
Chapter 7

The Advanced Encryption Standard (AES)

All of the cryptographic algorithms we have looked at so far have some problem. The
earlier ciphers can be broken with ease on modern computation systems. The DES
algorithm was broken in 1998 using a system that cost about $250,000. It was also far
too slow in software as it was developed for mid-1970’s hardware and does not produce
efficient software code. Triple DES on the other hand, has three times as many rounds
as DES and is correspondingly slower. As well as this, the 64 bit block size of triple
DES and DES is not very efficient and is questionable when it comes to security.

What was required was a brand new encryption algorithm. One that would be resis-
tant to all known attacks. The National Institute of Standards and Technology (NIST)
wanted to help in the creation of a new standard. However, because of the controversy
that went with the DES algorithm, and the years of some branches of the U.S. govern-
ment trying everything they could to hinder deployment of secure cryptography this
was likely to raise strong skepticism. The problem was that NIST did actually want
to help create a new excellent encryption standard but they couldn’t get involved di-
rectly. Unfortunately they were really the only ones with the technical reputation and
resources to the lead the effort.

Instead of designing or helping to design a cipher, what they did instead was to set up
a contest in which anyone in the world could take part. The contest was announced on
the 2nd of January 1997 and the idea was to develop a new encryption algorithm that
would be used for protecting sensitive, non-classified, U.S. government information.
The ciphers had to meet a lot of requirements and the whole design had to be fully doc-
umented (unlike the DES cipher). Once the candidate algorithms had been submitted,
several years of scrutinisation in the form of cryptographic conferences took place. In
the first round of the competition15 algorithms were accepted and this was narrowed
to 5 in the second round. The fifteen algorithms are shown in table 7 of which the5
that were selected are shown in bold. The algorithms were tested for efficiency and
security both by some of the worlds best publicly renowned cryptographers and NIST
itself.

After all this investigation NIST finally chose an algorithm known asRijndael. Rijn-
dael was named after the two Belgian cryptographers who developed and submitted it
- Dr. Joan Daemen of Proton World International and Dr. Vincent Rijmen, a postdoc-
toral researcher in the Electrical Engineering Department of Katholieke Universisteit
Leuven. On the 26 November 2001, AES (which is a standarised version of Rijndael)
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ALGORITHM NAME SUBMITTER

CAST-256 Entrust Technologies, Inc.
CRYPTON Future Systems, Inc.

DEAL Richard Outerbridge, Lars Knudsen
CNRS - Centre National

DFC pour la Recherche Scientifique -
Ecole Normale Superieure

E2 NTT - Nippon Telegraph and Telephone Corporation
FROG TecApro Internacional S.A.
HPC Rich Schroeppel

LOKI97 Lawrie Brown, Josef Pieprzyk, Jennifer Seberry
MAGENTA Deutsche Telekom AG

MARS IBM
RC 6 RSA Laboratories

Rijndael Joaen Daemen, Vincent Rijmen
SAFER+ Cylink Corporation
Serpent Ross Anderson, Eli Biham, Lars Knudsen

Bruce Schneier, John Kelsey,
Twofish Doug Whiting, David Wagner,

Chris Hall, Niels Ferguson

became a FIPS standard (FIPS 197).

7.1 The AES cipher

Like DES, AES is a symmetric block cipher. This means that it uses the same key
for both encryption and decryption. However, AES is quite different from DES in a
number of ways. The algorithm Rijndael allows for a variety of block and key sizes
and not just the 64 and 56 bits of DES’ block and key size. The block and key can
in fact be chosen independently from128, 160, 192, 224, 256 bits and need not be the
same. However, the AES standard states that the algorithm can only accept a block
size of 128 bits and a choice of three keys -128, 192, 256 bits. Depending on which
version is used, the name of the standard is modified to AES-128, AES-192 or AES-
256 respectively. As well as these differences AES differs from DES in that it is not
a feistel structure. Recall that in a feistel structure, half of the data block is used to
modify the other half of the data block and then the halves are swapped. In this case
the entire data block is processed in parallel during each round using substitutions and
permutations.

