Asymptotic Notation, Recurrences: Substitution, Iteration, Master Method

Solving recurrences

- The analysis of merge sort from *Lecture 1* required us to solve a recurrence.
- Recurrences are like solving integrals, differential equations, etc.

• Learn a few tricks.

• Lecture 3: Applications of recurrences.

Substitution method

The most general method:

- 1. Guess the form of the solution.
- 2. Verify by induction.
- 3. Solve for constants.

Example: T(n) = 4T(n/2) + n

- [Assume that $T(1) = \Theta(1)$.]
- Guess $O(n^3)$. (Prove O and Ω separately.)
- Assume that $T(k) \le ck^3$ for k < n.
- Prove $T(n) \leq cn^3$ by induction.

Example of substitution

$$T(n) = 4T(n/2) + n$$

$$\leq 4c(n/2)^{3} + n$$

$$= (c/2)n^{3} + n$$

$$= cn^{3} - ((c/2)n^{3} - n) \leftarrow desired - residual$$

$$\leq cn^{3} \leftarrow desired$$

whenever $(c/2)n^{3} - n \geq 0$, for
example, if $c \geq 2$ and $n \geq 1$.
residual

Example (continued)

- We must also handle the initial conditions, that is, ground the induction with base cases.
- *Base:* $T(n) = \Theta(1)$ for all $n < n_0$, where n_0 is a suitable constant.
- For $1 \le n < n_0$, we have " $\Theta(1)$ " $\le cn^3$, if we pick *c* big enough.

This bound is not tight!

A tighter upper bound?

We shall prove that $T(n) = O(n^2)$.

Assume that $T(k) \le ck^2$ for k < n: \leftarrow

T(n) = 4T(n/2) + n $\leq 4cn^2 + n$

Wrong! We must prove the I.H.

 $= cn^2 - (-n) \quad [\text{ desired} - \text{residual }]$ $\leq cn^2$

for *no* choice of c > 0. Lose!

A tighter upper bound!

- **IDEA:** Strengthen the inductive hypothesis.
- Subtract a low-order term.

Inductive hypothesis: $T(k) \le c_1 k^2 - c_2 k$ for k < n.

$$T(n) = 4T(n/2) + n$$

$$\leq 4(c_1(n/2)^2 - c_2(n/2) + n)$$

$$= c_1n^2 - 2c_2n + n$$

$$= c_1n^2 - c_2n - (c_2n - n)$$

$$\leq c_1n^2 - c_2n \quad \text{if } c_2 > 1.$$

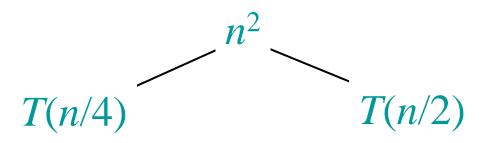
Pick c_1 big enough to handle the initial conditions.

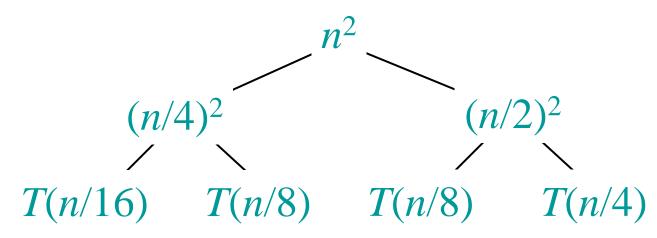
Recursion-tree method

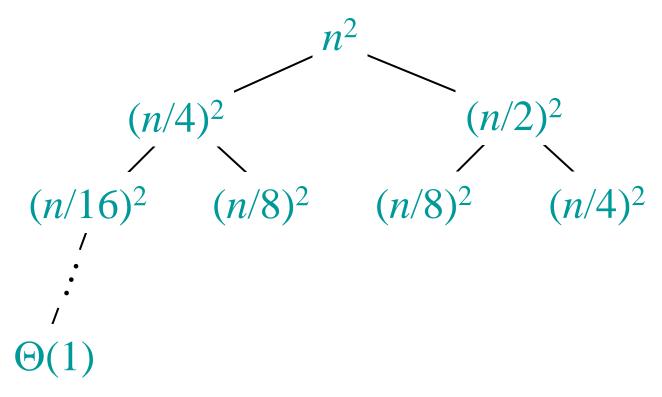
- A recursion tree models the costs (time) of a recursive execution of an algorithm.
- The recursion tree method is good for generating guesses for the substitution method.
- The recursion-tree method can be unreliable, just like any method that uses ellipses (...).
- The recursion-tree method promotes intuition, however.

