
Chapter 13

Attacks on Cryptosystems

Up to this point, we have mainly seen how ciphers are implemented. We have seen how
symmetric ciphers such as DES and AES use the idea of substitution and permutation
to provide security and also how asymmetric systems such as RSA and Diffie Hellman
use other methods. What we haven’t really looked at are attacks on cryptographic
systems. An understanding of certain attacks will help you to understand the reasons
behind the structure of certain algorithms (such as Rijndael) as they are designed to
thwart known attacks. Although we are not going to exhaust all possible avenues of
attack, we will get an idea of how cryptanalysts go about attacking ciphers.

This section is really split up into two classes of attack1: Cryptanalytic attacks and
Implementation attacks. The former tries to attack mathematical weaknesses in the
algorithms whereas the latter tries to attack the specific implementation of the cipher
(such as a smartcard system).

The following attacks can refer to either of the two classes (all forms of attack assume
the attacker knows the encryption algorithm):

• Ciphertext-only attack: In this attack the attacker knows only the ciphertext to
be decoded. The attacker will try to find the key or decrypt one or more pieces
of ciphertext (only relatively weak algorithms fail to withstand a ciphertext-only
attack).

• Known plaintext attack : The attacker has a collection of plaintext-ciphertext
pairs and is trying to find the key or to decrypt some other ciphertext that has
been encrypted with the same key.

• Chosen Plaintext attack: This is a known plaintext attack in which the attacker
can choose the plaintext to be encrypted and read the corresponding ciphertext.

• Chosen Ciphertext attack: The attacker has the able to select any ciphertext
and study the plaintext produced by decrypting them.

• Chosen text attack: The attacker has the abilities required in the previous two
attacks.

The following terminology is also useful to know:

1Brute force attacks are also available to the attacker.

127

Chapter 13 Attacks on Cryptosystems

• An encryption scheme isunconditionally secure if the ciphertext generated
does not contain enough information to determine uniquely the corresponding
plaintext no matter how much ciphertext is available or how much computa-
tional power the attacker has. With the exception of the one time pad, no cipher
is unconditionally secure.

• The security of aconditionally securealgorithm depends on the difficulty in
reversing the underlying cryptographic problem such as how easy it is to factor
large primes. All ciphers other than the one-time pad fall into this category.

• An encryption scheme is said to becomputationally secureif:

1. The cost of breaking the cipher exceeds the value of the encrypted infor-
mation

2. The time required to break the cipher exceeds the useful lifetime of the
information.

Brute force attacks are also available to the attacker however we will not be concerned
with them in this chapter although it is interesting to note the following. In 1977 Diffie
and Hellman claimed that it would cost twenty million dollars to build a million chip
machine that could find a DES key in twelve hours (given a plaintext-ciphertext pair).
In 1995 it was estimated that advances in chip densities and speeds would permit a
several thousand chip machine to do the same job at a cost of well under a million
dollars. However in July 1998 a machine was build by EFF, cryptography research and
Advanced wireless technologies that could search 90 billion keys per second which
would take a little over 200 hours to search the entire key space. They managed how-
ever to find the key in 56 hours. The total budget remained under $250,000 which
made the machine the fastest most economical key search device ever known to have
been produced.

13.1 Cryptanalytic Attacks

All forms of cryptanalysis for symmetric encryption schemes are designed to exploit
the fact that traces of structure or pattern in the plaintext may survive encryption and
be discernible in the ciphertext. Cryptanalysis of public-key schemes proceeds from a
fundamentally different premise, namely that the mathematical properties of the pair of
keys may make it possible for one of the two keys to be deduced from the other. In this
section we will only be concerned with three main attacks. Two of them (Differential
and Linear cryptanalysis) are used to attack block ciphers whereas the third (birthday
attack) is used to attack hash functions.

13.1.1 Differential cryptanalysis

One of the most significant advances in cryptanalysis in recent years is differential
cryptanalysis. Although this appears to have been discovered at least 30 years ago it

128

Chapter 13 Attacks on Cryptosystems

was not reported in the open literature until 1990. The first published effort appears
to have been the cryptanalysis of a block cipher called FEAL. This was followed by
a number of papers by Biham and Shamir, who demonstrated this form of attack on a
variety of encryption algorithms and hash functions.

