
Asymptotic Notation,
Recurrences: Substitution,
Iteration, Master Method

Lecture 2

L2.2

Solving recurrences

• The analysis of merge sort from
Lecture 1 required us to solve a
recurrence.

• Recurrences are like solving integrals,
differential equations, etc.

Learn a few tricks.

• Lecture 3: Applications of recurrences.

L2.3

Substitution method

1. Guess the form of the solution.

2. Verify by induction.

3. Solve for constants.

The most general method:

Example: T(n) = 4T(n/2) + n

• [Assume that T(1) = Q(1).]

• Guess O(n3) . (Prove O and W separately.)

• Assume that T(k)  ck3 for k < n .

• Prove T(n)  cn3 by induction.

L2.4

Example of substitution

3

33

3

3

))2/((

)2/(

)2/(4

)2/(4)(

cn

nnccn

nnc

nnc

nnTnT











desired – residual

whenever (c/2)n3 – n  0, for

example, if c  2 and n  1.

desired

residual

L2.5

Example (continued)

• We must also handle the initial conditions,
that is, ground the induction with base
cases.

• Base: T(n) = Q(1) for all n < n0, where n0

is a suitable constant.

• For 1  n < n0, we have “Q(1)”  cn3, if we
pick c big enough.

This bound is not tight!

L2.6

A tighter upper bound?

We shall prove that T(n) = O(n2).

Assume that T(k)  ck2 for k < n:

)(

4

)2/(4)(
2

nO

ncn

nnTnT







Wrong! We must prove the I.H.

2

2)(

cn

ncn





for no choice of c > 0. Lose!

[desired – residual]

L2.7

A tighter upper bound!

IDEA: Strengthen the inductive hypothesis.

• Subtract a low-order term.

Inductive hypothesis: T(k)  c1k
2 – c2k for k < n.

)(

2

)2/()2/((4

)2/(4)(

2
2

1

22
2

1

2
2

1

2
2

1

ncnc

nncncnc

nncnc

nncnc

nnTnT











if c2 > 1.

Pick c1 big enough to handle the initial conditions.

L2.8

Recursion-tree method

• A recursion tree models the costs (time) of a
recursive execution of an algorithm.

• The recursion tree method is good for
generating guesses for the substitution method.

• The recursion-tree method can be unreliable,
just like any method that uses ellipses (…).

• The recursion-tree method promotes intuition,
however.

L2.9

Example of recursion tree

Solve T(n) = T(n/4) + T(n/2) + n2:

L2.10

Example of recursion tree

T(n)

Solve T(n) = T(n/4) + T(n/2) + n2:

L2.11

Example of recursion tree

T(n/4) T(n/2)

n2

Solve T(n) = T(n/4) + T(n/2) + n2:

L2.12

Example of recursion tree

Solve T(n) = T(n/4) + T(n/2) + n2:

n2

(n/4)2 (n/2)2

T(n/16) T(n/8) T(n/8) T(n/4)

L2.13

Example of recursion tree

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2 (n/2)2

Q(1)

Solve T(n) = T(n/4) + T(n/2) + n2:

n2

L2.14

Example of recursion tree

Solve T(n) = T(n/4) + T(n/2) + n2:

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2 (n/2)2

Q(1)

2nn2

L2.15

Example of recursion tree

Solve T(n) = T(n/4) + T(n/2) + n2:

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2 (n/2)2

Q(1)

2

16
5 n

2nn2

L2.16

Example of recursion tree

Solve T(n) = T(n/4) + T(n/2) + n2:

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2

Q(1)

2

16
5 n

2n

2

256
25 n

n2

(n/2)2

…

L2.17

Example of recursion tree

Solve T(n) = T(n/4) + T(n/2) + n2:

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2

Q(1)

2

16
5 n

2n

2

256
25 n

     1
3

16
52

16
5

16
52 n

…

Total =

= Q(n2)

n2

(n/2)2

geometric series

L2.18

The master method

The master method applies to recurrences of

the form

T(n) = a T(n/b) + f (n) ,

where a  1, b > 1, and f is asymptotically

positive.

