Decision Tree, Linear-time
Sorting, Lower Bounds,
Counting Sort, Radix Sort

_ecture 5

How fast can we sort?

All the sorting algorithms we have seen so far
are comparison sorts: only use comparisons to
determine the relative order of elements.

 E.Q., Insertion sort, merge sort, quicksort,
heapsort.

The best worst-case running time that we’ve
seen for comparison sorting i1s O(nlgn).

Is O(nlgn) the best we can do?

Decision trees can help us answer this question.

L5.2

Decision-tree example

Sort (a,, a,, ...

Each internal node is labeled i:j for 1, | € {1, 2,..., n}.
* The left subtree shows subsequent comparisons If a; < a;.
* The right subtree shows subsequent comparisons If a; > a;.

L5.3

Decision-tree example

Sort <al1 a2’ a3>
=(9,4,6):

Each internal node is labeled i:j for 1, | € {1, 2,..., n}.
* The left subtree shows subsequent comparisons If a; < a;.
* The right subtree shows subsequent comparisons If a; > a;.

L5.4

Decision-tree example

Sort <al1 a2’ a3>
=(9,4,6):

Each internal node is labeled i:j for 1, | € {1, 2,..., n}.
* The left subtree shows subsequent comparisons If a; < a;.
* The right subtree shows subsequent comparisons If a; > a;.

L5.5

Decision-tree example

Sort <al1 a2’ a3>
=(9,4,6):

Each internal node is labeled i:j for 1, | € {1, 2,..., n}.
* The left subtree shows subsequent comparisons If a; < a;.
* The right subtree shows subsequent comparisons If a; > a;.

L5.6

Decision-tree example

Sort <a11 a21 a3>
=(9,4,0):

Each leaf contains a permutation {rt(1), 7(2),..., m(n)) to
Indicate that the ordering a ;) <a,, < A <a,, has been
established.

L5.7

Decision-tree model

A decision tree can model the execution of
any comparison sort:

 One tree for each input size n.

 View the algorithm as splitting whenever
It compares two elements.

 The tree contains the comparisons along
all possible instruction traces.

* The running time of the algorithm = the
length of the path taken.

 WWorst-case running time = height of tree.

L5.8

_ower bound for decision-
tree sorting

Theorem. Any decision tree that can sort n
elements must have height Q(nlgn).

Proof. The tree must contain > n! leaves, since
there are n! possible permutations. A height-h
binary tree has < 2" leaves. Thus, n! < 2",

- h >lg(n') (Ig I1s mono. increasing)
> Ig ((n/e)") (Stirling’s formula)
=nlgn-nlge
=Q(nlgn).

L5.9

L_ower bound for comparison
sorting

Corollary. Heapsort and merge sort are
asymptotically optimal comparison sorting
algorithms.

L5.10

Sorting In linear time

Counting sort: No comparisons between elements.

o Input: A[1..n], where A[j]e{], 2, ..., k}.
e Output: B[1 .. n], sorted.
e Auxiliary storage: C[1 .. K].

L5.11

Counting sort

fori< 1tok

do C[i] <O
forj<« 1ton

do C[A[]]] < C[A[JI]+1 & C[i] =Kkey =1}
fori< 2tok

do C[i] «- C[i] + C[i-1] = C[i] = [{key <i}]
for | « ndownto 1

do B[C[A[]]]] < All]

CIAL]] < C[A[J]] -1

L5.12

Counting-sort example

L5.13

fori< 1tok
do C[i] <~ 0

L5.14

forj«< 1ton
do C[A[JI] «- C[A[JII+1 = C[i] =[{key = 1}]

L5.15

forj«< 1ton
do C[A[JI] «- C[A[JII+1 = C[i] =[{key = 1}]

L5.16

forj«< 1ton
do C[A[JI] «- C[A[JII+1 = C[i] =[{key = 1}]

L5.17

forj«< 1ton
do C[A[JI] «- C[A[JII+1 = C[i] =[{key = 1}]

L5.18

forj«< 1ton
do C[A[JI] «- C[A[JII+1 = C[i] =[{key = 1}]

L5.19

fori < 2tok
do C[i] « CJi] + C[I-1]

> Cl1] = [{key <1}

L5.20

fori < 2tok
do C[i] « CJi] + C[I-1]

> Cl1] = [{key <1}

L5.21

fori < 2tok
do C[i] « CJi] + C[I-1]

> Cl1] = [{key <1}

L5.22

for | «— ndownto 1
do BIC[A[J]]] < AlLJ]
CIA[J]] < C[A[]]] -1

L5.23

for | «— ndownto 1
do BIC[A[J]]] < AlLJ]
CIA[J]] < C[A[]]] -1

L5.24

for | «— ndownto 1
do BIC[A[J]]] < AlLJ]
CIA[J]] < C[A[]]] -1

L5.25

for | «— ndownto 1
do BIC[A[J]]] < AlLJ]
CIA[J]] < C[A[]]] -1

L5.26

B:13344| C:10/1]1]3

for | «— ndownto 1
do BIC[A[J]]] < AlLJ]
CIA[J]] < C[A[]]] -1

L5.27

Analysis

Ak) -~
®(n) =

OKk) -~

O(n) <

O + k)

~—

—

~—

—
/‘

for |

for |

C

C

C

C

o Cl[i]

C fori< 1tok

<0

<~ 1ton
o C[A[J]] « CIA[J]] +1

0 CJi]

C fori<—2tok

« C[i] + C[i~1]

< ndownto 1

0 B[C
C[A

AL < AL

1T < CIA[T -1

L5.28

Running time

If k = O(n), then counting sort takes ®(n) time.
e But, sorting takes Q2(nlgn) time!
* Where’s the fallacy?