The most publicised results for this approach have been those that have application to
DES. Differential cryptanalysis is the first published attack that is capable of breaking
DES in less than255 complexity. The scheme can successfully cryptanalyse DES with
an effort of247, requiring247 chosen plaintext (hence it is a chosen plaintext attack).
Although247 is certainly significantly less than255, the need to find247 chosen plain-
texts makes this attack of only theoretical interest. Apparently this attack was known
at the time DES was being designed and played a large part in the design of DES.

The attack can be summarised as follows (a more detailed explanation can be found on
the website). Consider the original plaintext block for DESm to consist of two halves
m0, m1. Each round of DES maps the right-hand input into the left-hand output and
sets the right-hand output to be a function of the left-hand input and the subkey for this
round. So, at each round, only one new 32-bit block is created. If we label each new
blockmi (2 ≤ i ≤ 17), then the intermediate message halves are related as follows:

mi+1 = mi−1 ⊕ f(mi, Ki), i = 1, 2, . . . , 16

In differential cryptanalysis, one starts with two messages,m andm′, with a known
XOR difference∆m = m⊕m′, and considers the difference between the intermediate
message halves:∆mi = mi ⊕m′

i. Then we have:

∆mi+1 = mi+1 ⊕m′
i+1

= [mi−1 ⊕ f(mi, Ki)]⊕ [m′
i−1 ⊕ f(m′

i, Ki)]

= ∆mi−1 ⊕ [f(mi, Ki)⊕ f(m′
i, Ki)]

Now, suppose that many pairs of inputs tof with the same difference yield the same
output difference if the same subkey is used. To put this more precisely, let us say that
X may causeY with probabilityp, if for a fractionp of the pairs in which the input
XOR is X, the output XOR equalsY . We want to suppose that there are a number
of values ofX that have high probability of causing a particular output difference.
Therefore, if we know∆mi−1 and∆mi with high probability, then we know∆mi+1

with high probability. Furthermore, if a number of such differences are determined, it
is feasible to determine the subkey used in the functionf .

The overall strategy of differential cryptanalysis is based on these considerations for
a single round. The procedure is to begin with two plaintext messagesm and m′

with a given difference and trace through a probable pattern of differences after each
round to yield a probable difference for the ciphertext. Actually, there are two probable
differences for the two32-bit halves: (∆m17||∆m16). Next, we submitm andm′ for
encryption to determine the actual difference under the unknown key and compare the

129

Chapter 13 Attacks on Cryptosystems

result to the probable difference. If there is a match,

Ek(m)⊕ Ek(m
′) = (∆m17||∆m16)

then we suspect that all the probable patterns at all the intermediate rounds are correct.
With that assumption, we can make some deductions about the key bits. This procedure
must be repeated many times to determine all the key bits.

13.2 Linear Cryptanalysis

A more recent development is linear cryptanalysis that was presented by Mitsuru Mat-
sui at Eurocrypt ’93. This attack is based on finding linear approximations to describe
the transformations performed in DES (and other block ciphers). This method can find
a DES key given247 knownplaintexts, as compared to247 chosenplaintexts for differ-
ential cryptanalysis (it is therefore a known plaintext attack although it can also work
as a ciphertext only attack). Although this is a minor improvement (because it may
be easier to acquire known plaintext rather than chosen plaintext) it still leaves linear
cryptanalysis infeasible as an attack on DES. However it is useful for an understanding
of other similar attacks and gives an insight into why the S-boxes are constructed the
way they are.

To understand the attack we will define a few terms:

A Boolean functionh : Zn
2 → Z2 in n variabless1, . . . , sn is linear if it can be

represented ash(s) = a1s1⊕ . . .⊕ ansn for someai ∈ Z2 = {0, 1}, i = 1, . . . , n. The
set of all linear Boolean functions inn variables is denoted by

Ln = {h : Zn
2 → Z2|h = a1s1 ⊕ . . .⊕ ansn}

A Boolean functionf : Zn
2 → Z2 is calledaffine if either f(s) = h(s) or f(s) =

h(s) ⊕ 1, for someh(s) ∈ Ln. The set of all affine Boolean function inn variables is
therefore:

An = Ln ∪ {h⊕ 1|h ∈ Ln} = Ln ∪ Ln

In other words,An consists of all linear functions and their negations.

