
Pocket Cube:

Consider a 2 2 2 Rubik’s cube× ×

Configuration Graph:

• vertex for each possible state

• edge for each basic move (e.g., 90 degree turn) from one state to another

• undirected: moves are reversible

Diameter (“God’s Number”)

11 for 2× 2 × 2, 20 for 3 × 3 × 3, Θ(n2/ lg n) for n × n × n [Demaine, Demaine, Eisenstat

Lubiw Winslow 2011]

. . . “breadth-
first
tree”

possible
first moves

reachable
in two steps
but not one

“hardest
configs”

solved

Graph Search

“Explore a graph”, e.g.:

• find a path from start vertex s to a desired vertex

• visit all vertices or edges of graph, or only those reachable from s

Breadth-First Search

Breadth-First Search

Breadth-First Search

Explore graph level by level from s

• level 0 = {s}

level i = vertices reachable by path of i edges but not fewer•

. . .
level0

s

level1
level2

last
level

Figure : Illustrating Breadth-First Search

vertices = 8! · 38 = 264, 539, 520 where 8! comes from having 8 cubelets in arbitrary

positions and 38 comes as each cubelet has 3 possible twists.

This can be divided by 24 if we remove cube symmetries and further divided by 3 to account

for actually reachable configurations (there are 3 connected components).

• build level i > 0 from level i − 1 by trying all outgoing edges, but ignoring vertices

from previous levels

Breadth-First-Search Algorithm

BFS (V,Adj,s): See CLRS for queue-based implementation

level = { s: 0 }
parent = {s : None }
i = 1

frontier = [s] # previous level, i− 1

while frontier:

next = [] # next level, i

for u in frontier:

for v in Adj [u]:

if v not in level: # not yet seen

level[v] = i] = level[u] + 1

parent[v] = u

next.append(v)

frontier = next

i + =1

Example

a s d f

vcxz

1 0 2 3

322 1

level 0
level 1

level 2 level 3

frontier0 = {s}
frontier1 = {a, x}
frontier2 = {z, d, c}
frontier3 = {f, v}
(not x, c, d)

Figure : Breadth-First Search Frontier

Analysis:

• vertex V enters next (& then frontier)

only once (because level[v] then set)

base case: v = s

• =⇒ Adj[v] looped through only once

time =
∑ E for directed graphs|Adj[V]| = | |

v∈V

{
2|E| for undirected graphs

• =⇒ O(E) time

• O(V +E) (“LINEAR TIME”) to also list vertices unreachable from v (those still not

assigned level)

Shortest Paths:

• for every vertex v, fewest edges to get from s to v is{
level[v] if v assigned level

∞ else (no path)

• parent pointers form shortest-path tree = union of such a shortest path for each v

=⇒ to find shortest path, take v, parent[v], parent[parent[v]], etc., until s (or None)

