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Abstract—Prediction of spatial attributes in geospatial data
repositories is indispensable in the field of remote sensing and
geographic information system. The semantic kriging (SemK) ap-
proach semantically captures the domain knowledge of the terrain
in terms of local spatial features for spatial attribute prediction. It
produces better results than ordinary kriging and other prediction
methods. This letter focuses on the theoretical and empirical
analyses of the SemK. A Euclidean vector analysis approach is
adopted to theoretically prove the efficacy of SemK in capturing
semantic knowledge.

Index Terms—Geographic information system (GIS), kriging,
prediction, semantic kriging (SemK).

I. INTRODUCTION

S PATIAL data repositories often consist of missing and erro-
neous spatial attributes. In this scenario, the prediction and

forecasting of these attributes with better accuracy is a major
challenge in the domain of remote sensing and geographic in-
formation system. It becomes critical in many spatial analyses,
such as climatological/weather analysis, where several spatial
attributes are involved. Among different statistical and machine
learning-based prediction methods, kriging [1], [2] is the most
popular regression-based interpolation technique, aiming at
the mean square prediction error minimization. It models the
spatial autocorrelation in terms of semivariances, which is the
function of Euclidean distance in 2-D space. However, in case
of meteorological attributes, particularly for the weather para-
meters, the association between the random fields between any
pair of sample points does not solely depend on their Euclidean
distance but also on their representative spatial features or the
land covers. According to the U.S. Environmental Protection
Agency,1 the geofeatures, such as building, road surface, water
body, etc., influence weather attributes, particularly the land
surface temperature (LST), significantly. Hengl et al. [3] re-
ported the LST of a location to be the function of its representa-
tive land cover. However, this knowledge is not incorporated
into the prediction method. In our previous work [4], the pro-
posed semantic kriging (SemK) blends this semantic knowledge
of the terrain into the interpolation process for better estimation
of the prediction attributes (PAs). The “semantics” of a sample
point is considered as the additional knowledge of the terrain
[5]. Thus, in this scenario, no multivariate kriging methods [e.g.,
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co-kriging (CK)]will be suitable.TheSemKextends the most po-
pular univariate kriging method [2], i.e., ordinary kriging (OK),
with the land cover information, which is modeled as the seman-
tics of the sample points. A weighted ontology is considered to
capture the semantic knowledge and the correlation between
the surrounding spatial features. Ontology [6], [7] is a tool
to capture the domain knowledge by analyzing the seman-
tic relationships between the concepts. The SemK combines
this ontology-based semantic association with the Euclidean
distance-based relatedness (estimated by OK) of the sample
points. The mathematical models for the semantics and spatial
correlation, theoretical error analysis, and efficiency analysis in
terms of entropy have been formalized in [4]. A case study [4]
with actual LST data proves that SemK outperforms OK and
several other popular methods. This letter presents a theoretical
as well as an empirical analysis of SemK to prove its efficacy in
handling the semantic knowledge for spatial prediction, verify
its functionality, and establish its relationship with OK.

A. Objectives

This letter focuses on the theoretical analysis and perfor-
mance evaluation of SemK. It investigates the capability of
SemK in incorporating the semantic domain knowledge into the
prediction method. It also validates the impact of the ontology,
and its granularity, to emphasize the benefits of SemK over
OK. Although OK has been considered as the base scheme
for SemK, the similar theoretical analysis can be carried out
with any other univariate kriging method. The formal proofs
based on the Euclidean vector analysis approach are presented
with four lemmas and a proposition, each of which exhibits
important characteristics of SemK. The outlines of the lemmas
and the proposition are given as follows:

• SemK assigns more weightage to the semantically simi-
lar and spatially important interpolating point than other
points (Lemma 1).

• The amount of domain knowledge captured by SemK over
OK is the angular difference between the weight vector
produced by SemK and OK. In other words, the domain
knowledge is correctly modeled by SemK (Lemma 2).

• The weight vector assigned by SemK is closer to the opti-
mal weight vector produced by OK. Thus, SemK performs
better than OK (Lemma 3).

• A less detailed ontology will eventually reduce SemK to
OK (Lemma 4).

• The misclassification of the sample points in the ontology
can be detected by SemK (Proposition 1).