A summary of Linear cryptanalysis is as follows. For a cipher withn-bit plaintext and
ciphertext blocks and anm-bit key, let the plaintext block be labeledP [1], . . . P [N],
the cipher text blockC[1], . . . C[n] and the keyK[1], . . . K[m]. Then define

A[i, j, . . . , k] = A[i]⊕ A[j]⊕ . . .⊕ A[k]

The objective of linear cryptanalysis is to find an effectivelinear equation of the form

P [α1, α2, . . . , αa]⊕ C[β1, β2, . . . , βb] = K[γ1, γ2, . . . , γc] (13.1)

130

Chapter 13 Attacks on Cryptosystems

that holds with probabilityp 6= 0.5. Here we havex = 0, 1; 1 ≤ a, b ≤ n, 1 ≤ c ≤ m,
and whereα, β andγ terms represent fixed, unique bit locations. The furtherp is
from 0.5, the more effective the equation. Once a proposed relation is determined, the
procedure is to compute the results of the left-hand side of the preceding equation for
a large number of plaintext-ciphertext pairs. If the result is0 more than half the time,
assumeK[γ1, γ2, . . . γc] = 0. If it is 1 most of the time, assumeK[γ1, γ2, . . . , γc] = 1.
This gives us a linear equation on the key bits. Try to get more such relations so that we
can solve for the key bits. Because we are dealing with linear equations, the problem
can be approached one round of the cipher at a time, with the results combined.

The above explanation give us an overview of the whole attack. Let us expand a little
on some of the details. The fact that we desire equation 13.1 to hold with a probability
p 6= 0.5 implies that it can be0 ≥ p < 0.5 or 0.5 < p ≤ 1. This leads us to the idea
of a linear probability bias which is given byε = |p− 0.5|. The larger this bias is (in
other words the closerp is to0 or 1) the better the applicability of linear cryptanalysis
with fewer known plaintext. Ifp = 1 this implies that equation 13.1 is a perfect
representation of the cipher behaviour and the cipher has a catastrophic weakness. If
p = 0 then equation 13.1 represents an affine relationship in the cipher which is also
a catastrophic weakness. Both linear and affine approximations, indicated byp > 0.5
andp < 0.5 respectively, are equally susceptible to linear cryptanalysis.

For an ideal cipher what we would like is that the plaintext be mapped to the ciphertext
in such a way that the mapping is random. In other words there is no correlation
between the plaintext and the ciphertext. By choosinga + b random values (number
of plaintext plus ciphertext bits in equation 13.1) equation 13.1 should hold with a
probability of exactly0.5. This would be the case if it were a perfect cipher. However
as ciphers are not perfect the probability contains a biasε. This bias not only exists for
the overall cipher but also for each of the individual non-linear element (S-boxes in the
case of DES). We can therefore find linear approximations for certain S-boxes and use
what’s known as thepiling up lemma to concatenate the results to gain an expression
for the whole cipher. With this expression, it is possible to take some plaintext and
ciphertext pairs and atarget partial subkey (this is your guess at a part of the subkey)
and deduce the target partial subkeys values.

More detailed information is given in the paper “A Tutorial on Linear and Differential
Cryptanalysis” by Howard Heys. This paper is on the website.

13.2.1 Birthday attack

The Birthday attack makes use of what’s known as the Birthday paradox to try to attack
cryptographic hash functions. The birthday paradox can be stated as follows: What is
the minimum value ofk such that the probability is greater than0.5 that at least two
people in a group ofk people have the same birthday? It turns out that the answer
is 23 which is quite a surprising result. In other words if there are 23 people in a
room, the probability that two of them have the same birthday is approximately0.5. If
there is 100 people (i.e. k=100) then the probability is.9999997, i.e. you are almost

131

Chapter 13 Attacks on Cryptosystems

guaranteed that there will be a duplicate. A graph of the probabilities against the value
of k is shown in figure 13.1.

Figure 13.1:The Birthday Paradox.

Although this is the case for birthdays we can generalise it forn equally likely values
(in the case of birthdaysn = 365). So the problem can be stated like this: Given
a random variable that is an integer with uniform distribution between1 andn and
a selection ofk instances (k ≤ n) of the random variable, what is the probability
P (n, k), that there is at least one duplicate?

It turns out (see Stallings) that this value is

P (n, k) = 1− n!

