
NetSecuritas: An Integrated Attack Graph-based Security
Assessment Tool for Enterprise Networks

Nirnay Ghosh
School of IT

Indian Institute of Technology
Kharagpur 721302, India

nirnay.ghosh@gmail.com

Ishan Chokshi
Oracle India Pvt. Ltd.

Bangalore 560076, India
ishan.chokshi@oracle.com

Mithun Sarkar
School of IT

Indian Institute of Technology
Kharagpur 721302, India

mithunsarkar@gmail.com
Soumya K Ghosh

School of IT
Indian Institute of Technology

Kharagpur 721302, India
skg@iitkgp.ac.in

Anil Kumar Kaushik
Department of Electronics and

Information Technology
Government of India

akaushik@deity.gov.in

Sajal K Das
Computer Sc. Department
Missouri University of S&T

Rolla, MO 65409-0350, USA
sdas@mst.edu

ABSTRACT
Sophisticated cyber-attacks have become prominent with
the growth of the Internet and web technology. Such attacks
are multi-stage ones, and correlate vulnerabilities on inter-
mediate hosts to compromise an otherwise well-protected
critical resource. Conventional security assessment approaches
can leave out some complex scenarios generated by these at-
tacks. In the literature, these correlated attacks have been
modeled using attack graphs. Although a few attack graph-
based network security assessment tools are available, they
are either commercial products or developed using propri-
etary databases. In this paper, we develop a customized
tool, NetSecuritas, which implements a novel heuristic-based
attack graph generation algorithm and integrates different
phases of network security assessment. NetSecuritas lever-
ages open-source libraries, tools and publicly available databases.
A cost-driven mitigation strategy has also been proposed to
generate network security recommendations. Experimental
results establish the efficacy of both attack graph generation
and mitigation approach.

Categories and Subject Descriptors
H.2.0 [Information Systems Applications]: General—
security, integrity, protection

Keywords
Network security, Vulnerability assessment, Penetration test-
ing, Attack graph, Mitigation strategy

1. INTRODUCTION
In today’s scenario, securing a network from sophisticated

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
ICDCN ’15, January 04 - 07 2015, Goa, India
Copyright 2015 ACM 978-1-4503-2928-6/15/01 ...$15.00.
http://dx.doi.org/10.1145/2684464.2684494.

intrusions is one of the primary concerns for network ad-
ministrators. Such attacks have become prominent with the
growth of the Internet and web technology. The Internet
provides seamless access to remote servers, while glitches in
web-based programming have allowed adversaries to install
backdoors into these servers, leading to the leakage of sen-
sitive information. Even though the critical resources in a
network are well-protected by firewalls, yet vulnerabilities
existing in other hosts from which the critical assets are
reachable, can be used as pivot to launch correlated attacks.

Port scanners, such as Nmap1, Angry IP scanner2, Scan-
Metender3 and vulnerability assessment frameworks, like
Nessus4, detect open ports and vulnerabilities related to
the services bind to these ports, respectively. But a lim-
itation with these scanners and assessment frameworks is
that these tools find vulnerabilities per host basis and do not
identify all conditions for a correlated attack to take place.
Usually, a vulnerability existing in a particular version of an
application has a corresponding exploit. The exploit gives
unauthorized access to a system, which enables an attacker
to execute arbitrary code (known as payload), for launching
the actual attack. Such attacks may include installing an
agent, privilege escalation, denial-of-service, and so on.

Traditional network security analysis (e.g., penetration
testing) involves an active assessment of the system for any
weaknesses, technical flaws or vulnerabilities. Although a
few automated penetration testing tools are available, their
wide usage is inhibited due to commercial licensing and
susceptibility against installing backdoors which may com-
promise an organization’s interests in more than one ways.
To evaluate the security of any network and get a holistic
and complete picture, it is necessary that the network ad-
ministrator takes these correlated attacks into account, and
does not have the apprehension of unauthorized informa-
tion leakage. A tool that depicts a succinct representation
of different attack scenarios jeopardizing the security of a
network is the attack graph [12], also known as the exploit-
dependency graph. Throughout the paper, we will use the

1http://nmap.org/
2http://www.angryip.org
3http://www.levenfus.com/scanmetender
4http://www.nesssus.org

terms “attack graph” and “exploit-dependency graph” inter-
changeably, with similar implication.

