
Introduction: Analysis of
Algorithms, Insertion Sort,
Merge Sort

Lecture 1

L1.2

Analysis of algorithms

The theoretical study of computer-program

performance and resource usage.

What’s more important than performance?

• modularity

• correctness

• maintainability

• functionality

• robustness

• user-friendliness

• programmer time

• simplicity

• extensibility

• reliability

L1.3

Why study algorithms and

performance?

• Algorithms help us to understand scalability.

• Performance often draws the line between what
is feasible and what is impossible.

• Algorithmic mathematics provides a language
for talking about program behavior.

• The lessons of program performance generalize
to other computing resources.

• Speed is fun!

L1.4

The problem of sorting

Input: sequence a1, a2, …, an of numbers.

Example:

Input: 8 2 4 9 3 6

Output: 2 3 4 6 8 9

Output: permutation a'1, a'2, …, a'n such

that a'1  a'2 
…  a'n .

L1.5

Insertion Sort

INSERTION-SORT (A, n) ⊳ A[1 . . n]

for j ← 1 to n

do key ← A[j]

i ← j – 1

while i > 0 and A[i] > key

do A[i+1] ← A[i]

 i ← i – 1

A[i+1] = key

“pseudocode”

i j

key
sorted

L1.6

Example of Insertion Sort

8 2 4 9 3 6

L1.7

Example of Insertion Sort

8 2 4 9 3 6

L1.8

Example of Insertion Sort

8 2 4 9 3 6

2 8 4 9 3 6

L1.9

Example of Insertion Sort

8 2 4 9 3 6

2 8 4 9 3 6

L1.10

Example of Insertion Sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

L1.11

Example of Insertion Sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

L1.12

Example of Insertion Sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

L1.13

Example of Insertion Sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

L1.14

Example of Insertion Sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

2 3 4 8 9 6

L1.15

Example of Insertion Sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

2 3 4 8 9 6

L1.16

Example of Insertion Sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

2 3 4 8 9 6

2 3 4 6 8 9 done

L1.17

Running time

• The running time depends on the input: an
already sorted sequence is easier to sort.

• Parameterize the running time by the size of
the input, since short sequences are easier to
sort than long ones.

• Generally, we seek upper bounds on the
running time, because everybody likes a
guarantee.

L1.18

Kinds of analyses

Worst-case: (usually)

• T(n) = maximum time of algorithm
on any input of size n.

Average-case: (sometimes)

• T(n) = expected time of algorithm
on any input of size n.

Best-case: (bogus)

• Cheat with a slow algorithm that
works fast on some input.

L1.19

Machine-independent time

What is insertion sort’s worst-case time?

• It depends on the speed of our computer:

• relative speed (on the same machine),

• absolute speed (on different machines).

BIG IDEA:

• Ignore machine-dependent constants.

• Look at growth of T(n) as n → ∞ .

“Asymptotic Analysis”

L1.20

Q-notation

• Drop low-order terms; ignore leading constants.

• Example: 3n3 + 90n2 – 5n + 6046 = Q(n3)

Math:
Q(g(n)) = { f (n) : there exist positive constants c1, c2, and

n0 such that 0  c1 g(n)  f (n)  c2 g(n)

for all n  n0 }

Engineering:

L1.21

Asymptotic performance

n

T(n)

n0

• We shouldn’t ignore
asymptotically slower
algorithms, however.

• Real-world design
situations often call for a
careful balancing of
engineering objectives.

• Asymptotic analysis is a
useful tool to help to
structure our thinking.

When n gets large enough, a Q(n2) algorithm

always beats a Q(n3) algorithm.

L1.22

Insertion sort analysis

Worst case: Input reverse sorted.

 


QQ
n

j

njnT
2

2)()(

Average case: All permutations equally likely.

 


QQ
n

j

njnT
2

2)2/()(

Is insertion sort a fast sorting algorithm?

• Moderately so, for small n.

• Not at all, for large n.

[arithmetic series]

L1.23

Merge sort

MERGE-SORT A[1 . . n]

To sort n numbers:

1. If n = 1, done.

2. Recursively sort A[1 . . n/2] and
A[n/2+1 . . n] .

3. “Merge” the 2 sorted lists.

Key subroutine: MERGE

L1.24

Merging two sorted arrays

20

13

7

2

12

11

9

1

L1.25

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

L1.26

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

L1.27

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

L1.28

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

L1.29

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

L1.30

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

L1.31

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

L1.32

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

L1.33

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

L1.34

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

20

13

12

L1.35

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

20

13

12

12

L1.36

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

20

13

12

12

Time = Q(n) to merge a total

of n elements (linear time).

L1.37

Analyzing merge sort

MERGE-SORT (A, n) ⊳ A[1 . . n]

To sort n numbers:

1. If n = 1, done.

2. Recursively sort A[1 . . n/2]
and A[n/2+1 . . n] .

3. “Merge” the 2 sorted lists

T(n)

Q(1)

2T(n/2)

Q(n)
Abuse

Sloppiness: Should be T(n/2) + T(n/2) ,

but it turns out not to matter asymptotically.

L1.38

Recurrence for merge sort

T(n) =
Q(1) if n = 1;

2T(n/2) + Q(n) if n > 1.

• We shall usually omit stating the base
case when T(n) = Q(1) for sufficiently
small n (and when it has no effect on the
solution to the recurrence.

• Lecture 2 provide several ways to find a
good upper bound on T(n).

L1.39

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

L1.40

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

T(n)

L1.41

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

T(n/2) T(n/2)

cn

L1.42

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

T(n/4) T(n/4) T(n/4) T(n/4)

cn/2 cn/2

L1.43

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Q(1)

L1.44

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Q(1)

h = lg n

L1.45

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Q(1)

h = lg n

cn

L1.46

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Q(1)

h = lg n

cn

cn

L1.47

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Q(1)

h = lg n

cn

cn

cn

…

L1.48

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Q(1)

h = lg n

cn

cn

cn

#leaves = n Q(n)

…

L1.49

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Q(1)

h = lg n

cn

cn

cn

#leaves = n Q(n)

TotalQ(n lg n)

…

L1.50

Conclusions

• Q(n lg n) grows more slowly than Q(n2).

• Therefore, merge sort asymptotically
beats insertion sort in the worst case.

• In practice, merge sort beats insertion
sort for n > 30 or so.

• Go test it out for yourself!