This letter is organized in five sections. Section II describes the
SemK interpolation method [4]. Section III presents the theoret-
ical analysis of SemK. The empirical analysis of the proposed
lemmas is presented in Section IV. Finally, the conclusion is
drawn in Section V.
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Fig. 1. Spatial feature ontology for LST prediction [4].

II. OVERVIEW OF SEMK

The SemK proposed in [4] blends the semantics and the cor-
relation between the surrounding spatial features into the in-
terpolation process. It maps the traditional covariance to the
higher dimension by extending the popular kriging method, i.e.,
OK. According to the Tobler’s law of spatial proximity [8],
the correlated and the semantically similar features will have
more importance than the distant one. The semantics and the
spatial correlations are evaluated by organizing the spatial fea-
tures into an ontology hierarchy, constructed with all possible
features within the region of interest (RoI). The ontology hierar-
chy of Kolkata, a metropolitan city in India (central coordinate:
22.567◦ N, 88.367◦ E), is depicted in Fig. 1 [4]. It consists of the
spatial land use/land cover classes, such as built-up, agriculture,
forest, water bodies, etc. This hierarchy is constructed using
“is-a” (hyponym) relation.

All the sample points are mapped to the most appropriate
representative leaf features in the ontology hierarchy. The as-
sociation between a pair of leaf features in the hierarchy is
evaluated with two parameters, the spatial importance and the
semantic similarity [4]. These two parameters modify and map
the standard covariance measure into the higher dimension.

1) Spatial Importance: The spatial importance between each
pair of leaf features in the ontology can be measured by the
correlation analysis between them, with reference to the PAs.
The RoI is divided into k number of nonoverlapping zones
(Rk) such that

⋃k
i=1 Rk = RoI. The k pairs of sample points

are chosen within a predefined distance d from the whole RoI,
such that each pair is retrieved from each of the k zones.
The pairwise correlation analysis is carried out to evaluate the
association between the leaf features in the ontology with the
k pairs of sample points. This correlation score between a pair
of sample points is termed as spatial importance. The spatial
importance between the ith and the jth features in the ontology,
i.e., SIij , is given as follows:

SIij =CorrPA(fi, fj)

=

∑k
m=1(Z(fim)− Z(fi))(Z(fjm)− Z(fj))√

k∑
m=1

(Z(fim)− Z(fi))2
k∑

m=1
(Z(fjm)− Z(fj))2

where Z(fpq
) represents the random field value of the qth sam-

ple point, representing the feature fp; Z(fp) represents the aver-
age of the random field values of the feature fp over k sample
points. For all the interpolating points with respect to the pre-
diction point, an [N× 1] vector is formed, given as [SI0i]

T
N×1

TABLE I
EXAMPLE SCENARIO: SPECIFICATIONS OF THE PREDICTION POINT

x0 AND THREE INTERPOLATING POINTS xi , xj , AND xk

= [SI01SI02 · · · SI0N ]. Similarly, for N interpolating points, an
[N×N] symmetric matrix is formed, termed as [SIij ]N×N.

2) Semantic Similarity: The semantic similarity between
any two sample points or their representative features in the
ontology is measured using the modified context resemblance
method [9]. The semantic similarity between the ith and jth
features in the ontology, i.e., SSij , is given as follows:

SSij =

mi

|fi|
+

mj

|fj |
2

where |fi| and |fj | are the total number of nodes in the ith and
jth feature paths respectively, and mi and mj (where mi =mj)
are the number of features matching in their paths. For this met-
ric, an [N× 1] vector is formed with reference to the interpo-
lation point and is given as [SS0i]

T
N×1 = [SS01SS02 · · · SS0N ].

Furthermore, for all the interpolating points, an [N×N] sym-
metric matrix is formed, denoted by [SSij ]N×N.

The modified covariance matrix (C′) and the distance matrix
(D′) for SemK [4], based on the spatial importance and the
semantic similarity, are given as follows:

C′ =
C

−.− .−
([SIij]◦[SSij])

D′ =
D

−.− .−
([SI0i]◦[SS0i])

where “◦” and “−.− .−” denote the Hadamard product and
Hadamard division between matrices, respectively. In both
C and D, the covariance is calculated with respect to the
Euclidean distance in 2-D space [4]. The weight matrix W′ of
SemK is given as

W′=

[
C

−.− .−
([SIij ]◦[SSij ])

]−1[[
D

−.− .−
([SI0i]◦[SS0i])

]
−λ1

]

where λ is the Lagrange multiplier of SemK.

