Asymptotic Notation,
Recurrences: Substitution,
Iteration, Master Method

Lecture 2

Solving recurrences

* The analysis of merge sort from
Lecture 1 required us to solve a
recurrence.

 Recurrences are like solving integrals,
differential equations, etc.

o Learn a few tricks.

» _ecture 3: Applications of recurrences.

L2.2

Substitution method

The most general method:

1. Guess the form of the solution.
2. Verify by induction.
3. Solve for constants.

Example: T(n) =4T(n/2) +n
e [Assume that T(1) = ©(1).]
* Guess O(n®) . (Prove O and (2 separately.)

« Assume that T(k) < ck3 fork<n.
 Prove T(n) < cn® by induction.

L2.3

Example of substitution

T(n)=4T(n/2)+n
<4c(n/2)3 +n
=(c/2)n3+n
=cn3 —((c/2)n3 —n) — desired — residual
< cn3 «— desired
whenever (c/2)n®—n >0, for

example, if ¢ > 2 andbe 1,
residual

L2.4

Example (continued)

* We must also handle the initial conditions,
that Is, ground the induction with base
cases.

« Base: T(n) = ®(1) for all n < ng,, where n,
IS a sultable constant.

* For 1 <n<n, we have “O(1)” < cn?, if we
pick c big enough.

This bound is not tight!

L2.5

A tighter upper bound?

We shall prove that T(n) = O(n?).

Assume that T(k) < ck? for k < n:
T(n)=4T(n/2)+n —\
<4cn? +n
=M) Wrong! We must prove the I.H.
=cn2 —(—n) [desired — residual]

< cn?
for no choice of c > 0. Losel!

L2.6

A tighter upper bound!

IDEA: Strengthen the inductive hypothesis.
» Subtract a low-order term.
Inductive hypothesis: T(k) < ¢,k? — ¢,k for k <n.
T(n)=4T(n/2)+n
<4(ci(n/2)2-c,(n/2)+n
=C¢N2 —2C,N+N
=¢N2 —c,n—(C,N—n)
<cn?2—cyn if ¢, > 1,
Pick c, big enough to handle the initial conditions.

L2.7

Recursion-tree method

* A recursion tree models the costs (time) of a
recursive execution of an algorithm.

 The recursion tree method Is good for
generating guesses for the substitution method.

* The recursion-tree method can be unreliable,
just like any method that uses ellipses (...).

* The recursion-tree method promotes intuition,
however.

L2.8

Example of recursion tree

Solve T(n) = T(n/4) + T(n/2) + n?:

L2.9

Example of recursion tree

Solve T(n) = T(n/4) + T(n/2) + nZ:
T(n)

L2.10

Example of recursion tree
Solve T(n) = T(n/4) + T(n/2) + n?:

2
" ’ ™~
T(n/4) T(n/2)

L2.11

Example of recursion tree
Solve T(n) = T(n/4) + T(n/2) + nZ:
2
/ ’ \
(n/4)? (n/2)?

/. /. O\
T(n/16) T(n/8) T(n/8) T(n/4)

L2.12

Example of recursion tree
Solve T(n) = T(n/4) + T(n/2) + n?:
2
/n \
(n/4)? (n/2)?
VAN VAN
(n/16)2 (n/8)2 (n/8)2 (n/4)?
o(l)

L2.13

Example of recursion tree

Solve T(n) = T(n/4) + T(n/2) + nZ:

(n/4)? (n/2)2
/. /. O\
(n/16)2 (n/8)2 (n/8)2 (n/4)>

o(1)

L2.14

Example of recursion tree

Solve T(n) = T(n/4) + T(n/2) + nZ:

(n/4)- (N[2)2 s >~ n2
7N VRN

(n/16)2 (n/8)2 (n/8)2 (n/4)?

o(1)

L2.15

Example of recursion tree

Solve T(n) = T(n/4) + T(n/2) + n?:

1 n2
T
(n/4)? () [E— O n2
VN VRN 2156
(n/16)2 (/8> (n/B)2 (n/4)? -~ -
/

o(1)

L2.16

Example of recursion tree

Solve T(n) = T(n/4) + T(n/2) + nZ:

A E— N2
(n/4)? (N/2)2 s 16
VRN 7\ o5
(n/16)> (n/8)? (n/8)? (n/4)? 256 n2
/ .
/
©(1) Total = n2(1+156 + (156)2 + (15)3 -)

=©®(n%) geometric series

L2.17

The master method

The master method applies to recurrences of
the form

T(n) =aT(n/b) +f(n),

wherea>1,b>1, and f I1s asymptotically
positive.