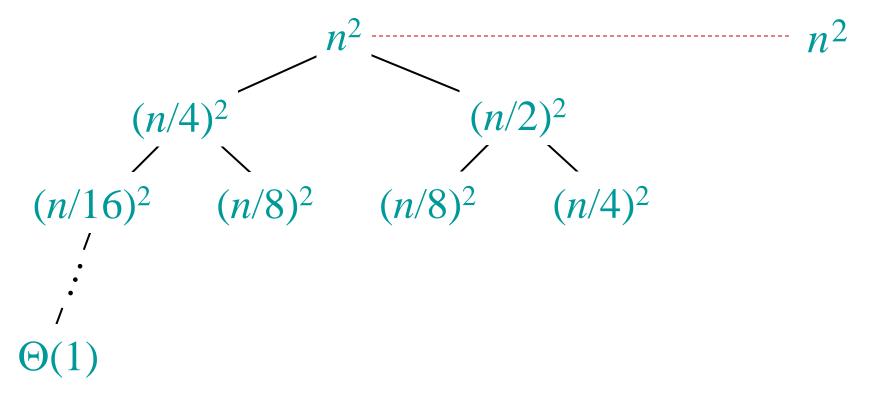
Solve $T(n) = T(n/4) + T(n/2) + n^2$:

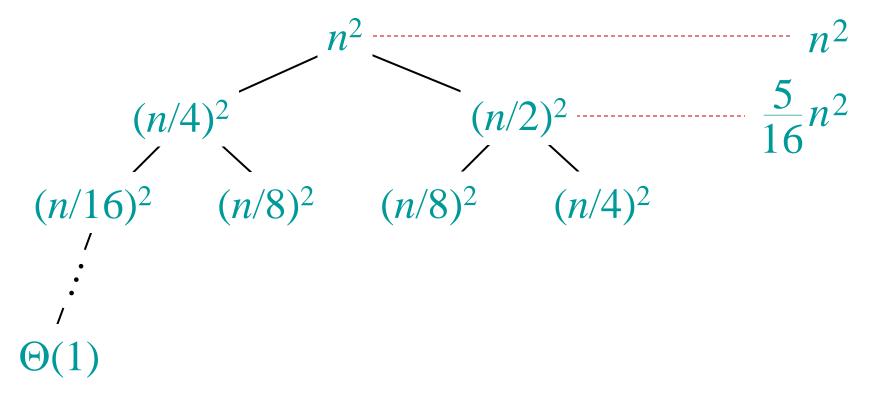
T(n)