(n− k)!nk

= 1− [(1− 1

n
)× (1− 2

n
)× . . .× (1− k − 1

n
)]

(13.2)

Take it that the following inequality holds (to see why see Stallings)

(1− x) ≤ e−x (13.3)

then we have

132

Chapter 13 Attacks on Cryptosystems

P (n, k) > 1− [(e−1/n)× (e−2/n)× . . .× (e−(k−1)/n)]

> 1− e−[(1/n)+(2/n)+((k−1)/n)]

> 1− e−(k×(k−1))/2n

(13.4)

We would like to know whenP (n, k) > 0.5 so we set the right hand side of equation
13.4 to0.5:

0.5 = 1− e−(k×(k−1))/2n

⇒ ln(2) =
k × (k − 1)

2n

(13.5)

For large values ofk we can replacek × (k − 1) by k2 giving

k =
√

2(ln2)n = 1.18
√

n ≈
√

n (13.6)

which can be seen to be almost equal to 23 forn = 365.

Now lets look at this in terms of hash codes. Remember a hash code is a function
that takes a variable length messageM and produces a fixed length message digest.
Assuming the length of the digest ism then there are2m possible message digests.
Normally however, because the length ofM will generally be greater thanm this
implies that more than one message will be mapped to the same digest. Of course the
idea is to make it computationally infeasible to find two messages that map to the same
digest. However if we applyk random messages to our hash code what must the value
of k be so that there is the probability0.5 that at least one duplicate (i.e.H(x) = H(y)
will occur for some inputsx, y)? This is the same as the question we asked about the
birthday duplicates. Using equation 13.6 we have

k =
√

2m = 2m/2 (13.7)

Using this idea we can discuss the birthday attack as follows:

• The source, A is prepared to “sign” a message by appending the appropriate
m-bit hash code and encrypting that hash code with A’s private key.

• The opponent generates2m/2 variations on the message, all of which convey
essentially the same meaning. The opponent prepares an equal number of mes-
sages, all of which are variations of the fraudulent message to be substituted for
the real one.

• The two sets of messages are compared to find a pair of messages that produce
the same hash code. The probability of success is greater than0.5. If no match

133

Chapter 13 Attacks on Cryptosystems

is found, additional valid and fraudulent messages are generated until a match is
made.

• The opponent offers the valid variation to A for signature. This signature can
then be attached to the fraudulent variation for transmission to the intended re-
cipient. Because the two variations have the same hash code, they will produce
the same signature; the opponent is assured of success even though the encryp-
tion key is not known.

If we use a 64-bit hash code then the level of effort required is only on the order of
2m/2 = 264/2 = 232 which is clearly not sufficient to withstand today’s computational
systems.

The generation of many variations that convey the same meaning is not that difficult as
figure 13.2 shows.

Figure 13.2:A letter in237 variations.

134

Chapter 13 Attacks on Cryptosystems

13.3 Implementation Attacks

Implementation attacks take on a different approach to the above for discovering the
secret key. Instead of attacking the mathematical properties of the algorithm these
form of attacks (also known as side channel attacks) take advantage of the physical
phenomena that occurs when a cryptographic algorithm is implemented in hardware.
Four side channel attacks are listed in the FIPS standard 140-2 “Security Requirements
for Cryptographic Modules”,Power Analysis, Timing Analysis, Fault Induction and
TEMPEST. The following is an excerpt from this document (which is available on the
NIST website).

1. Power Analysis:Attacks based on the analysis of power consumption can be di-
vided into two categories, Simple Power Analysis (SPA) and Differential Power
Analysis (DPA). SPA involves a direct (primarily visual) analysis of electrical
power consumption patterns and timings derived from the execution of individ-
ual instructions carried out by a cryptographic module during a cryptographic
process. The patterns are obtained through monitoring the variations in electri-
cal power consumption of a cryptographic module for the purpose of revealing
the features and implementations of cryptographic algorithms and subsequently
values of cryptographic keys. DPA has the same goals but utilizes advanced sta-
tistical methods and/or other techniques to analyze the variations of the electrical
power consumption of a cryptographic module. Cryptographic modules that uti-
lize external power (direct current) sources appear to be at greatest risk. Methods
that may reduce the overall risk of Power Analysis attacks include the use of ca-
pacitors to level the power consumption, the use of internal power sources, and
the manipulation of the individual operations of the algorithms or processes to
level the rate of power consumption during cryptographic processing.