L2.19

Three common cases

Compare f (n) with nlogba:

1. f (n) = O(nlogba – e) for some constant e > 0.

• f (n) grows polynomially slower than nlogba

(by an ne factor).

Solution: T(n) = Q(nlogba) .

2. f (n) = Q(nlogba lgkn) for some constant k  0.

• f (n) and nlogba grow at similar rates.

Solution: T(n) = Q(nlogba lgk+1n) .

L2.20

Three common cases (cont.)

Compare f (n) with nlogba:

3. f (n) = W(nlogba + e) for some constant e > 0.

• f (n) grows polynomially faster than nlogba (by
an ne factor),

and f (n) satisfies the regularity condition that
a f (n/b)  c f (n) for some constant c < 1.

Solution: T(n) = Q(f (n)) .

L2.21

Examples

 Ex. T(n) = 4T(n/2) + n
a = 4, b = 2  nlogba = n2; f (n) = n.
CASE 1: f (n) = O(n2 – e) for e = 1.
 T(n) = Q(n2).

Ex. T(n) = 4T(n/2) + n2
a = 4, b = 2  nlogba = n2; f (n) = n2.
 CASE 2: f (n) = Q(n2lg0n), that is, k = 0.
 T(n) = Q(n2lg n).

L2.22

Examples

Ex. T(n) = 4T(n/2) + n3
a = 4, b = 2  nlogba = n2; f (n) = n3.
 CASE 3: f (n) = W(n2 + e) for e = 1
and 4(cn/2)3  cn3 (reg. cond.) for c = 1/2.
 T(n) = Q(n3).

Ex. T(n) = 4T(n/2) + n2/lg n
a = 4, b = 2  nlogba = n2; f (n) = n2/lg n.
Master method does not apply. In particular,
for every constant e > 0, we have ne  w(lg n).

L2.23

General method (Akra-Bazzi)

)()/()(
1

nfbnTanT
k

i
ii  



Let p be the unique solution to

  /ba
k

i

p
ii 1

1




Then, the answers are the same as for the
master method, but with np instead of nlogba.
(Akra and Bazzi also prove an even more
general result.)

.

L2.24

f (n/b)

Idea of master theorem

f (n/b) f (n/b)

T (1)

Recursion tree:

…

f (n)
a

f (n/b2) f (n/b2) f (n/b2)…

a h = logbn

f (n)

a f (n/b)

a2
 f (n/b2)

…

#leaves = ah

= alogbn

= nlogba

nlogbaT (1)

L2.25

f (n/b)

Idea of master theorem

f (n/b) f (n/b)

T (1)

Recursion tree:

…

f (n)
a

f (n/b2) f (n/b2) f (n/b2)…

a h = logbn

f (n)

a f (n/b)

a2
 f (n/b2)

…

nlogbaT (1)
CASE 1: The weight increases
geometrically from the root to the
leaves. The leaves hold a constant
fraction of the total weight. Q(nlogba)

L2.26

f (n/b)

Idea of master theorem

f (n/b) f (n/b)

T (1)

Recursion tree:

…

f (n)
a

f (n/b2) f (n/b2) f (n/b2)…

a h = logbn

f (n)

a f (n/b)

a2
 f (n/b2)

…

nlogbaT (1)
CASE 2: (k = 0) The weight
is approximately the same on
each of the logbn levels.

Q(nlogbalg n)

L2.27

f (n/b)

Idea of master theorem

f (n/b) f (n/b)

T (1)

Recursion tree:

…

f (n)
a

f (n/b2) f (n/b2) f (n/b2)…

a h = logbn

f (n)

a f (n/b)

a2
 f (n/b2)

…

nlogbaT (1)
CASE 3: The weight decreases
geometrically from the root to the
leaves. The root holds a constant
fraction of the total weight. Q(f (n))

L2.28

Conclusion

• Next time: applying the master method.

• For proof of master theorem, see text book.

