
Introduction: Analysis of 
Algorithms, Insertion Sort, 
Merge Sort  

Lecture 1 
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Analysis of algorithms 

The theoretical study of computer-program 

performance and resource usage. 

What’s more important than performance? 

• modularity

• correctness

• maintainability

• functionality

• robustness

• user-friendliness

• programmer time

• simplicity

• extensibility

• reliability
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Why study algorithms and 

performance? 

• Algorithms help us to understand scalability.

• Performance often draws the line between what
is feasible and what is impossible.

• Algorithmic mathematics provides a language
for talking about program behavior.

• The lessons of program performance generalize
to other computing resources.

• Speed is fun!
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The problem of sorting 

Input: sequence  a1, a2, …, an  of numbers. 

Example: 

Input:  8  2  4  9  3  6 

Output:  2  3  4  6  8  9 

Output: permutation  a'1, a'2, …, a'n  such 

that  a'1  a'2 
…  a'n .



L1.5 

Insertion Sort 

INSERTION-SORT (A, n) ⊳ A[1 . . n]

for j ← 1 to n 

do key ← A[ j] 

i ← j – 1 

while i > 0 and A[i] > key 

do A[i+1] ← A[i] 

 i ← i – 1 

A[i+1] = key 

“pseudocode” 

i j 

key 
sorted 
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Example of Insertion Sort 

8 2 4 9 3 6 
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Example of Insertion Sort 
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Example of Insertion Sort 
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Example of Insertion Sort 
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Example of Insertion Sort 

8 2 4 9 3 6 

2 8 4 9 3 6 

2 4 8 9 3 6 

2 4 8 9 3 6 

2 3 4 8 9 6 

2 3 4 6 8 9 done 
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Running time 

• The running time depends on the input: an
already sorted sequence is easier to sort.

• Parameterize the running time by the size of
the input, since short sequences are easier to
sort than long ones.

• Generally, we seek upper bounds on the
running time, because everybody likes a
guarantee.
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Kinds of analyses 

Worst-case: (usually) 

• T(n) = maximum time of algorithm
on any input of size n.

Average-case: (sometimes) 

• T(n) = expected time of algorithm
on any input of size n.

Best-case: (bogus) 

• Cheat with a slow algorithm that
works fast on some input.
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Machine-independent time 

What is insertion sort’s worst-case time? 

• It depends on the speed of our computer:

• relative speed (on the same machine),

• absolute speed (on different machines).

BIG IDEA: 

• Ignore machine-dependent constants.

• Look at growth of T(n) as n → ∞ .

“Asymptotic Analysis” 
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Q-notation 

• Drop low-order terms; ignore leading constants.

• Example: 3n3 + 90n2 – 5n + 6046 = Q(n3)

Math: 
Q(g(n)) = { f (n) : there exist positive constants c1, c2, and

n0 such that 0  c1 g(n)  f (n)  c2 g(n) 

for all n  n0 } 

Engineering: 
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Asymptotic performance 

n 

T(n) 

n0

• We shouldn’t ignore
asymptotically slower
algorithms, however.

• Real-world design
situations often call for a
careful balancing of
engineering objectives.

• Asymptotic analysis is a
useful tool to help to
structure our thinking.

When n gets large enough, a Q(n2) algorithm 

always beats a Q(n3) algorithm. 
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Insertion sort analysis 

Worst case: Input reverse sorted. 

 


QQ
n

j

njnT
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2)()(

Average case: All permutations equally likely. 

 
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n

j

njnT
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Is insertion sort a fast sorting algorithm? 

• Moderately so, for small n.

• Not at all, for large n.

[arithmetic series] 
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Merge sort 

MERGE-SORT  A[1 . . n] 

To sort n numbers: 

1. If n = 1, done.

2. Recursively sort A[ 1 . . n/2 ] and
A[ n/2+1 . . n ] .

3. “Merge” the 2 sorted lists.

Key subroutine: MERGE
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Merging two sorted arrays 
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Merging two sorted arrays 
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Time = Q(n) to merge a total 

of n elements (linear time). 
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Analyzing merge sort 

MERGE-SORT (A, n) ⊳ A[1 . . n]

To sort n numbers: 

1. If n = 1, done.

2. Recursively sort A[ 1 . . n/2 ]
and A[ n/2+1 . . n ] .

3. “Merge” the 2 sorted lists

T(n) 

Q(1) 

2T(n/2) 

Q(n)  
Abuse 

Sloppiness: Should be T( n/2 ) + T( n/2 ) , 

but it turns out not to matter asymptotically. 
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Recurrence for merge sort 

T(n) = 
Q(1) if n = 1; 

2T(n/2) + Q(n) if n > 1. 

• We shall usually omit stating the base
case when T(n) = Q(1) for sufficiently
small n (and when it has no effect on the
solution to the recurrence.

• Lecture 2 provide several ways to find a
good upper bound on T(n).
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Recursion tree 

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. 
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Recursion tree 

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. 

T(n) 
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Recursion tree 

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. 

T(n/2) T(n/2) 

cn 
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Recursion tree 

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. 

cn 

T(n/4) T(n/4) T(n/4) T(n/4) 

cn/2 cn/2 
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Recursion tree 

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. 

cn 

cn/4 cn/4 cn/4 cn/4 

cn/2 cn/2 

Q(1) 
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Recursion tree 

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. 
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cn/4 cn/4 cn/4 cn/4 

cn/2 cn/2 

Q(1) 

h = lg n 
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Recursion tree 
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Recursion tree 

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. 
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Recursion tree 

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. 

cn 

cn/4 cn/4 cn/4 cn/4 

cn/2 cn/2 

Q(1) 

h = lg n 

cn 

cn 

cn 

#leaves = n Q(n) 

…
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Recursion tree 

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. 

cn 

cn/4 cn/4 cn/4 cn/4 

cn/2 cn/2 

Q(1) 

h = lg n 

cn 

cn 

cn 

#leaves = n Q(n) 

TotalQ(n lg n) 

…
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Conclusions 

• Q(n lg n) grows more slowly than Q(n2).

• Therefore, merge sort asymptotically
beats insertion sort in the worst case.

• In practice, merge sort beats insertion
sort for n > 30 or so.

• Go test it out for yourself!


