5 7 
7 2 0 
8 3 9 

 
 Two numbers that differ in

digit t are correctly sorted.
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• Sort on digit t

Correctness of radix sort 
Induction on digit position 
• Assume that the numbers

are sorted by their low-order
t – 1 digits.

7 2 0 
3 2 9 
4 3 6 
8 3 9 
3 5 5 
4 5 7 
6 5 7 

3 2 9 
3 5 5 
4 3 6 
4 5 7 
6 5 7 
7 2 0 
8 3 9 

 
 Two numbers that differ in

digit t are correctly sorted.
 Two numbers equal in digit t

are put in the same order as
the input ⇒ correct order.
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Analysis of radix sort 

• Assume counting sort is the auxiliary stable sort.
• Sort n computer words of b bits each.
• Each word can be viewed as having b/r base-2r

digits.
Example: 32-bit word 

8 8 8 8 

r = 8 ⇒ b/r = 4 passes of counting sort on 
base-28 digits; or r = 16 ⇒ b/r = 2 passes of 
counting sort on base-216 digits. 

How many passes should we make? 
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Analysis (continued) 
Recall: Counting sort takes Θ(n + k) time to 
sort n numbers in the range from 0 to k – 1. 
If each b-bit word is broken into b/r equal 
pieces, each pass of counting sort takes Θ(n + 
2r) time.  Since there are b/r passes, we have 

( )




 +Θ= rn

r
bbnT 2),( .

Choose r to minimize T(n, b): 
• Increasing r means fewer passes, but as

r >  lg n, the time grows exponentially.> 
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Choosing r 
( )





 +Θ= rn

r
bbnT 2),(

Minimize T(n, b) by differentiating and setting to 0. 
Or, just observe that we don’t want 2r >  n, and 
there’s no harm asymptotically in choosing r as 
large as possible subject to this constraint. 

 > 

Choosing r = lg n implies T(n, b) = Θ(b n/lg n) . 

• For numbers in the range from 0 to n 
d – 1, we

have b = d lg n ⇒ radix sort runs in Θ(d n) time.
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Conclusions 

Example (32-bit numbers): 
• At most 3 passes when sorting ≥ 2000 numbers.
• Merge sort and quicksort do at least lg 2000 =

11 passes.

In practice, radix sort is fast for large inputs, as 
well as simple to code and maintain. 

Downside: Unlike quicksort, radix sort displays 
little locality of reference, and thus a well-tuned 
quicksort fares better on modern processors, 
which feature steep memory hierarchies. 
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