2. Timing Analysis: Timing Analysis attacks rely on precisely measuring the time
required by a cryptographic module to perform specific mathematical operations
associated with a cryptographic algorithm or process. The timing information
collected is analyzed to determine the relationship between the inputs to the
module and the cryptographic keys used by the underlying algorithms or pro-
cesses. The analysis of the relationship may be used to exploit the timing mea-
surements to reveal the cryptographic key or CSPs (Cryptographic Security Pa-
rameters). Timing Analysis attacks assume that the attacker has knowledge of
the design of the cryptographic module. Manipulation of the individual opera-
tions of the algorithms or processes to reduce timing fluctuations during process-
ing is one method to reduce the risk of this attack.

3. Fault Induction: Fault Induction attacks utilize external forces such as mi-
crowaves, temperature extremes, and voltage manipulation to cause processing
errors within the cryptographic module. An analysis of these errors and their

135

Chapter 13 Attacks on Cryptosystems

patterns can be used in an attempt to reverse engineer the cryptographic module,
revealing certain features and implementations of cryptographic algorithms and
subsequently revealing the values of cryptographic keys. Cryptographic mod-
ules with limited physical security appear to be at greatest risk. Proper selection
of physical security features may be used to reduce the risk of this attack.

4. TEMPEST: TEMPEST attacks involve the remote or external detection and col-
lection of the electromagnetic signals emitted from a cryptographic module and
associated equipment during processing. Such an attack can be used to obtain
keystroke information, messages displayed on a video screen, and other forms
of critical security information (e.g., cryptographic keys). Special shielding of
all components, including network cabling, is the mechanism used to reduce the
risk of such an attack. Shielding reduces and, in some cases, prevents the emis-
sion of electromagnetic signals. If a cryptographic module is designed to miti-
gate one or more specific attacks, then the modules security policy shall specify
the security mechanisms employed by the module to mitigate the attack(s). The
existence and proper functioning of the security mechanisms will be validated
when requirements and associated tests are developed.

Here we will be interested mainly in Differential Power Analysis (DPA) as it applies to
DES however we will have a brief look at Timing attacks. Both attacks were developed
by Paul Kocher of cryptographic research (www.cryptography.com) and you can find
his papers on his website.

13.3.1 Differential Power Analysis

Power Analysis is a relatively new concept but has proven to be quite effective in at-
tacking smartcards and similar devices2. It was first demonstrated by Ernst Bovelander
in 1997 but a specific attack strategy was not given. A year later it was brought to the
general public’s attention by Paul Kocher and the Cryptographic Research team in San
Francisco. Kocher et al. provided an attack strategy that would recover the secret
key from cryptographic systems running the DES algorithm. This caused great con-
cern amongst the smartcard community and a search for an effective countermeasure
began. To date a limited number of countermeasures have been proposed and none
are fully effective. The attacks work equally well on other cryptographic algorithms
as shown by Thomas Messerges et al. who presented a great deal of supplementary
research on the subject.

Power analysis involves an analysis of the pattern of power consumed by a crypto-
graphic module as it performs its operations. The purpose of this pattern analysis
is to acquire knowledge about causal operations that is not readily available through
other sources. The power consumption will generally be different for each operation
performed (and even for the same operations with different data values). One of the

2The smartcard is very susceptible to this form of attack mainly because it applies little or no power
filtering due to its small size.

136

Chapter 13 Attacks on Cryptosystems

causes of these variations is the transistor technology used to implement the module.
The transistors act as voltage controlled switches, and the power they consume varies
with the type of instructions being processed. For example, a conditional branch in-
struction appears to cause a lot of noticeable fluctuations according to Kocher, and
should therefore be avoided if possible where secret keys are concerned.

An example of a setup for a power analysis attack is shown in figure 13.3. For smart-
cards and similar devices, the power can be measured across a10 − 50Ω resistor3 in
series with the power or ground line of the specific device. It is better to put the re-
sistor in series with the ground of the device as the oscilloscope measures voltages
with reference to ground. Therefore the attacker only needs to measure one side of
the resistor. If the power line is used then two scope probes would be needed and the
resultant waveforms substracted.

Figure 13.3:An example setup for a Differential Power Analysis attack on a smartcard.

