
Decision Tree, Linear-time
Sorting, Lower Bounds,
Counting Sort, Radix Sort

Lecture 5

 L5.2

How fast can we sort?
All the sorting algorithms we have seen so far
are comparison sorts: only use comparisons to
determine the relative order of elements.
• E.g., insertion sort, merge sort, quicksort,

heapsort.
The best worst-case running time that we’ve
seen for comparison sorting is O(n lg n) .

Is O(n lg n) the best we can do?

Decision trees can help us answer this question.

 L5.3

Decision-tree example

1:2

2:3

123 1:3

132 312

1:3

213 2:3

231 321

Each internal node is labeled i:j for i, j ∈ {1, 2,…, n}.
•The left subtree shows subsequent comparisons if ai ≤ aj.
•The right subtree shows subsequent comparisons if ai ≥ aj.

Sort 〈a1, a2, …, an〉

 L5.4

Decision-tree example

1:2

2:3

123 1:3

132 312

1:3

213 2:3

231 321

Each internal node is labeled i:j for i, j ∈ {1, 2,…, n}.
•The left subtree shows subsequent comparisons if ai ≤ aj.
•The right subtree shows subsequent comparisons if ai ≥ aj.

9 ≥ 4 Sort 〈a1, a2, a3〉
= 〈 9, 4, 6 〉:

 L5.5

Decision-tree example

1:2

2:3

123 1:3

132 312

1:3

213 2:3

231 321

Each internal node is labeled i:j for i, j ∈ {1, 2,…, n}.
•The left subtree shows subsequent comparisons if ai ≤ aj.
•The right subtree shows subsequent comparisons if ai ≥ aj.

9 ≥ 6

Sort 〈a1, a2, a3〉
= 〈 9, 4, 6 〉:

 L5.6

Decision-tree example

1:2

2:3

123 1:3

132 312

1:3

213 2:3

231 321

Each internal node is labeled i:j for i, j ∈ {1, 2,…, n}.
•The left subtree shows subsequent comparisons if ai ≤ aj.
•The right subtree shows subsequent comparisons if ai ≥ aj.

4 ≤ 6

Sort 〈a1, a2, a3〉
= 〈 9, 4, 6 〉:

established.
 L5.7

Decision-tree example

1:2

2:3

123 1:3

132 312

1:3

213 2:3

231 321

Each leaf contains a permutation 〈π(1), π(2),…, π(n)〉 to
indicate that the ordering aπ(1) ≤ aπ(2) ≤ Λ ≤ aπ(n) has been

4 ≤ 6 ≤ 9

Sort 〈a1, a2, a3〉
= 〈 9, 4, 6 〉:

 L5.8

Decision-tree model
A decision tree can model the execution of
any comparison sort:
• One tree for each input size n.
• View the algorithm as splitting whenever

it compares two elements.
• The tree contains the comparisons along

all possible instruction traces.
• The running time of the algorithm = the

length of the path taken.
• Worst-case running time = height of tree.

 L5.9

Lower bound for decision-
tree sorting

Theorem. Any decision tree that can sort n
elements must have height Ω(n lg n) .
Proof. The tree must contain ≥ n! leaves, since
there are n! possible permutations. A height-h
binary tree has ≤ 2h leaves. Thus, n! ≤ 2h .
 ∴ h ≥ lg(n!) (lg is mono. increasing)

≥ lg ((n/e)n) (Stirling’s formula)
= n lg n – n lg e
= Ω(n lg n) .

 L5.10

Lower bound for comparison
sorting

Corollary. Heapsort and merge sort are
asymptotically optimal comparison sorting
algorithms.

 L5.11

Sorting in linear time

Counting sort: No comparisons between elements.
• Input: A[1 . . n], where A[j]∈{1, 2, …, k} .
• Output: B[1 . . n], sorted.
• Auxiliary storage: C[1 . . k] .

 L5.12

Counting sort

for i ← 1 to k
do C[i] ← 0

for j ← 1 to n
do C[A[j]] ← C[A[j]] + 1 ⊳ C[i] = |{key = i}|

for i ← 2 to k
do C[i] ← C[i] + C[i–1] ⊳ C[i] = |{key ≤ i}|

for j ← n downto 1
do B[C[A[j]]] ← A[j]

C[A[j]] ← C[A[j]] – 1

L5.13

Counting-sort example

A: 4 1 3 4 3

B:

1 2 3 4 5

C:
1 2 3 4

 L5.14

Loop 1

A: 4 1 3 4 3

B:

1 2 3 4 5

C: 0 0 0 0
1 2 3 4

for i ← 1 to k
do C[i] ← 0

 L5.15

Loop 2

A: 4 1 3 4 3

B:

1 2 3 4 5

C: 0 0 0 1
1 2 3 4

for j ← 1 to n
do C[A[j]] ← C[A[j]] + 1 ⊳ C[i] = |{key = i}|

 L5.16

Loop 2

A: 4 1 3 4 3

B:

1 2 3 4 5

C: 1 0 0 1
1 2 3 4

for j ← 1 to n
do C[A[j]] ← C[A[j]] + 1 ⊳ C[i] = |{key = i}|

 L5.17

Loop 2

A: 4 1 3 4 3

B:

1 2 3 4 5

C: 1 0 1 1
1 2 3 4

for j ← 1 to n
do C[A[j]] ← C[A[j]] + 1 ⊳ C[i] = |{key = i}|

L5.18

Loop 2

A: 4 1 3 4 3

B:

1 2 3 4 5

C: 1 0 1 2
1 2 3 4

for j ← 1 to n
do C[A[j]] ← C[A[j]] + 1 ⊳ C[i] = |{key = i}|

 L5.19

Loop 2

A: 4 1 3 4 3

B:

1 2 3 4 5

C: 1 0 2 2
1 2 3 4

for j ← 1 to n
do C[A[j]] ← C[A[j]] + 1 ⊳ C[i] = |{key = i}|

 L5.20

Loop 3

A: 4 1 3 4 3

B:

1 2 3 4 5

C: 1 0 2 2
1 2 3 4

C': 1 1 2 2

for i ← 2 to k
do C[i] ← C[i] + C[i–1] ⊳ C[i] = |{key ≤ i}|

 L5.21

Loop 3

A: 4 1 3 4 3

B:

1 2 3 4 5

C: 1 0 2 2
1 2 3 4

C': 1 1 3 2

for i ← 2 to k
do C[i] ← C[i] + C[i–1] ⊳ C[i] = |{key ≤ i}|

 L5.22

Loop 3

A: 4 1 3 4 3

B:

1 2 3 4 5

C: 1 0 2 2
1 2 3 4

C': 1 1 3 5

for i ← 2 to k
do C[i] ← C[i] + C[i–1] ⊳ C[i] = |{key ≤ i}|

L5.23

Loop 4

A: 4 1 3 4 3

B: 3

1 2 3 4 5

C: 1 1 3 5
1 2 3 4

C': 1 1 2 5

for j ← n downto 1
do B[C[A[j]]] ← A[j]

C[A[j]] ← C[A[j]] – 1

 L5.24

Loop 4

A: 4 1 3 4 3

B: 3 4

1 2 3 4 5

C: 1 1 2 5
1 2 3 4

C': 1 1 2 4

for j ← n downto 1
do B[C[A[j]]] ← A[j]

C[A[j]] ← C[A[j]] – 1

 L5.25

Loop 4

A: 4 1 3 4 3

B: 3 3 4

1 2 3 4 5

C: 1 1 2 4
1 2 3 4

C': 1 1 1 4

for j ← n downto 1
do B[C[A[j]]] ← A[j]

C[A[j]] ← C[A[j]] – 1

 L5.26

Loop 4

A: 4 1 3 4 3

B: 1 3 3 4

1 2 3 4 5

C: 1 1 1 4
1 2 3 4

C': 0 1 1 4

for j ← n downto 1
do B[C[A[j]]] ← A[j]

C[A[j]] ← C[A[j]] – 1

 L5.27

Loop 4

A: 4 1 3 4 3

B: 1 3 3 4 4

1 2 3 4 5

C: 0 1 1 4
1 2 3 4

C': 0 1 1 3

for j ← n downto 1
do B[C[A[j]]] ← A[j]

C[A[j]] ← C[A[j]] – 1

 L5.28

Analysis
for i ← 1 to k

do C[i] ← 0

Θ(n)

Θ(k)

Θ(n)

Θ(k)

for j ← 1 to n
do C[A[j]] ← C[A[j]] + 1

for i ← 2 to k
do C[i] ← C[i] + C[i–1]

for j ← n downto 1
do B[C[A[j]]] ← A[j]

C[A[j]] ← C[A[j]] – 1
Θ(n + k)

 L5.29

Running time

If k = O(n), then counting sort takes Θ(n) time.
• But, sorting takes Ω(n lg n) time!
• Where’s the fallacy?

Answer:
• Comparison sorting takes Ω(n lg n) time.
• Counting sort is not a comparison sort.
• In fact, not a single comparison between

elements occurs!

 L5.30

Stable sorting

Counting sort is a stable sort: it preserves
the input order among equal elements.

A: 4 1 3 4 3

B: 1 3 3 4 4

Exercise: What other sorts have this property?