Assessing the security strength of any network through
attack graph requires consideration of the following actions:
(1) finding system/application level vulnerabilities, (2) mod-
eling different attack scenarios which threaten to compro-
mise critical resources, and (3) recommending mitigation
measures. In this work, we present a security management
tool, called NetSecuritas, which integrates the above steps
of attack graph-based network security assessment and thus
recommends cost-effective mitigation actions. The frame-
work leverages open-source scanner, exploit databases and
methodologies available in the public domain to facilitate
security assessment. It gathers vulnerability and other net-
work information and uses them to generate attack graphs.
Finally, a novel mitigation technique has been proposed and
implemented to generate security recommendations. The
attack graph generation algorithm developed in NetSecuri-
tas has been observed to scale polynomially both in terms
of space and time. The mitigation actions recommended by
our tool takes into consideration both attack graph proper-
ties and predefined security budget of any organization.

The rest of the paper is as follows. Section 2 gives an
overview on existing attack graph-based tools and summa-
rizes their limitations. Section 3 presents the design of the
architecture of NetSecuritas. In Section 4, we present the
technique by which NetSecuritas acquires and manages network-
specific information. Section 5 describes a novel attack graph
modeling technique using the acquired informaiton. In Sec-
tion 6, a customized attack graph generation algorithm has
been proposed. In Section refmitigate, mitigation strategy
to generate network securing recommendations has been de-
scribed. Section 8 gives the performance analysis of the at-
tack graph generation algorithm and justifies the selection of
mitigation metrics. Finally, a conclusion is drawn in Section
9.

2. RELATED WORK
In this section, we provide a brief overview of the existing

attack graph-based network security assessment tools.
NetSPA (Network Security Planning Architecture) [2] sys-

tem takes network specific input from custom database on
the host and software types, and attacker’s initial location
during runtime to generate a complete attack graph with
multiple targets. Information regarding the vulnerabilities,
firewall rules, and the network topology are entered manu-
ally into the database. Then attack graphs are generated us-
ing a depth-limited forward-chaining depth-first algorithm.
NetSPA has been used to implement Multi-prerequisite graph
(or MP) graph [7].

In [24] a new interactive tool is developed to provide a sim-
plified and more intuitive understanding of key weaknesses
discovered by the attack graph analysis. Separate treemaps
are used to display host groups in each subnet and hosts
within each treemap are grouped based on reachability, at-
tacker privilege level, and prerequisites.

GARNET (Graphical Attack graph and Reachability Net-
work Evaluation Tool) [25] is an interactive visualization
tool for attack graph analysis. Some noteworthy capabilities
and features of GARNET are to: (i) support for compara-
ble what-if analysis for determining the effects of different
changes in the network, (ii) model adversaries with multiple
skill levels to initiate attacks from either inside or outside the

network, and (iii) compute security metrics for complex net-
works to quantify security and compare different networks
in terms of their security.

Topological Vulnerability Analysis (TVA) [8] generates a
graph of dependencies among exploits representing all pos-
sible attack paths without having to enumerate them ex-
plicitly. The polynomial time algorithm described in [1]
is used to construct and analyze the attack graph. TVA
also generates recommendations to improve network secu-
rity by changing network configurations or applying differ-
ent patches. Output of various network scanning and log-
ging tools are provided to TVA to model the various network
elements and attack events.

MulVAL [14] expresses existing vulnerability-database and
output of scanning tools in Datalog and feeds them into the
MulVAL reasoning engine. The reasoning engine consists of
a collection of Datalog rules consisting of the operating sys-
tem behaviors and interactions between various components
in the network. The inputs to MulVAL’s analysis are: advi-
sories, host configuration, network configuration, principals,
interaction, and policy. From such inputs, it analyzes the
security risks of the software vulnerabilities in a correlated
fashion and generates security alerts.

In [16], a Bayesian network-based risk management frame-
work is proposed to quantify the likelihood of attacks in a
network using the metrics defined in the Common Vulnera-
bility Scoring System (CVSS) [18]. Furthermore, a genetic
algorithm has been proposed, which uses this information
and user specified cost model to recommend optimal miti-
gation plans.