A number of AES parameters depend on the key length. For example, if the key size
used is 128 then the number of rounds is 10 whereas it is 12 and 14 for 192 and
256 bits respectively. At present the most common key size likely to be used is the
128 bit key. This description of the AES algorithm therefore describes this particular
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implementation.

Rijndael was designed to have the following characteristics:

• Resistance against all known attacks.

• Speed and code compactness on a wide range of platforms.

• Design Simplicity.

The overall structure of AES can be seen in 7.1. The input is a single 128 bit block
both for decryption and encryption and is known as thein matrix. This block is copied
into astatearray which is modified at each stage of the algorithm and then copied to
an output matrix (see figure 7.2). Both the plaintext and key are depicted as a 128 bit
square matrix of bytes. This key is then expanded into an array of key schedule words
(thew matrix). It must be noted that the ordering of bytes within thein matrix is by
column. The same applies to thew matrix.

7.2 Inner Workings of a Round

The algorithm begins with anAdd round key stage followed by 9 rounds of four stages
and a tenth round of three stages. This applies for both encryption and decryption with
the exception that each stage of a round the decryption algorithm is the inverse of it’s
counterpart in the encryption algorithm. The four stages are as follows:

1. Substitute bytes

2. Shift rows

3. Mix Columns

4. Add Round Key

The tenth round simply leaves out theMix Columns stage. The first nine rounds of
the decryption algorithm consist of the following:

1. Inverse Shift rows

2. Inverse Substitute bytes

3. Inverse Add Round Key

4. Inverse Mix Columns

Again, the tenth round simply leaves out theInverse Mix Columns stage. Each of
these stages will now be considered in more detail.
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Figure 7.1:Overall structure of the AES algorithm.

7.3 Substitute Bytes

This stage (known as SubBytes) is simply a table lookup using a16×16 matrix of byte
values called ans-box. This matrix consists of all the possible combinations of an8 bit
sequence (28 = 16× 16 = 256). However, the s-box is not just a random permutation
of these values and there is a well defined method for creating the s-box tables. The
designers of Rijndael showed how this was done unlike the s-boxes in DES for which
no rationale was given. We will not be too concerned here how the s-boxes are made
up and can simply take them as table lookups.

Again the matrix that gets operated upon throughout the encryption is known asstate.
We will be concerned with how this matrix is effected in each round. For this particular
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Figure 7.2:Data structures in the AES algorithm.

round each byte is mapped into a new byte in the following way: the leftmost nibble
of the byte is used to specify a particular row of the s-box and the rightmost nibble
specifies a column. For example, the byte{95} (curly brackets represent hex values
in FIPS PUB 197) selects row9 column5 which turns out to contain the value{2A}.
This is then used to update thestatematrix. Figure 7.3 depicts this idea.

Figure 7.3:Substitute Bytes Stage of the AES algorithm.

The Inverse substitute byte transformation (known as InvSubBytes) makes use of an
inverse s-box. In this case what is desired is to select the value{2A} and get the value
{95}. Table 7.4 shows the two s-boxes and it can be verified that this is in fact the case.
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The s-box is designed to be resistant to known cryptanalytic attacks. Specifically, the
Rijndael developers sought a design that has a low correlation between input bits and
output bits, and the property that the output cannot be described as a simple mathemat-
ical function of the input. In addition, the s-box has no fixed points (s-box(a) = a) and

no opposite fixed points (s-box(a) =
−
a) where

−
a is the bitwise compliment ofa. The

s-box must be invertible if decryption is to be possible (Is-box[s-box(a)]= a) however
it should not be its self inverse i.e. s-box(a) 6= Is-box(a)

Figure 7.4:AES s-boxes both forward and inverse.

7.4 Shift Row Transformation

This stage (known as ShiftRows) is shown in figure 7.5. This is a simple permutation
an nothing more. It works as follow:

• The first row ofstate is not altered.

• The second row is shifted 1 bytes to the left in a circular manner.