L2.18

Three common cases

Compare f(n) with n'ogba;
1. f(n) = O(n'o%a-¢) for some constant ¢ > 0.

« f(n) grows polynomially slower than n'odz
(by an n¢ factor).

Solution: T(n) = ®(n'o%a)
2. f(n) = ®(n'°%? |gkn) for some constant k > 0.

* f(n) and n'°%? grow at similar rates.
Solution: T(n) = ®(n'o%a [gk+in)

L2.19

Three common cases (cont.)

Compare f(n) with n'ogba;
3. f(n) = Q(n'9va =) for some constant ¢ > 0.

« f(n) grows polynomially faster than n'°%? (by
an n¢ factor),

and f(n) satisfies the regularity condition that
af(n/b) <cf(n) for some constant ¢ < 1.

Solution: T(n) =O®(f(n)).

L2.20

Examples

Ex. T(n) =4T(n/2) + n
a=4,b=2=nlo%a=n2 f(n) =n.
Case 1: f(n) = O(n?—¢) for e = 1.
- T(n) = ©(n?).

Ex. T(n) = 4T(n/2) + n?
a=4,b=2=nlogwa=n? f(n) =n?
Case 2: f(n) = ®(n?lg®n), that is, k = 0.
- T(n) = ©(n?lgn).

L2.21

Examples

Ex. T(n) =4T(n/2) + n3
a=4,b=2=nlogwa=n? f(n) =ns
Case 3:f(n)=Q(n**¢) fore =1
and 4(cn/2)? < cn?(reg. cond.) for c = 1/2.
s T(n) = B(nd).

Ex. T(n) =4T(n/2) + n4/Ign
a=4,b=2=nlgwa=n? f(n) =n?lgn.
Master method does not apply. In particular,
for every constant € > 0, we have n® =w(lgn).

L2.22

General method (Akra-Bazzi)
T (n) :Zk:aiT(n/bi)Jr f(n)
1=1

et p be the unique solution to
k

3 (a/b?)=1.

i=1
Then, the answers are the same as for the
master method, but with n® instead of n'o%:a,
(Akra and Bazzi also prove an even more
general result.)

L2.23

|dea of master theorem

Recursion tree:

| f(n)— S f(n)
e
f(n/b) f(n/b) --- f(n/b)— af(n/b)
h = logyn /\/_)\a
f(n/b?) f(n/b2) --- f(n/b2) a’f(n/b?)
/ .

" #leaves = a"
= glo9pbn
= nlogha

nlogba 7°(1)

()

\4

L2.24

|dea of master theorem

Recursion tree:

| f(n)— S f(n)
i e N
f(n/b) f(n/b) --- f(n/b)— af(n/b)
h=logn <&
f(n/b?) f(n/b2) --- f(n/b2) e a’f(n/b?)
/ :
: (CASE 1: The weight increases
/' |geometrically from the root to the | n'o9ba 77(1)
| 7(1) |leaves. The leaves hold a constant
fraction of the total weight.

@(nlogba)

L2.25

|dea of master theorem

Recursion tree:

| f(n)— S f(n)
e
f(n/b) f(n/b) --- f(n/b)— af(n/b)
h = logyn /\/‘)\a
f(n/b?) f(n/b2) --- f(n/b2) e a’f(n/b?)
/ .

 (CASE 2: (k = 0) The weight
7(1) Is approximately the same on
each of the log,n levels.

nlogba 7°(1)

\4

®(n'ogb3|g n)

L2.26

|dea of master theorem

Recursion tree:

| f(n)— S f(n)
i e N
f(n/b) f(n/b) --- f(n/b)— af(n/b)
h=logn <&
f(n/b?) f(n/b2) --- f(n/b2) e a’f(n/b?)

/ :

: (CASE 3: The weight decreases

/' |geometrically from the root to the | n'o9ba 77(1)
| 7(1) |leaves. The root holds a constant

fraction of the total weight.

O(t(n))

L2.27

Conclusion

» Next time: applying the master method.
* For proof of master theorem, see text book.

L2.28