 L5.31

Radix sort

• Origin: Herman Hollerith’s card-sorting
machine for the 1890 U.S. Census.

• Digit-by-digit sort.
• Hollerith’s original (bad) idea: sort on

most-significant digit first.
• Good idea: Sort on least-significant digit

first with auxiliary stable sort.

L5.32

Operation of radix sort

3 2 9
4 5 7
6 5 7
8 3 9
4 3 6
7 2 0
3 5 5

7 2 0
3 5 5
4 3 6
4 5 7
6 5 7
3 2 9
8 3 9

7 2 0
3 2 9
4 3 6
8 3 9
3 5 5
4 5 7
6 5 7

3 2 9
3 5 5
4 3 6
4 5 7
6 5 7
7 2 0
8 3 9

 L5.33

• Sort on digit t

Correctness of radix sort
Induction on digit position
• Assume that the numbers

are sorted by their low-order
t – 1 digits.

7 2 0
3 2 9
4 3 6
8 3 9
3 5 5
4 5 7
6 5 7

3 2 9
3 5 5
4 3 6
4 5 7
6 5 7
7 2 0
8 3 9

L5.34

• Sort on digit t

Correctness of radix sort
Induction on digit position
• Assume that the numbers

are sorted by their low-order
t – 1 digits.

7 2 0
3 2 9
4 3 6
8 3 9
3 5 5
4 5 7
6 5 7

3 2 9
3 5 5
4 3 6
4 5 7
6 5 7
7 2 0
8 3 9

 Two numbers that differ in

digit t are correctly sorted.

 L5.35

• Sort on digit t

Correctness of radix sort
Induction on digit position
• Assume that the numbers

are sorted by their low-order
t – 1 digits.

7 2 0
3 2 9
4 3 6
8 3 9
3 5 5
4 5 7
6 5 7

3 2 9
3 5 5
4 3 6
4 5 7
6 5 7
7 2 0
8 3 9

 Two numbers that differ in

digit t are correctly sorted.
 Two numbers equal in digit t

are put in the same order as
the input ⇒ correct order.

 L5.36

Analysis of radix sort

• Assume counting sort is the auxiliary stable sort.
• Sort n computer words of b bits each.
• Each word can be viewed as having b/r base-2r

digits.
Example: 32-bit word

8 8 8 8

r = 8 ⇒ b/r = 4 passes of counting sort on
base-28 digits; or r = 16 ⇒ b/r = 2 passes of
counting sort on base-216 digits.

How many passes should we make?

 L5.37

Analysis (continued)
Recall: Counting sort takes Θ(n + k) time to
sort n numbers in the range from 0 to k – 1.
If each b-bit word is broken into b/r equal
pieces, each pass of counting sort takes Θ(n +
2r) time. Since there are b/r passes, we have

()

 +Θ= rn

r
bbnT 2),(.

Choose r to minimize T(n, b):
• Increasing r means fewer passes, but as

r > lg n, the time grows exponentially.>

 L5.38

Choosing r
()

 +Θ= rn

r
bbnT 2),(

Minimize T(n, b) by differentiating and setting to 0.
Or, just observe that we don’t want 2r > n, and
there’s no harm asymptotically in choosing r as
large as possible subject to this constraint.

 >

Choosing r = lg n implies T(n, b) = Θ(b n/lg n) .

• For numbers in the range from 0 to n
d – 1, we

have b = d lg n ⇒ radix sort runs in Θ(d n) time.

 L5.39

Conclusions

Example (32-bit numbers):
• At most 3 passes when sorting ≥ 2000 numbers.
• Merge sort and quicksort do at least lg 2000 =

11 passes.

In practice, radix sort is fast for large inputs, as
well as simple to code and maintain.

Downside: Unlike quicksort, radix sort displays
little locality of reference, and thus a well-tuned
quicksort fares better on modern processors,
which feature steep memory hierarchies.

	Introduction to Algorithms��
	How fast can we sort?
	Decision-tree example
	Decision-tree example
	Decision-tree example
	Decision-tree example
	Decision-tree example
	Decision-tree model
	Lower bound for decision-tree sorting
	Lower bound for comparison sorting
	Sorting in linear time
	Counting sort
	Counting-sort example
	Loop 1
	Loop 2
	Loop 2
	Loop 2
	Loop 2
	Loop 2
	Loop 3
	Loop 3
	Loop 3
	Loop 4
	Loop 4
	Loop 4
	Loop 4
	Loop 4
	Analysis
	Running time
	Stable sorting
	Radix sort
	Operation of radix sort
	Correctness of radix sort
	Correctness of radix sort
	Correctness of radix sort
	Analysis of radix sort
	Analysis (continued)
	Choosing r
	Conclusions