Answer:
e Comparison sorting takes Q(nlgn) time.
 Counting sort Is not a comparison sort.

e In fact, not a single comparison between
elements occurs!

L5.29

Stable sorting

Counting sort is a stable sort: it preserves
the Input order among equal elements.

A:41343|

B:13344I

Exercise: What other sorts have this property?

L5.30

Radix sort

* Origin: Herman Hollerith’s card-sorting
machine for the 1890 U.S. Census.

e Digit-by-digit sort.

 Hollerith’s original (bad) idea: sort on
most-significant digit first.

» Good Idea: Sort on least-significant digit
first with auxiliary stable sort.

L5.31

Operation of radix sort

329
457
657
839
436
720
355

7120
395
430
457
657
329
839

(20
329
436
839
355
45/
657

329
355
436
45/
657
(20
839

N

L5.32

Correctness of radix sort

Induction on digit position

« Assume that the numbers
are sorted by their low-order
[— 1 digits.

e Sort on digit t

720
329
436
839
355
457
657

329
355
430
45/
657
(20
839

__

L5.33

Correctness of radix sort

Induction on digit position

720 329
e Assume that the numbers 394 3cC
are sorted by their low-order
t — 1 digits. 436 4306
e Sort on digit t AR j°
= Two numbers that differ in 399 657
digit t are correctly sorted. 457 (20
657 3839

__

L5.34

Correctness of radix sort

Induction on digit position

720 329

e Assume that the numbers 394 3cC
are sorted by their low-order

t — 1 digits. 436—>436

e Sort on digit t AR j°

= Two numbers that differ in 399 657

digit t are correctly sorted. 457 (20

= Two numbers equal in digitt 657 839

are put in the same order as
the input = correct order. U

L5.35

Analysis of radix sort

e Assume counting sort Is the auxiliary stable sort.
 Sort n computer words of b bits each.

» Each word can be viewed as having b/r base-2"
digits. s g 8 8

Example: 32-bit word
r =8 = b/r = 4 passes of counting sort on
base-28digits; or r = 16 = b/r = 2 passes of
counting sort on base-2'° digits.

How many passes should we make?

L5.36

Analysis (continued)

Recall: Counting sort takes ®(n + k) time to
sort n numbers in the range from 0 to k — 1.

If each b-bit word is broken into b/r equal
pieces, each pass of counting sort takes ®(n +
2") time. Since there are b/r passes, we have

T(n,b) :®(b(n+2r)) |

I

Choose r to minimize T(n, b):
* Increasing r means fewer passes, but as
r >>1g n, the time grows exponentially.

L5.37

Choosing r
T(n,b) = @(E(n — ZV)J
Minimize T(n, b) by differentiating and setting to O.

Or, just observe that we don’t want 2" >n, and
there’s no harm asymptotically in choosing r as
large as possible subject to this constraint.

Choosing r = Ign implies T(n,b) = ®(bn/lgn).

 For numbers in the range from 0 to n - 1, we
have b =d Ig n = radix sort runs in ®(dn) time.

L5.38

Conclusions

In practice, radix sort Is fast for large inputs, as
well as simple to code and maintain.

Example (32-bit numbers):
* At most 3 passes when sorting > 2000 numbers.

» Merge sort and quicksort do at least | Ig 2000 | =
11 passes.

Downside: Unlike quicksort, radix sort displays
little locality of reference, and thus a well-tuned
quicksort fares better on modern processors,
which feature steep memory hierarchies.

L5.39

	Introduction to Algorithms��
	How fast can we sort?
	Decision-tree example
	Decision-tree example
	Decision-tree example
	Decision-tree example
	Decision-tree example
	Decision-tree model
	Lower bound for decision-tree sorting
	Lower bound for comparison sorting
	Sorting in linear time
	Counting sort
	Counting-sort example
	Loop 1
	Loop 2
	Loop 2
	Loop 2
	Loop 2
	Loop 2
	Loop 3
	Loop 3
	Loop 3
	Loop 4
	Loop 4
	Loop 4
	Loop 4
	Loop 4
	Analysis
	Running time
	Stable sorting
	Radix sort
	Operation of radix sort
	Correctness of radix sort
	Correctness of radix sort
	Correctness of radix sort
	Analysis of radix sort
	Analysis (continued)
	Choosing r
	Conclusions

