
Divide and Conquer: 
Strassen's Algorithm, 
Fibonacci Numbers  

Lecture 3 
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The divide-and-conquer 

design paradigm 

1. Divide the problem (instance)
into subproblems.

2. Conquer the subproblems by
solving them recursively.

3. Combine subproblem solutions.
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Example: merge sort 

1. Divide: Trivial.

2. Conquer: Recursively sort 2 subarrays.

3. Combine: Linear-time merge.

T(n) = 2 T(n/2) + O(n) 

# subproblems 

subproblem size 

work dividing 
and combining 
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Master theorem (reprise) 

T(n) = a T(n/b) + f (n) 

CASE 1: f (n) = O(nlogba – e) 
 T(n) = Q(nlogba) . 

CASE 2: f (n) = Q(nlogba lgkn) 
 T(n) = Q(nlogba lgk+1n) . 

CASE 3: f (n) = W(nlogba + e) and a f (n/b)  c f (n) 
 T(n) = Q( f (n)) . 

Merge sort: a = 2, b = 2    nlogba = n 
   CASE 2 (k = 0)    T(n) = Q(n lg n) . 
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Binary search 

Example: Find 9 

3 5 7 8 9 12 15 

Find an element in a sorted array: 

1. Divide: Check middle element.

2. Conquer: Recursively search 1 subarray.

3. Combine: Trivial.
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Recurrence for binary search 

T(n) = 1 T(n/2) + Q(1) 

# subproblems 

subproblem size 

work dividing 
and combining 

nlogba = nlog21 = n0 = 1   CASE 2 (k = 0) 
  T(n) = Q(lg n) . 
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Powering a number 

Problem: Compute a 
n, where n N. 

a 
n = 

a 
n/2  a 

n/2 if n is even; 

a 
(n–1)/2  a 

(n–1)/2  a if n is odd. 

Divide-and-conquer algorithm: 

T(n) = T(n/2) + Q(1)    T(n) = Q(lg n) . 

Naive algorithm: Q(n). 
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Fibonacci numbers 

Recursive definition: 

Fn = 

0 if n = 0; 

Fn–1 + Fn–2
 if n  2. 

1 if n = 1; 

0 1 1 2 3 5 8 13 21 34 L

Naive recursive algorithm: W(fn) 

(exponential time), where f =  

is the golden ratio. 

2/)51( 
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Computing Fibonacci 

numbers 
Naive recursive squaring: 

Fn = fn/ rounded to the nearest integer.5

• Recursive squaring: Q(lg n) time.

• This method is unreliable, since floating-point
arithmetic is prone to round-off errors.

Bottom-up: 

• Compute F0, F1, F2, …, Fn in order, forming
each number by summing the two previous.

• Running time: Q(n).
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Recursive squaring 
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Theorem: . 

Proof of theorem.  (Induction on n.) 

Base (n = 1): . 
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Algorithm: Recursive squaring. 

Time = Q(lg n) . 
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Recursive squaring 
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Inductive step (n  2): 
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Matrix multiplication 
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Input: A = [aij], B = [bij]. 

Output: C = [cij] = AB. 
i, j = 1, 2,… , n. 
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Standard algorithm 

for i  1 to n 

do for j  1 to n 

 do cij  0 

for k  1 to n 

do cij  cij + aik bkj

Running time = Q(n3) 
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Divide-and-conquer algorithm 

nn matrix = 22 matrix of (n/2)(n/2) submatrices: 
IDEA: 
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C = A  B 
r = ae + bg 

s = af + bh 

t = ce + dh 

u = cf + dh 

8 mults of (n/2)(n/2) submatrices 

4 adds of (n/2)(n/2) submatrices  
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Analysis of D&C algorithm 

nlogba = nlog28 = n3    CASE 1    T(n) = Q(n3). 

No better than the ordinary algorithm. 

# submatrices 

submatrix size 

work adding 
submatrices 

T(n) = 8 T(n/2) + Q(n2) 



L3.21 

7 mults, 18 adds/subs. 

Note: No reliance on 

commutativity of mult! 

Strassen’s idea 

• Multiply 22 matrices with only 7 recursive mults.

P1 = a  ( f – h) 

P2 = (a + b)  h 

P3 = (c + d)  e 

P4 = d  (g – e) 

P5 = (a + d)  (e + h) 

P6 = (b – d)  (g + h) 

P7 = (a – c)  (e + f  ) 

r = P5 + P4 – P2 + P6 

s = P1 + P2 

t = P3 + P4 

u = P5 + P1 – P3 – P7
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Strassen’s idea 

• Multiply 22 matrices with only 7 recursive mults.

P1 = a  ( f – h) 

P2 = (a + b)  h 

P3 = (c + d)  e 

P4 = d  (g – e) 

P5 = (a + d)  (e + h) 

P6 = (b – d)  (g + h) 

P7 = (a – c)  (e + f  ) 

r = P5 + P4 – P2 + P6

= (a + d) (e + h) 

+ d (g – e) – (a + b) h 

 + (b – d) (g + h) 

= ae + ah + de + dh 

+ dg –de – ah – bh 

+ bg + bh – dg – dh 

= ae + bg 
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Strassen’s algorithm 

1. Divide: Partition A and B into
(n/2)(n/2) submatrices.  Form terms
to be multiplied using + and – .

2. Conquer: Perform 7 multiplications of
(n/2)(n/2) submatrices recursively.

3. Combine: Form C using + and – on
(n/2)(n/2) submatrices.

T(n) = 7 T(n/2) + Q(n2) 
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Analysis of Strassen 

T(n) = 7 T(n/2) + Q(n2) 

nlogba = nlog27  n2.81    CASE 1    T(n) = Q(nlg 7). 

Best to date (of theoretical interest only): Q(n2.376L). 

The number 2.81 may not seem much smaller than 

3, but because the difference is in the exponent, the 

impact on running time is significant.  In fact, 

Strassen’s algorithm beats the ordinary algorithm 

on today’s machines for n  30 or so. 
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Conclusion 

• Divide and conquer is just one of several
powerful techniques for algorithm design.

• Divide-and-conquer algorithms can be
analyzed using recurrences and the master
method (so practice this math).

• Can lead to more efficient algorithms