• The third row is shifted 2 bytes to the left in a circular manner.
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• The fourth row is shifted 3 bytes to the left in a circular manner.

Figure 7.5:ShiftRows stage.

The Inverse Shift Rows transformation (known as InvShiftRows) performs these cir-
cular shifts in the opposite direction for each of the last three rows (the first row was
unaltered to begin with).

This operation may not appear to do much but if you think about how the bytes are
ordered withinstate then it can be seen to have far more of an impact. Remember
that state is treated as an array of four byte columns, i.e. the first column actually
represents bytes1, 2, 3 and4. A one byte shift is therefore a linear distance of four
bytes. The transformation also ensures that the four bytes of one column are spread
out to four different columns.

7.5 Mix Column Transformation

This stage (known as MixColumn) is basically a substitution but it makes use of arith-
metic of GF(28). Each column is operated on individually. Each byte of a column
is mapped into a new value that is a function of all four bytes in the column. The
transformation can be determined by the following matrix multiplication onstate(see
figure 7.6):

 02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02


 s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

 =

 s′0,0 s′0,1 s′0,2 s′0,3

s′1,0 s′1,1 s′1,2 s′1,3

s′2,0 s′2,1 s′2,2 s′2,3

s′3,0 s′3,1 s′3,2 s′3,3

 (7.1)

Each element of the product matrix is the sum of products of elements of one row and
one column. In this case the individual additions and multiplications are performed in
GF(28). The MixColumns transformation of a single columnj (0 ≤ j ≤ 3) of state
can be expressed as:
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s′0,j = (2 • s0,j)⊕ (3 • s1,j)⊕ s2,j ⊕ s3,j

s′1,j = s0,j ⊕ (2 • s1,j)⊕ (3 • s2,j)⊕ s3,j

s′2,j = s0,j ⊕ s1,j ⊕ (2 • s2,j)⊕ (3 • s3,j)

s′3,j = (3 • s0,j)⊕ s1,j ⊕ s2,j ⊕ (2 • s3,j)

(7.2)

where• denotes multiplication over the finite field GF(28).

Figure 7.6:MixColumns stage.

As and example, lets take the first column of a matrix to bes0,0 = {87}, s1,0 =
{6E}, s2,0 = {46}, s3,0 = {A6}. This would mean thats0,0 = {87} gets mapped
to the values′0,0 = {47} which can be seen by working out the first line of equation
7.2 withj = 0. Therefore we have:

(02 • 87)⊕ (03 • 6E)⊕ 46⊕ A6 = 47

So to show this is the case we can represent each Hex number by a polynomial:

{02} = x

{87} = x7 + x2 + x + 1

Multiply these two together and we get:

x • (x7 + x2 + x + 1) = x8 + x3 + x2 + x

The degree of this result is greater than7 so we have to reduce it modulo an irreducible
polynomialm(x). The designers of AES chosem(x) = x8 + x4 + x3 + x + 1. So it
can be seen that

(x8 + x3 + x2 + x) mod (x8 + x4 + x3 + x + 1) = x4 + x2 + 1
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This is equal to0001 0101 in binary. This method can be used to work out the other
terms. The result is therefore:

0001 0101
1011 0010
0100 0110

⊕ 1010 0110

0100 0111 = {47}

There is infact an easier way to do multiplication modulom(x). If we were multiplying
by {02} then all we have to do is a 1-bit left shift followed by a conditional bitwise
XOR with (00011011) if the leftmost bit of the original value (prior to the shift) was 1.
Multiplication by other numbers can be seen to be repeated application of this method.
Stallings goes into more detail on why this works but we will not be too concerned
with it here. What is important to note however is that a multiplication operation has
been reduced to a shift and an XOR operation. This is one of the reasons why AES is
a very efficient algorithm to implement.