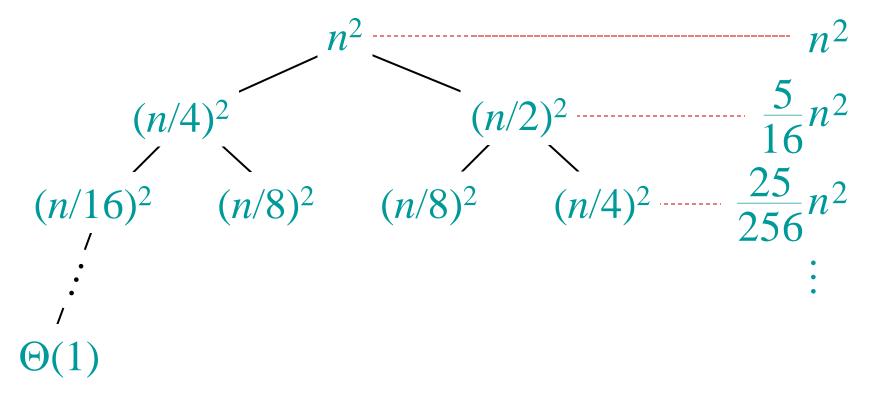


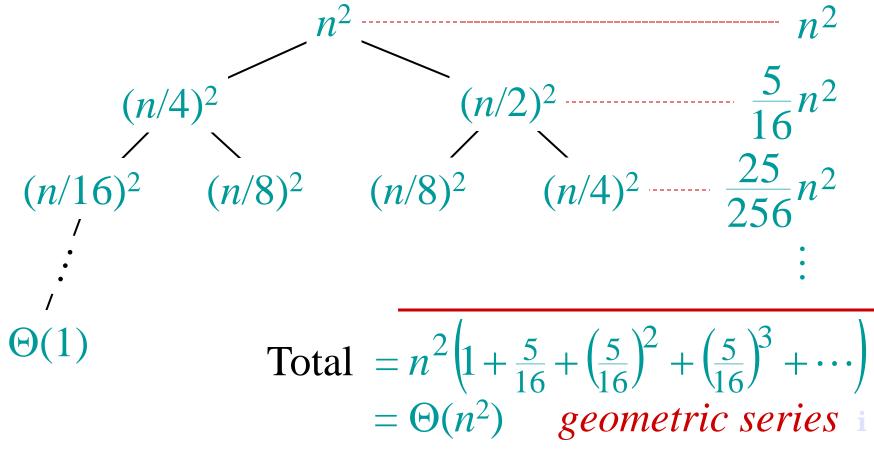












The master method

The master method applies to recurrences of the form

T(n) = a T(n/b) + f(n),where $a \ge 1, b > 1$, and f is asymptotically positive.

Three common cases

Compare f(n) with $n^{\log_b a}$:

1. $f(n) = O(n^{\log_b a - \varepsilon})$ for some constant $\varepsilon > 0$.

f(*n*) grows polynomially slower than *n*^{logba} (by an *n*^ε factor).

Solution: $T(n) = \Theta(n^{\log_b a})$.

2. f(n) = Θ(n^{logba} lg^kn) for some constant k ≥ 0.
f(n) and n^{logba} grow at similar rates.
Solution: T(n) = Θ(n^{logba} lg^{k+1}n).

Three common cases (cont.)

Compare f(n) with $n^{\log_b a}$:

3. $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$.

• f(n) grows polynomially faster than $n^{\log_b a}$ (by an n^{ε} factor),

and f(n) satisfies the *regularity condition* that $af(n/b) \le cf(n)$ for some constant c < 1.

Solution: $T(n) = \Theta(f(n))$.

Examples

Ex.
$$T(n) = 4T(n/2) + n$$

 $a = 4, b = 2 \Rightarrow n^{\log b^a} = n^2; f(n) = n.$
CASE 1: $f(n) = O(n^{2-\varepsilon})$ for $\varepsilon = 1.$
 $\therefore T(n) = \Theta(n^2).$

Ex.
$$T(n) = 4T(n/2) + n^2$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2.$
CASE 2: $f(n) = \Theta(n^2 \lg^0 n)$, that is, $k = 0$.
 $\therefore T(n) = \Theta(n^2 \lg n).$

Examples

Ex.
$$T(n) = 4T(n/2) + n^3$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^3.$
CASE 3: $f(n) = \Omega(n^{2+\varepsilon})$ for $\varepsilon = 1$
and $4(cn/2)^3 \le cn^3$ (reg. cond.) for $c = 1/2$.
 $\therefore T(n) = \Theta(n^3).$

Ex.
$$T(n) = 4T(n/2) + n^2/\lg n$$

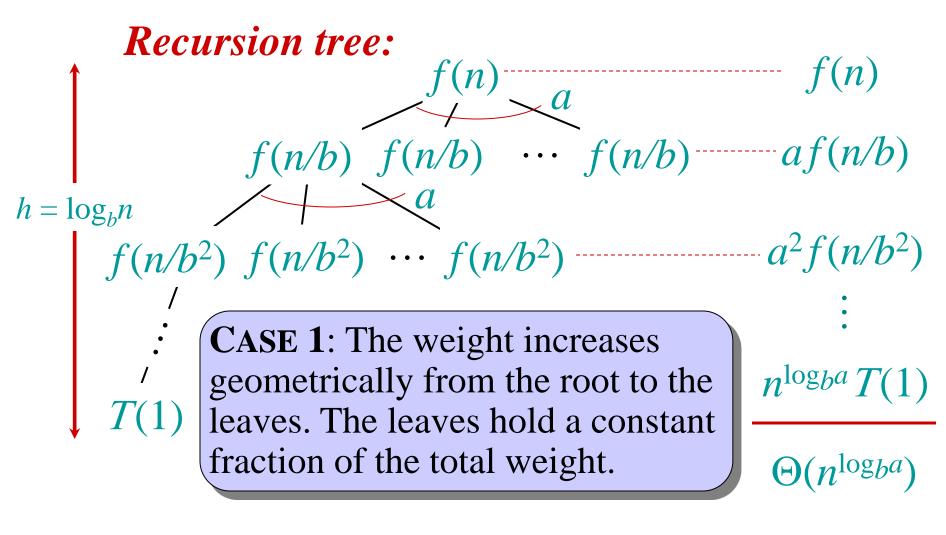
 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2/\lg n.$
Master method does not apply. In particular,
for every constant $\varepsilon > 0$, we have $n^{\varepsilon} = \omega(\lg n)$.