III. ANALYSIS OF SEMK

This section presents a Euclidean vector analysis-based per-
formance evaluation of SemK. It argues that the sample points
representing the semantically similar and spatially correlated
features should have more impact on the prediction point than
the less similar and loosely correlated sample points. The
lemmas and the proposition are presented to establish the char-
acteristics of SemK. An example scenario (refer to Table I) is
considered with an interpolation/prediction point x0 and three
interpolating points xi, xj , and xk, along with three supporting
parameters, namely, Euclidean distance (Ah), spatial impor-
tance (ASI), and semantic similarity (ASS). The parameters are
measured with respect to the interpolation point x0. Assigned
weight w′ is computed by SemK for each interpolating point,
with respect to these supporting attributes.

Lemma 1: Between any pair of interpolating points with the
same Euclidean distance from the prediction point, the point that
represents more similar feature with that of the prediction point
will be assigned more weightage by SemK than the other one.
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=
(1− λOK)(

1
SIS0j

− λSemK) + (1− λOK)(
1

SIS0i
− λSemK)√

(1− λOK)2 + (1− λOK)2
√(

1
SIS0j

− λSemK

)2
+
(

1
SIS0i

− λSemK

)2 =
1√
2

(
SIS0i + SIS0j√
SIS

2
0i + SIS

2
0j

)

Proof: Consider any pair of the interpolating points xi

and xj from Table I, and let the Euclidean distances from
the interpolation point be the same for both xi and xj , i.e.,
d0i = d0j . Let fi be more semantically similar and correlated
with f0 than fj . According to the hierarchical ontology property
and the Tobler’s law of spatial proximity [8], (SI0i ∗ SS0i) >
(SI0j ∗ SS0j) ⇒ SIS0i > SIS0j , where (SImn ∗ SSmn) is re-
ferred to as SISmn. We need to prove w′

i > w′
j . The modified

covariance matrix C′ and the distance matrix D′ of SemK
(defined in [4]) are given as follows:

C′ =

[
γ(dii)
1∗1

γ(dij)
SISij

γ(dji)
SISji

γ(djj)
1∗1

]
D′ =

[
γ(d0i)
SIS0i
γ(d0j)
SIS0j

]
.

From the definition of SemK, the weight matrix W′ is given
as follows: C′−1

[D′ − λSemK1]. Considering the constraint of
SemK, i.e., 1TW′ = 1, [D′ − λSemK1] can be written as D

′,
where D′

0i = ((γ(d0i)/SIS0i)− λSemK). For this scenario, W′

is modified as C′−1
D and is given as follows:

W′ =

⎡
⎣wSemK

i

wSemK
j

⎤
⎦ =

1

K

[
−γ(djj)

γ(dij)
SISij

γ(dji)
SISji

−γ(dii)

] [
D

′
0i

D
′
0j

]

=
1

K

⎡
⎣γ(dij)∗D′

0j

SISij

γ(dij)∗D′
0i

SISij

⎤
⎦

where K = −γ(dii)γ(djj) + (γ(dij)
2/(SIij ∗ SSij)

2). From
the definition of OK, γ(dii) = γ(djj) = 0 (as both represent
self-covariance with respect to Euclidean distance), and dij =
dji. From the definition of SemK, SIij=SIji and SSij=SSji ⇒
SISij = SISji. Thus, K is modified as γ(dij)

2/(SISij)
2.

Hence, the definition of D′ implies that wSemK
i > wSemK

j . This
concludes the proof.

Lemma 2: The domain knowledge captured by SemK, in
terms of semantic similarity and the spatial importance for all
the interpolating points, is reflected in the semantic weights
assigned by SemK. This additional knowledge of SemK over
OK can be represented by the angular difference of the weight
vectors of OK and SemK.

Proof: For proving this lemma, we need to prove that the
angular difference between the weight vectors of OK (

−−−→
WOK)

and SemK (
−−−−−→
W′

SemK), which represents the amount of change
incorporated to the semantic weight vector of SemK over OK,
is exactly equal to the angular difference between the captured
knowledge by SemK in terms of the semantics and that by OK.
Thus, the formal argument is as follows: θ

(
−−−−−−→
Change,(1−λOK)

−→
1 )

=
θ
(
−−−−→
Wsem

OK ,
−−−−−−→
W′sem

SemK)
.