The InvMixColumns is defined by the following matrix multiplication: 0E 0B 0D 09
09 0E 0B 0D
0D 09 0E 0B
0B 0D 09 0E


 s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

 =

 s′0,0 s′0,1 s′0,2 s′0,3

s′1,0 s′1,1 s′1,2 s′1,3

s′2,0 s′2,1 s′2,2 s′2,3

s′3,0 s′3,1 s′3,2 s′3,3


(7.3)

This first matrix of equation 7.1 can be shown to be the inverse of the first matrix in
equation 7.3. If we label theseA andA−1 respectively and we label state before the
mix columns operation asS and after asS′, we can see that:

AS = S′

therefore

A−1S′

= A−1AS = S

7.6 Add Round Key Transformation

In this stage (known as AddRoundKey) the 128 bits ofstateare bitwise XORed with
the 128 bits of the round key. The operation is viewed as a columnwise operation
between the 4 bytes of astatecolumn and one word of the round key. This transfor-
mation is as simple as possible which helps in efficiency but it also effects every bit of
state.
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7.6.1 AES Key Expansion

The AES key expansion algorithm takes as input a 4-word key and produces a linear
array of 44 words. Each round uses 4 of these words as shown in figure 7.2. Each
word contains 32 bytes which means each subkey is 128 bits long. Figure 7.7 show
pseudocode for generating the expanded key from the actual key.

Figure 7.7:Key expansion pseudocode.

The key is copied into the first four words of the expanded key. The remainder of the
expanded key is filled in four words at a time. Each added wordw[i] depends on the
immediately preceding word,w[i − 1], and the word four positions backw[i − 4]. In
three out of four cases, a simple XOR is used. For a word whose position in thew
array is a multiple of 4, a more complex function is used. Figure 7.8 illustrates the
generation of the first eight words of the expanded key using the symbolg to represent
that complex function. The functiong consists of the following subfunctions:

1. RotWord performs a one-byte circular left shift on a word. This means that an
input word [b0, b1, b2, b3] is transformed into [b1, b2, b3, b0].

2. SubWord performs a byte substitution on each byte of its input word, using the
s-box described earlier.

3. The result of steps 1 and 2 is XORed with round constant, Rcon[j].

The round constant is a word in which the three rightmost bytes are always0. Thus the
effect of an XOR of a word with Rcon is to only perform an XOR on the leftmost byte
of the word. The round constant is different for each round and is defined as Rcon[j] =
(RC[J ], 0,0,0), with RC[1]= 1, RC[j]= 2• RC[j − 1] and with multiplication defined
over the field GF(28).

The key expansion was designed to be resistant to known cryptanalytic attacks. The
inclusion of a round-dependent round constant eliminates the symmetry, or similarity,
between the way in which round keys are generated in different rounds.
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Figure 7.8:AES key expansion.

Figure 7.9 give a summary of each of the rounds. The ShiftRows column is depicted
here as a linear shift which gives a better idea how this section helps in the encryption.

Figure 7.9:AES encryption round.
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7.6.2 Equivalent Inverse Cipher

As can be seen from figure 7.1 the decryption ciphers is not identical to the encryp-
tion ciphers. However the form of the key schedules is the same for both. This has
the disadvantage that two separate software or firmware modules are needed for ap-
plications that require both encryption and decryption. As well as that, decryption is
slightly less efficient to implement. However, encryption was deemed more important
than decryption for two reasons:

1. For the CFB and OFB cipher mode (which we have seen before but will study in
more detail next) only encryption is used.

2. As with any block cipher, AES can be used to construct a message authentication
code (to be described later), and for this only encryption is used.

However, if desired it is possible to create anequivalent inverse cipher. This means
that decryption has the same structure as the encryption algorithms. However, to
achieve this, a change of key schedule is needed. We will not be concerned with
this alternate form but you should be aware that is exists.

7.7 Block Cipher Modes of Operation

We have seen previously that five modes of operation are used when applying block
ciphers in a variety of applications. This section will give a more detailed view of how
these modes operate.