Although the setup in figure 13.3 will suffice for a smartcard it will generally not be
this simple for a complex cryptographic accelerator which probably draws its power
from the peripheral component interconnect (PCI) backplane of a computer. Ideally,
the attacker would wish to get as close as possible to the actual chip performing the
operations if a high signal to noise ratio (SNR) is to be obtained. This might be more
difficult than it first appears as information on which of the boards numerous chips is
actually running the algorithm may not be readily available. Even if it were, the power
pin of the chip would have to be physically separated from the board to perform the
attack and then reattached once complete (if the attack were to go unnoticed). Most

3The resistor should be small enough so as not to interfere with the operation of the circuit itself, but
large enough to give easily observable voltage fluctuations.

137

Chapter 13 Attacks on Cryptosystems

tamper resistant devices would not permit this from happening.

An example of a possible setup is shown in figure 13.4. In this case a PCI extender
board is used to measure the power fluctuations. The actual cryptographic board slots
into the extender board and therefore the power the cryptographic board draws from
the PCI backplane has to flow through the extender board which can be fitted with
some points that allow for measurement of the power. These can be home made or
easily purchased.

Figure 13.4: An example setup for a Differential Power Analysis attack on a high speed
cryptographic accelerator.

Assuming a setup such as those in figures 13.3 and 13.4 in which the algorithm being
executed is the Data Encryption Standard (DES) the attack can proceed as follows.
A method must be devised to produce a random set ofJ plaintext inputs that can
be sent to the cryptosystem for encryption4. On receiving these plaintext inputs,pij,
1 ≤ j ≤ J , the board will begin to run its algorithm and draw varying amounts of
power. These power fluctuations can be sampled using a digital sampling oscilloscope
which should be capable of sampling at about 20-30 times the clock frequency being
used. There are two main reasons for this:

1. Just because the clock frequency is a certain value, it is possible that we might
have multiple operations occuring in each clock cycle. Also, the operation we
are interested in might begin on the rising edge of a clock cycle but could only
last a small fraction of the clock cycle itself.

4This method must be automated as the number of random plaintext inputs will be quite large.
Generally this will be the job of the PC however on more complex cryptosystems it may be possible to
upload new firmware that will do the trick.

138

Chapter 13 Attacks on Cryptosystems

2. The more samples you have per cycle the less chance of noise caused by a mis-
alignment of samples. Ideally what is required is that the samples att = 0 etc.
(wheret is the time of the sample) line up exactly with one another however, this
may not be the case due to fluctuations in the triggering point of the waveform
(when the samples are being acquired).

The waveforms observed for eachpij can be represented as a matrixwfjk
5, where

1 ≤ k ≤ K. A second column matrix,coj, can also be used to represent the ciphertext
output. In practice, each row ofwfjk would probably be stored as a separate file for ease
of processing. Having captured each power waveform and ciphertext output, a function
known as apartitioning function, D(.), must now be defined. This function will allow
division of the matrixwfjk into two sub-matriceswf0pk andwf1qk containingP and
Q rows respectively, with1 ≤ p ≤ P and1 ≤ q ≤ Q whereP + Q = J . Provided
that the inputspij were randomly produced, thenP = Q = J/2 asJ → ∞ (i.e. the
waveforms will be divided equally between the two sets).

The partitioning function allows the division ofwfjk because it calculates the value of
a particular bit, at particular times, during the operation of the algorithm. If the value
of this bit is known, then it will also be known whether or not a power bias should
have occurred in the captured waveform. For a1, a bias should occur, and for a0 it
shouldn’t. Separating the waveforms into two separate matrices (one in which the bias
occurred and another in which it didn’t) will allow averaging to reduce the noise and
enhance the bias (if it occurred). For randomly chosen plaintexts, the output of the D(.)
function will equal either a1 or 0 with probability 1

2
(this is just another statement of

the fact thatP = Q = J/2 asJ →∞).

An example of a partitioning function is:

D(C1, C6, K16) = C1 ⊕ SBOX1(C6 ⊕K16) (13.8)

where SBOX1(.) is a function that outputs the target bit of S-box 1 in the last round of
DES (in this case it’s the first bit),C1 is the one bit ofcoj that is exclusive OR’ed with
this bit,C6 is the 6 bits ofcoj that is exclusive OR’ed with the last rounds subkey and
K16 is the 6 bits of the last round’s subkey that is input into S-box 1.