We analyzed the above mentioned assessment tools and
observed that they have at least one of the following issues:

1. Most of these tools are commercial products.

2. The vulnerability and exploit databases used or cus-
tomized are not available in the public domain.

3. The mitigation approach does not simultaneously com-
bine the attack graph properties and network security
budget.

4. The attack graph generation algorithm is either not
clearly explained or does not scale for large networks.

To address these issues, we develop a customized security
management tool, NetSecuritas, using open-source libraries
and publicly available database. The mitigation strategy
considers both logically generated attack scenarios, as well as
real security costs, and the customized algorithm developed
for the attack graph generation is experimentally found to
be scalable.

3. NETSECURITAS DESIGN AND ARCHI-
TECTURE

This section summarizes the web-based interface of Net-
Securitas and briefly describes important modules of its ar-
chitecture.

3.1 Web-based Interface
The web interface of NetSecuritas provides a user friendly

environment for the underlying modules. Instead of a stand-
alone application, it has been developed as a web based ap-
plication due to the following reasons:

• Portability : Installation of the application in the user’s
computer (as required for stand-alone application) is
not required.

• Platform Independence: The only requirement of this
application is a web browser.

• Secure: All modules are invoked at the server end and
information generated by a user (e.g., port scan, attack
graph) are stored in the server which is available only
to that particular user.

NetSecuritas has been coded in Java language in the form of
Java Server Pages (JSP) and Servlet. Asynchronous JavaScript
and XML (AJAX) has been used in some cases to display the
overall progress of a time intensive process. As per imple-
mentation, different functional blocks of NetSecuritas along
with their interconnections are given in Figure 1.

Figure 1: NetSecuritas Block Diagram

3.2 Architecture
NetSecuritas is an integrated network security assessment

tool which implements different phases of penetration test-
ing, and appends attack modeling and recommendation of
mitigation plans.

Figure 2: NetSecuritas Architecture

The architecture of NetSecuritas, as illustrated in Figure
2 consists of six major modules:

• Information Acquisition: This module collects infor-
mation related to a network which is subjected to se-
curity assessment, and stores them in a scan database.

• Attack Modeling : In this module, we propose a tech-
nique to model exploits exported from an open source
database, Metasploit5. The input to this module is
a set of vulnerabilities detected in the network under
contention.

• Generate Fact File: The fact file encodes the configu-
ration and connectivity information of each host in the
network.

• Generate Domain File: The domain file models the
available exploits in terms of a set of preconditions
and effects (postconditions).

• Attack Graph Generation: In this module, we generate
the attack graph using a customized heuristic-driven
algorithm. The input to the generation algorithm are
the fact and domain files.

• Recommending Mitigation Measures: This module pro-
poses different network securing measures by studying
the trade-off between the level of security achieved and
the cost of mitigation.

In the subsequent sections, we describe in details various
modules of NetSecuritas.

4. INFORMATION ACQUISITION
One of the important aspects of the information acquisi-

tion module is to detect open ports and vulnerable services
running on them. For this, two methodologies from tradi-
tional penetration testing have been implemented in NetSe-
curitas:

• Port scan: It is a mechanism by which a software ap-
plication, designed to probe a server or host for open
ports, identify running services/applications on a host.

• Vulnerability assessment : It is the process of identi-
fying, quantifying, and prioritizing (or ranking) the
vulnerabilities in a system.

It has been observed that different port scanners have their
specific format to represent the scan results. However, due
to the lack of standards, it is difficult for our tool to take
scan inputs from these scanners and store them in the in-
ternal scan database. Thus, we create a standard scan re-
sult schema rather than appending/dropping fields from the
database for different formats. Every scan report (prefer-
ably in XML format) which a user obtains from the cus-
tomized tools can be imported into our framework, after
checking its validity against the specified XML Schema Def-
inition (XSD). We observe that among different port scan-
ners, OpenVAS6 generates the maximum information fol-
lowing a scan operation. Reports from other scanners have
been found to be subsets of that from OpenVAS. However,

5http://www.metasploit.com/
6http://www.openvas.org/

all information from OpenVAS scan report is not directly
required for the attack graph generation. Therefore, for in-
tegrating OpenVAS scanner with our tool, we customize it
as per requirement. A java based client, termed as OpenVAS
client, has been developed to communicate with the remote
OpenVAS server. It opens a secured socket at port 9390
to communicate with the OpenVas manager which, in turn,
communicates with the scanner. We install NetSecuritas
scanner separately in the individual subnets that constitute
a network. This is because, for the majority of the scanners,
transmitted probe packets are blocked by the firewall as the
best practice for security.