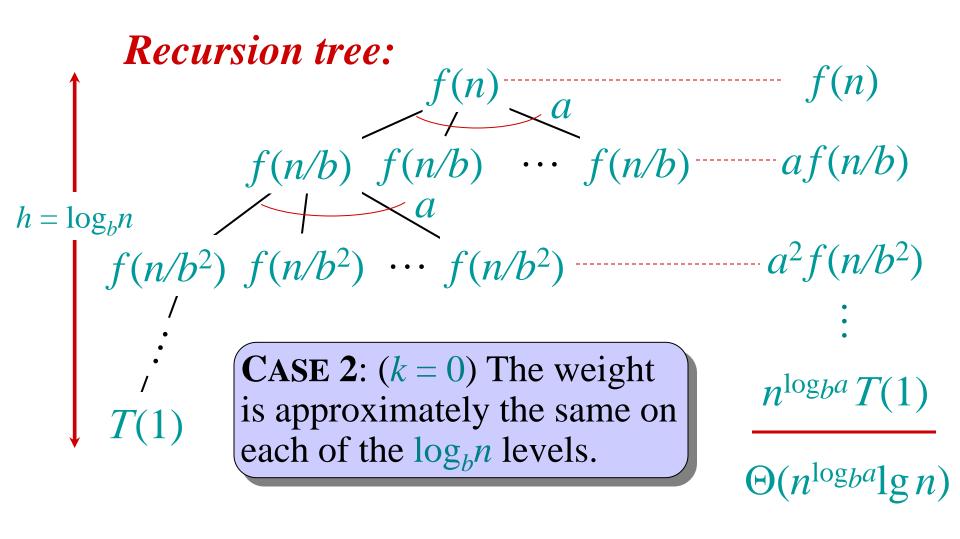
General method (Akra-Bazzi) $T(n) = \sum_{i=1}^{k} a_i T(n/b_i) + f(n)$

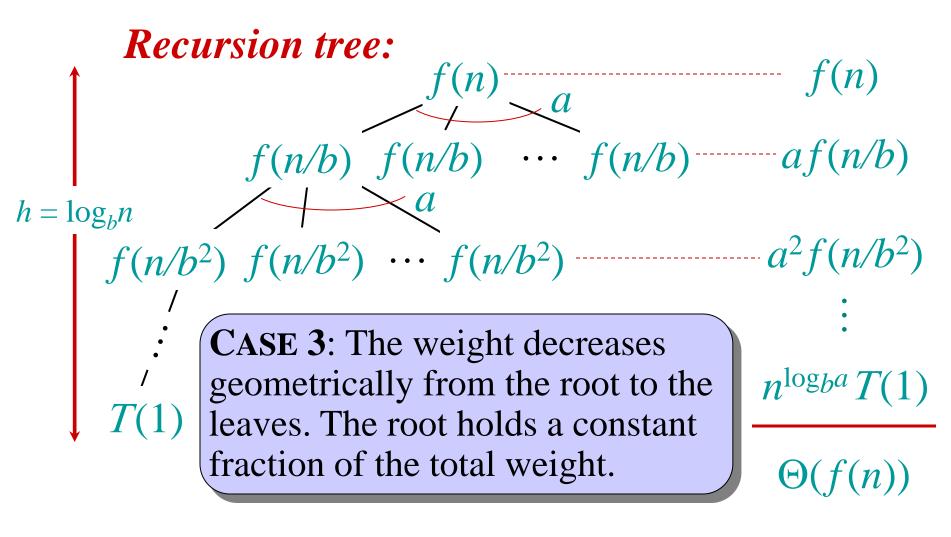
Let *p* be the unique solution to

 $\sum_{i=1}^{k} (a_i / b_i^p) = 1.$ Then, the answers are the same as for the master method, but with n^p instead of $n^{\log b^a}$. (Akra and Bazzi also prove an even more general result.)

Recursion tree: f(n)f(n) $f(n/b) \quad f(n/b) \quad \cdots \quad f(n/b) \quad \cdots \quad af(n/b)$ < a $h = \log_b n$ $f(n/b^2) f(n/b^2) \cdots f(n/b^2)$ $-a^{2}f(n/b^{2})$ #leaves = a^h $n^{\log_b a} T(1)$ $= a^{\log_b n}$ $= n^{\log_b a}$







Conclusion

Next time: applying the master method.For proof of master theorem, see text book.