The value of this partitioning function must be calculated at some point throughout
the algorithm. So, if the valuesC1, C6 andK16 can be determined, it will be known
whether or not a power bias occurred in each waveform. It is assumed that the values
C1 andC6 can be determined and the value of the subkeyK16 is the information sought.
To find this, an exhaustive search needs to be carried out. As it is 6 bits long, a total of
26 = 64 subkeys will need to be tested. The right one will produce the correct value
of the partitioning bit for every plaintext input. However, the incorrect one will only
produce the correct result with probability1

2
. In this case, the two setswf0pk andwf1qk

5The subscripts j and k are used to identify the plaintext number causing the waveform and the time
sample point within that particular waveform, respectively.

139

Chapter 13 Attacks on Cryptosystems

will contain a randomly6 distributed collection of waveforms which will average out to
the same result. The differential trace (discussed below) will thus show a power bias
for the correct key only. Of course it means that 64 differential traces are needed but
this is a vast improvement over a brute force search of the entire 56 bit key.

Mathematically, the partitioning ofwfjk can be represented as

wf0pk = {wfjk|D(.) = 0} (13.9)

and

wf1qk = {wfjk|D(.) = 1} (13.10)

Once the matriceswf0pk andwf1qk have been set up, the average of each is then taken
producing two waveformsawf0k andawf1k both consisting of K samples. By taking
the averages of each, the noise gets reduced to very small levels but the power spikes
in wf1pk will be reinforced. However, averaging will not reduce any periodic noise
contained within the power waveforms and inherent to the operations on the crypto-
graphic board. This can largely be eliminated by subtractingawf0pk from awf1qk (this
can be thought of as demodulating a modulated signal to reveal the “baseband”, where
the periodic noise is the “carrier”). The only waveform remaining will be the one with
a number of bias points identifying the positions where the target bit was manipulated.
This trace is known as adifferential trace, ∆Dk.

Again, in mathematical terms, the above can be stated as

awf0k =
1

P

∑
wfjk∈wf1

wfjk =
1

P

P∑
p=1

wf0pk (13.11)

and

awf1k =
1

Q

∑
wfjk∈wf0

wfjk =
1

Q

Q∑
q=1

wf1qk (13.12)

The differential trace∆Dk is then obtained as

∆Dk = awf1k − awf0k (13.13)

The last five equations can now be condensed into one:

6Provided the plaintext inputs are randomly chosen.

140

Chapter 13 Attacks on Cryptosystems

∆Dk =

∑K
k=1 D(.)wfjk∑K

k=1 D(.)
−

∑K
k=1(1−D(.))wfjk∑K

k=1(1−D(.))
(13.14)

As J → ∞, the power biases will average out to a valueε which will occur at times
kD - each time the target bit D was manipulated. In this limit, the averagesawf0k and
awf1k will tend toward the expectationE{wf0k} andE{wf1k}, and equations 13.13
and 13.14 will converge to

E{wf1k} − E{wf0k} = ε, at times k = kD (13.15)

and

E{wf1k} − E{wf0k} = 0, at times k 6= kD (13.16)

Therefore, at timesk = kD, there will be a power biasε visible in the differential trace.
At all other times, the power will be independent of the target bit and the differential
trace will tend towards 0.

The above will only work if the subkey guess was correct. For all other guesses the
partitioning function will separate the waveforms randomly, and equations 13.15 and
13.16 will condense to

E{wf1k} − E{wf0k} = 0, ∀k (13.17)

As mentioned above,64 differential traces are needed to determine which key is the
correct one. Theoretically, the one containing bias spikes will allow determination of
the correct key however, in reality the other waveforms will contain small spikes due to
factors such as non-random choices of plaintext inputs, statistical biases in the S-boxes
and a non-infinite number of waveforms collected. Generally however, the correct key
will show the largest bias spikes and can still be determined quite easily.

The other 42 bits from the last round’s subkey can be determined by applying the same
method to the other 7 S-boxes7. A brute force search can then be used to obtain the
remaining 8 bits of the 56 bit key.

13.3.1.1 Mitigation Techniques

The following could be used as mitigation techniques for power attacks in general:

1. Timing Randomisation: This involves placing random time delays into the soft-
ware so that a power analysis will not be possible. With random delays intro-
duced, a steady trigger will not be sufficient to allow the averaging to work and

7The sameJ power signals can be used for each S-box as the different D functions re-order them
accordingly.

141

Chapter 13 Attacks on Cryptosystems

will therefore act as a countermeasure.