4.1 Generation of Fact File
A fact file (in XML format) encodes the configuration and

connectivity of each host in the network. Fact file genera-
tion module collects data from the information acquisition
phase and generates the file automatically. Following are
the inputs to fact file generator:

• List of hosts and services: This information is retrieved
from the vulnerability scan results stored in the scan
database.

• Host to host connectivity : This is computed from the
topology information and network firewall rules.

• Sources of attack : It comprises either external sources,
viz. the Internet, or internal sources, such as a vulner-
able host from any subnet.

• Goals of attack : It comprises of the critical hosts and
the privileges to be achieved.

5. ATTACK MODELING
Modeling of attacks or exploits, obtained from Metas-

ploit, is done so that its properties can be represented in
a machine-readable form which is encoded in the domain
file.

5.1 Generation of Domain File
The domain file (in XML format) consists of a list of ex-

ploits, each of which is represented by two sets of conditions:

1. Precondition: A precondition set consists of those con-
ditions which are required to be satisfied conjunctively
to triggering any exploit.

2. Postcondition: A postcondition set contains those con-
ditions which are generated disjunctively after execu-
tion of an exploit. These conditions form a subset of
precondition set for a subsequent exploit.

In [19], preconditions for any exploit have been identified as
the following set: (i) availability of vulnerable version of the
service/application, (ii) connectivity with the target host,
(iii) privilege requirement on target host, and (iv) existence
of the corresponding vulnerability. On contrary, the set of
postconditions is limited to: (i) privilege level gained, and
(ii) service/vulnerability disabled.

In a real-world scenario, executing an exploit requires ad-
ditional system-level constraints to be satisfied. Moreover,
the effect generated by executing an exploit is dependent
on the type of payload used and is not restricted to priv-
ilege escalation only. For the present work, exploits avail-
able from an open source database, Metasploit, have been

considered. It is a platform for writing, testing, and using
exploit codes. It has exploits for checking the vulnerabilities
of different platforms like aix, bsdl, FreeBSD, hpux, Linux,
Solaris, Windows, and so on. They are available as ruby
codes, however, do not have any standard documentation
which makes their usage inconvenient. From these codes,
we develop a customized database for storing different at-
tributes relevant to the exploits. Information retrieved from
the ruby codes for a particular exploit are used to model
the preconditions essential for its exploitation and the post-
conditions it generates after its execution. The information
parsed from the exploit codes are as follows:

• Name: name of the vulnerability.

• Reference: unique identifier for the vulnerability viz.
CVE-ID7, Bugtraq-ID8, OSVDB-ID9 etc.

• Privileged : whether or not the exploit module requires
or grants privileged access.

• Platform: platform on which the exploit works, for
example, Windows, Linux, etc.

• Architecture: architecture required on the target host
for exploit to be executed, e.g. i386, x64 86, etc.

• Targets: version/edition of application or operating
system which is vulnerable.

• Registered options: depicting the IP address of the re-
mote server and the port number on which the vulner-
able service is listening.

• Description: information about the effect of exploit
execution given in natural language.

Therefore, as evident from the attribute list presented above,
modeling of an exploit requires a generic precondition set
with the following attributes: (i) vulnerability, (ii) proper
version of the vulnerable application, (iii) platform on which
the application is running, (iv) architecture, version, and
edition of the operating system, (v) privilege level required
to exploit the vulnerability, (vi) port number to which the
service is bind, (vii) network layer connectivity between at-
tacker and the target.

The postcondition or effect generated by an exploit has
been obtained by analyzing its description attribute which
is composed in natural language and does not have any stan-
dard notation scheme. Moreover, for some exploits, it does
not provide any conclusive idea about what effect it will
generate after execution. To address this problem, descrip-
tions related to a particular exploit is also obtained from
two other sources: (i) OSVDB (Open Source Vulnerability
Database), and (ii) Bugtraq. Finally, a set of keywords or
key-phrases are formed from the descriptions obtained from
these three sources. These keywords and key-phrases give a
notion about the possible effect the exploit may generate on
successful execution. Some of them which characterize ex-
ploit effects are: “arbitrary code execution”, “service crash”,
“privilege escalation”, “installing agent”, and so on.