7.7.1 Electronic Codebook Mode (ECB)

This first mode is the simplest of all five modes. Figure 7.10 shows the scheme where it
can be seen that a block of plaintext (which is the same size in each case) is encrypted
with the same keyK. The termcodebookis used because, for a given key, there is a
unique ciphertext for every block of plaintext. Therefore we can imagine a gigantic
codebook in which there is an entry for every possible plaintext pattern showing its
corresponding ciphertext. If the message is longer than the block length then the pro-
cedure is to break the message into blocks of the required length padding the last block
if necessary. As with encryption, decryption is performed one block at a time, always
using the same key.

The ECB method is ideal for small amounts of data such as an encryption key however
for larger messages if the same plaintext block appears more than once then the same
ciphertext is produced. This may assist an attacker.

7.7.2 Cipher Block Chaining (CBC) Mode

We would like that same plaintext blocks produce different ciphertext blocks. Cipher
Block Chaining (see figure 7.11) allows this by XORing each plaintext with the ci-
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Figure 7.10:Electronic Codebook Mode (ECB)

phertext from the previous round (the first round using an Initialisation Vector (IV)).
As before, the same key is used for each block. Decryption works as shown in the fig-
ure because of the properties of the XOR operation, i.e. IV⊕ IV ⊕ P = P where IV is
the Initialisation Vector and P is the plaintext. Obviously the IV needs to be known by
both sender and received and it should be kept secret along with the key for maximum
security.

7.7.3 Cipher Feedback (CFB) Mode

The Cipher Feedback and Output Feedback allows a block cipher to be converted into
a stream cipher. This eliminates the need to pad a message to be an integral number of
blocks. It also can operate in real time.

Figure 7.12 shows the CFB scheme. In this figure it assumed that the unit of transmis-
sion iss bits; a common value iss = 8. As with CBC, the units of plaintext are chained
together, so that the ciphertext of any plaintext unit is a function of all the preceding
plaintext (which is split intos bit segments). The input to the encryption function is a
shift register equal in length to the block cipher of the algorithm (although the diagram
shows 64 bits, which is block size used by DES, this can be extended to other block
sizes such as the 128 bits of AES). This is initially set to some Initialisation Vector
(IV). The leftmosts bits of the output of the encryption function are XORed with the
first segment of plaintextP1 (alsos bits) to produce the first unit of ciphertextC1 which
is then transmitted. In addition, the contents of the shift register are shifted left bys
bits andC1 is placed in the rightmost (least significant)s bits of the shift register. This
process continues until all plaintext units have been encrypted. Decryption is similar.
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Figure 7.11:Cipher Block Chaining (CBC) Mode

Figure 7.12:Cipher Feedback (CFB)
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7.7.4 Output Feedback (OFB) Mode

The Output Feedback Mode is similar in structure to that of CFB, as seen in figure
7.13. As can be seen, it is the output of the encryption function that is fed back to
the shift register in OFB, whereas in CFB the ciphertext unit is fed back to the shift
register. One advantage of the OFB method is that bit errors in transmission do not
propagate. For example, if a bit error occurs inC1 only the recovered value ofP1 is
affected; subsequent plaintext units are not corrupted. With CFB,C1 also serves as
input to the shift register and therefore causes additional corruption downstream.

Figure 7.13:Output Feedback (OFB)

7.7.5 Counter (CTR)

This is a newer mode that was not listed initially with the above four. Interest in this
mode has increased a good deal lately. A counter, equal to the plaintext block size is
used. The only requirement stated in the standard is that the counter value must be
different for each plaintext block that is encrypted. Typically, this counter is initialised
to some value and then incremented by 1 for each subsequent block (modulo2b where
b is the block size). For encryption, the counter is encrypted and then XORed with
the plaintext to produce the ciphertext block; there is no chaining. For decryption, the
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same sequence of counter values is used, with each encrypted counter XORed with
a ciphertext block to recover the corresponding plaintext block. This mode contains
a number of advantages including hardware efficiency, software efficiency, provable
security (in the sense that it is at least as secure as the other modes discussed) and
simplicity.

Figure 7.14:Counter (CTR) Mode
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