For N interpolating points,
−−−−−→
Change is a Euclidean vector,

given as [Change1Change2 · · ·ChangeN ]T , where Changei is
the amount of semantic knowledge captured by SemK for the
ith interpolating point, over OK. Since only SemK can capture
this knowledge with respect to the spatial importance and the
semantic similarity of the surrounding features, the amount of

change captured by SemK for the ith interpolating point is
given as follows:

Changei =
−−−−→
SISiN � (

−−−−→
SIS0N −−−−−−→

λSemK1).

Formally,
−−−−→
SISiN and

−−−−→
SIS0N denote the ith row of the matrix

[([SIij ]N×N ◦ [SSij ]N×N)−h]−1 and the matrix ([SI0i]N×1 ◦
[SS0i]N×1)

−h, respectively; ◦ is the Hadamard product; �
denotes the dot product, and −h denotes the Hadamard inverse.
For any two interpolating points xi and xj , as specified in

Table I, the
−−−−−→
Change matrix is given as follows:

Change =

[
Changei
Changej

]
= [[[SIij ] ◦ [SSij ]]

−h]−1
2×2[[[SI0i] ◦ [SS0i]]

−h
2×1

− [λSemK1]2×1]

=
1

Kchange

[
1

SISij∗SIS0j
1

SISij∗SIS0i

]
.

Here,
−→
1 represents the semantic knowledge vector of OK,

SIS
−h=(SIS−h−λSemK1). In case of semantic knowledge, d0i

= d0j . Considering this constraint and normalizing the distance
matrices for OK and SemK, respectively, the weight matrices
of OK (WOK) and SemK (W′

SemK) are given as follows:

WOK =
1

K

[
γ(dij) ∗ (1− λOK)
γ(dij) ∗ (1− λOK)

]

W′
SemK =

1

K ′

[
γ(dij)
SISij

∗ ( 1
SIS0j

− λSemK)
γ(dij)
SISij

∗ ( 1
SIS0i

− λSemK)

]
.

In terms of semantics of the surrounding spatial features, the
angular difference between the incorporated knowledge by the
SemK, with respect to OK is given as follows:

θ
(
−−−−−−→
Change,1−λOK

−→
1 )

= Cos−1

(
1√
2

SIS0i + SIS0j√
SIS

2
0i + SIS

2
0j

)
.

From Table I, assuming d0i=d0j for the semantic knowledge,

the angular difference between
−−−→
Wsem

OK and
−−−−−→
W′sem

SemK is given by
θ
(
−−−−→
Wsem

OK ,
−−−−−−→
W′sem

SemK)
. Now, Cos

(
−−−−→
Wsem

OK ,
−−−−−−→
W′sem

SemK)
θ, shown at the top

of the page, which implies θ
(
−−−−→
Wsem

OK ,
−−−−−−→
W′sem

SemK)
=Cos−1 1√

2
((SIS0i+

SIS0j)/
√

SIS
2
0i + SIS

2
0j)). Hence, θ

(
−−−−−−→
Change,(1−λOK)

−→
1 )

=

θ
(
−−−−→
Wsem

OK ,
−−−−−−→
W′sem

SemK)
. This concludes the proof.

Lemma 3: The weight vector generated by SemK is closer to
the optimal weight vector than that produced by OK.

Proof: To prove this argument, it can be proved alterna-
tively that the angular difference between the optimal weight
vector with SemK is always less than the angular difference be-
tween the optimal weight vector with OK, i.e., θ

(
−−−−→
WOK,

−−−−−→
WOPT)

>
θ
(
−−−−−−→
W′

SemK,
−−−−−→
WOPT)

.

Let the optimal weight vector be [wOPT
i wOPT

j ]T for any two
interpolating points xi and xj . Let there be some extra domain
knowledge (e.g., U) required to be incorporated to get the
optimal solution. Given Lemma 1, if (wSemK

i − wSemK
j ) ≥ 0,
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Fig. 2. Position of the sample points in the ontology. (a) Initial ontology.
(b) Modified ontology.

then (wOPT
i − wOPT

j ) ≥ (wSemK
i − wSemK

j ) ≥ 0, and vice
versa. In other words, as semantic similarity and spatial
importance are inversely proportional to the Euclidean
distance-based traditional covariance, U is also inversely
proportional to that and takes some positive real values between
(0, 1]. According to Lemma 2, Cos

(
−−−−→
WOK,

−−−−−→
WOPT)

θ is given

as (((1/(SIS0jU0j))− λOPT) + ((1/(SIS0iU0i))− λOPT))/

(
√
2(((1/(SIS0jU0j))−λOPT)

2+((1/(SIS0iU0i))−λOPT)
2)).