2. Internal power supplies/power supply filtering: This would be another method
that could be used to reduce the possibility of a power attack. For example, Adi
Shamir proposes building a simple capacitance network into each smartcard to
allow the fluctuations to be contained within the smartcard itself thereby pre-
venting power attacks.

3. Data masking: One of the methods proposed consists ofmaskingthe intermedi-
ate data (i.e. mask the input data and key before executing the algorithm). This
would make the power fluctuations independent of the actual data.

4. Tamper Resistance: This involves placing some detection/prevention system
around the device to stop intruders gaining access to the power fluctuations.

5. Fail Counters: A differential power analysis attack requires the attacker to obtain
a significant number of power waveforms. In order to do this the attacker must
have the ability to run quite a few encryptions on the system under attack. If the
number of encryptions were limited to a certain number then the attacks would
become increasingly difficult.

6. Removal of conditional elements: One of the main features used to attack the
square and multiply algorithm is the fact that it has a conditional multiplication
that depends on the value of the exponent bit being operated upon. One sug-
gested countermeasure is to implement this multiplication in every round (re-
gardless of the value of the bit) and to only do a register update when the bit is a
1.

13.4 Timing Attacks

A timing attack is somewhat analogous to a burglar guessing the combination of a safe
by observing how long it takes for someone to turn the dial from number to number.
We can explain the attack using the modular exponentiation algorithm shown in figure
13.5, but the attack can be adapted to work with any implementation that does not run
in fixed time. In this algorithm, modular exponentiation is accomplished bit by bit,
with one modular multiplication performed at each iteration and an additional modular
multiplication performed for each 1 bit.

As Kocher points out in his paper, the attack is simplest to understand in an extreme
case. Suppose the target system uses a modular multiplication function that is very fast
in almost all cases but in a few cases takes musch more time than an entire average
modular exponentiation. The attack proceeds bit by bit starting with the leftmost bit
e[N−1]. Suppose that the firstj bits are known (to obtain the entire exponent, start with
j = 0 and repeat the attack until the entire exponent is known). For a given ciphertext,
the attacker can complete the firstj iterations of thefor loop. The operation of the
subsequent steps depends on the unkown exponent bit. If the bit is set d = (d× b)

142

Chapter 13 Attacks on Cryptosystems

square and mul(b, e, m)
{

d = 1;
for (k = N-1 downto 0)
{

d = (d× d) mod m;
if (e[k] == 1)
{

d = (d× b) mod m;
}

Return d;
}

Figure 13.5:Square and Multiply algorithm for Computingbe mod (m) wheree is N bits
long.

mod m will be executed. For a few values of b and d, the modular multiplication will
be extremely slow, and the attacker knows which these are. Therefore, if the observed
time to execute the decryption algorithm is always slow when this particular iteration
is slow with a 1 bit, then this bit is assumed to be 1. If a number of observed execution
times for the entire algorithm are fast, then this bit is assumed to be 0.

In practice, modular exponentiation implementations do not have such extreme timing
variations, in which the execution time of a single iteration can exceed the mean ex-
ecution time of the entire algorithm. Nevertheless, there is enough variation to make
this attack practical.

Although the timing attack is a serious threat, there are simple counter measures that
can be used including the following:

• Constant exponentiation time: Ensure that all exponentiations take the same
amount of time before returning a result. This is a simple fix but does degrade
performance.

• Random delay: Better performance could be achieved by adding a random de-
lay to the exponentiation algorithm to confuse the timing attack. Kocher point
out that if defenders don’t add enough noise, attackers could still succeed by
collecting additional measurements to compensate for the random delays.

• Blinding: Multiply the ciphertext by a random number before performing ex-
ponentiation. This process prevents the attacker from knowing what ciphertext
bits are being processed inside the computer and therefore prevents the bit-by-bit
analsys essential to the timing attack.

RSA Data Security incorportates a blinding feature into some of its products. The
private-key operationM = Cd mod n is implemented as follows:

143

Chapter 13 Attacks on Cryptosystems

1. Generate a secret random numberr between0 andn− 1.

2. ComputeC ′ = C(re) mod n, wheree is the public exponent.

3. ComputM ′ = (C ′)d mod n with the ordinary RSA implementation.

4. ComputeM = M ′r−1 mod n (wherer−1 is the multiplicative inverse ofr mod
n). It can be demonstrated that this is the correct result by observing thatred mod
n = r mod n.

RSA Data Security reports a 2 to 10% performance penalty for blinding.

144