Similarly, Cos
(
−−−−−−→
W′

SemK,
−−−−−→
WOPT)

θ is given as (((1/U0j)−
λOPT) + ((1 /U0i) − λOPT)) / (

√
2 (((1/U0j) − λOPT)

2+
((1/U0i)− λOPT)

2)).
As the semantic knowledge (SISij) between any two sample

points is inversely proportional to their traditional covariance
and lies between (0, 1], therefore Cos

(
−−−−→
WOK,

−−−−−→
WOPT)

θ <

Cos
(
−−−−−−→
W′

SemK,
−−−−−→
WOPT)

θ ⇒ θ
(
−−−−→
WOK,

−−−−−→
WOPT)

> θ
(
−−−−−−→
W′

SemK,
−−−−−→
WOPT)

.

This proves that the weight vector produced by SemK is closer
to the optimal vector than that produced by OK.

Lemma 4: Less detailed ontology will eventually reduce
SemK to OK.

Proof: Let us consider three interpolating points from the
example scenario in Table I. In both ontologies in Fig. 2, the
positions of the representative features of the sample points
are identified. In the initial ontology [refer to Fig. 2(a)], the
interpolating points xi and xj are pointing to two different
specialized concepts in the hierarchy. In the modified ontology,
e.g., the above specialized concepts are generalized to the same
parent concept [refer to Fig. 2(b)]. Thus, both xi and xj are
now represented by the same concept in the ontology hierarchy.
For both xi and xj , with respect to the SemK process with gen-
eral ontology (SemK_mod), the semantic properties have been
changed to SImod

0i , SSmod
0i and SImod

0j , SSmod
0j , with reference to

the prediction point x0. However, the semantic property of xk

remains unchanged. According to the property of hierarchical
ontology, it can be verified that the more general concept has
higher semantic similarity to others than the specialized concept
in the same path [4]. For evaluating the spatial importance of
the parent concept, let m be the number of specialized concepts
mapped to its parent concept. Among the (m ∗ k) sample points
of the parent concept, the first k sample points are chosen for the
correlation study, which are spatially closer. It will eventually
lead to a higher correlation score than any specialized concept
(according to the Tobler’s law of spatial proximity [8]). Thus,
for any p = i, j and q = 0, k, the following inequality holds:

1 > SISmod
pq > SISpq > 0.

For both xi and xj , wSemK
i < wmod

i < wOK
i and wSemK

j <

wmod
j <wOK

j . Similarly, from Lemma 2, it can be proved that
θ
(
−−−−→
WOK,

−−−−−−−−−−→
W′

SemK_mod
)
<θ

(
−−−−→
WOK,

−−−−−−→
W′

SemK)
. This concludes the proof.

TABLE II
EMPIRICAL STUDY OF LEMMA 1

Proposition 1: If the sample points are misclassified in the
ontology hierarchy (i.e., represented by a wrong concept in the
hierarchy), SemK will be able to capture this fact.

Proof: If there is any misclassification of sample points
in the ontology hierarchy, it affects the SemK process by
generating erroneous semantic covariance values for the sample
points. If any point is misclassified as a less similar concept in
the ontology with respect to the interpolation point, its assigned
weight is less than optimal, and vice versa.

The SemK is capable of identifying this kind of misclas-
sification of the sample points in the ontology hierarchy
by some preprocessing steps. To check this property, a
set of dummy points has been introduced, each of them
is represented by one distinct leaf feature in the ontol-
ogy. These points are assumed to have the same Euclidean
distance from the prediction point. Thus, the weight assigned
by SemK to each of the dummy points will be the func-
tion of “semantic” properties (i.e., semantic similarity and spa-
tial importance) only. Considering the given scenario in Table I
with two interpolating points, i.e.,xi and xj , the semantic weight
assigned to the ith dummy point (di) is given as wSemK

di(fi)
=

((1/SIS0j)−λSemK); fi is the representative feature of di. If
the ith interpolating point xi is actually represented by the fea-
ture fi, the normalized wSemK

i is given as wSemK
i(fi)

= ((γ(d0j)/

SIS0j)− λSemK). However, if it is misclassified and misrepre-
sented by another feature fk, the wSemK

i is given as follows:

wSemK
i =

(γ(d0j)
SIS0k

− λSemK

)
.

Thus, the assigned weight to the interpolating point xi is λSemK

less than γ(d0j) times of SIS0k, instead of SIS0j . Hence, it can
be concluded that the sample point is misclassified as feature
fk in the ontology, instead of feature fi.

IV. EMPIRICAL STUDY

An experimentation has been carried out for empirical anal-
ysis of the proposed lemmas with LST data. These data are
generated by the processing of USGS2 Landsat ETM+ satellite
imagery. The spatial resolution of these data is 30m (for bands 1–
5 and 7) and 60m (for band 6). The satellite data are pro-
cessed to generate the LST data. West Bengal, a state in India,
has been considered as the spatial RoI for the empirical study.

In order to prove Lemma 1, a scenario with three interpolat-
ing points (as per the description of Lemma 1) is considered,
which are equidistant from the prediction point. Their semantic
properties are also measured in the range of (0, 1]. It is observed
from Table II that the interpolating point with a higher semantic
knowledge score has been assigned higher weightage by SemK.
The result supports Lemma 1.

2U.S. Geological Survey (USGS): http://www.usgs.gov/.
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TABLE III
EMPIRICAL STUDY OF LEMMA 2

TABLE IV
EMPIRICAL STUDY OF LEMMA 3

TABLE V
EMPIRICAL STUDY OF LEMMA 4

For the analysis of Lemma 2, three scenarios have been
considered, corresponding to the specifications provided in
Table I. The semantic vectors and the assigned weight vectors
for each of the scenarios are compared (refer to Table III). It
is evident from Table III that the angular difference between
the semantic knowledge captured by OK and SemK is exactly
equal to the angle between their weight vectors.

The scenario of Table I has been considered for the empirical
analysis of Lemma 3. An additional knowledge of the terrain,
“elevation of the earth surface” is considered for further im-
proving the prediction, along with the semantic knowledge.
These three knowledge (Euclidean distance, semantic prop-
erty, and elevation) are considered to generate the optimal
weight vector. The angular differences between the optimal
weight vector with the SemK and OK, respectively, are com-
puted and specified in Table IV. This result supports Lemma 3.

For the empirical analysis of Lemma 4, the ontology in Fig. 1
is modified and all the level-4 concepts (i.e., spatial features)
are generalized to their respective level-3 parent concepts. The
performance of SemK with both the initial and the modified
ontologies are analysed in accordance with Lemma 4 (refer
to Table V). It proves that the less detailed ontology will
eventually reduce SemK to OK.

For the overall performance analysis, the proposed SemK is
compared with other prediction and spatial interpolation meth-
ods. Seven other popular prediction techniques are considered
for comparison, namely, simple spatial averaging (Average),

TABLE VI
COMPARATIVE STUDY OF SEMK WITH POPULAR PREDICTION METHODS

multilayer perceptron (MLP), Bayesian network (BN), nearest
neighbors (NN), inverse distance weighting (IDW), simple co-
kriging (CK), and ordinary kriging (OK). The predicted value
is compared with the actual value (obtained from the satellite
imagery), and different error metrics are evaluated. The per-
formance of each of the methodologies is compared with two
standard error metrics, namely, mean absolute error (MAE)
and root mean square error (RMSE) [4]. The corresponding
results are presented in Table VI. It is observed that the SemK
outperforms most of the methodologies, in terms of accuracy in
prediction.

V. CONCLUSION

The SemK [4] is a regression-based interpolation method,
belonging to the family of kriging. It incorporates the semantic
domain knowledge of the terrain for more accurate estima-
tion of the spatial attributes. This letter focuses on Euclidean
vector analysis-based performance evaluation of SemK (both
theoretically and empirically) to demonstrate its usability and
advantages over other popular prediction methods. This may
facilitate further development of spatiotemporal prediction and
forecasting framework for weather attributes.
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