We store these exploit-specific information in a customized
database whose schema is given in Table 1 (PK represents

7http://cve.mitre.org/
8http://www.securityfocus.com/bid/
9http://osvdb.org/

Table 1: Exploit Database Schema
Relation Attributes
Exploit Id (PK), ExploitDetailName, ExploitAdminName, ActionName, Privilege,

UserDescription, AdminDescription
Target Id (PK), ExploitId (FK), TargetDetailName, TargetAdminName,

PortNumber
Operating System Id (PK), ExploitId (FK), OSDetailName, OSAdminName
Architecture Id (PK), ExploitId (FK), ArchDetailName, ArchAdminName
Platform Id (PK), ExploitId (FK), PlatformDetailName, PlatformAdminName
PostConditions Id (PK), ExploitId (FK), PostConditionDetails, PostConditions
Reference Id (PK), ExploitId (FK), ReferenceType, ReferenceNumber

the primary key and FK is the foreign key of any relation).
An interface has been developed to enable users to manually
enter the missing attributes after an exploit code has been
parsed.

As is evident from Table 1, most of the relations have
an attribute dedicated to the administrator of NetSecuri-
tas. This enables the administrator to remove conflicts or
discrepancies in exploit details that may originate at the
time of importing the exploit details from the Metasploit
database or during manual entry by other users. Manual
entry is required for some attributes whose values are ei-
ther not complete, or have no standard notation, or not
available from Metasploit database, viz. UserDescription,
TargetDetailName, OSDetailName, ArchDetailName, Post-
ConditionDetails, and so on.

6. ATTACK GRAPH GENERATION
In this section, we formally define the attack graph and

provide the details of a customized algorithm for its gener-
ation.

6.1 Exploit Dependency Graph Model
In [4], the authors propose a graph based approach to

model multi-stage, multi-host attack scenarios known as an
attack graph. Exploit-dependency graph [10] is one of the
variants of the attack graph. Model checker-based exploit
dependency graph generation has been reported in [6] [9].

An exploit dependency graph consists of a number of at-
tack paths (or, attack scenarios), each of which is a logical
succession of exploits and conditions. Multiple attack sce-
narios can be combined without loss of generality to generate
the exploit dependency graph. As explained in Section 5.1,
conditions in an attack graph are of two types: (i) precondi-
tion, and (ii) postcondition. To generate the attack graph,
a set of initial conditions and goal conditions are required.
Initial conditions refer to those network states which are
available by default. Goal conditions are those which are
to be achieved to compromise a network. With the above
notions of exploit-dependency graph, the formal definition
is given as follows [23]:

Definition 1. (Exploit-dependency graph). Given a set
of exploits E, a set of security conditions C, a relation require
Rr ⊆ C × E, and a relation imply Ri ⊆ E × C, an attack
graph AG is an acyclic directed graph AG(E ∪C,Rr ∪Ri),
where E ∪ C is the vertex set and Rr ∪Ri is the edge set.

It can be comprehended from Definition 1 that an exploit-
dependency graph is a bipartite graph with two disjoint sets

of vertices, namely, exploit and condition. The edges are also
of two types: (i) the require edge captures the conjunctive
nature of the conditions to activate an exploit, and (ii) the
imply edge identifies those conditions which are yielded after
an exploit is successfully executed.

6.2 Algorithm to Generate Exploit Dependency
Graph

In NetSecuritas, we develop a heuristic-based algorithm
(refer to Algorithm 1) to generate exploit-dependency graphs.
It takes a list of exploits (from the domain file) and a list
of hosts (from the fact file) as input, and generates exploit
dependency graph in the form of an adjacency list. Exploit
is a data structure that contains three other structures of
type condition:

1. Configuration condition: specifies configuration param-
eters such as platform, operating system, version, ser-
vice, vulnerability which are essential for the execution
of exploit.

2. Connectivity condition: specifies connectivity parame-
ters which are required for an attacker to execute ex-
ploit. Connectivity parameters are TCP and IP level
reachabilities.

3. Effect : post conditions generated by the exploit.

A list of hosts, called hostList, contains elements of the host
data structure which specifies configuration of host, services
running, vulnerabilities, connectivity with other hosts, and
so on. The proposed algorithm follows a backward chaining
approach in which it starts from the goal state and finds
paths that terminate at the initial conditions. A stack is
used to facilitate backtracking and stores elements of type
node which can be either exploit or condition. To model
attacks whose source is external to the target network, we
formulate a dummy host Internet. Based on the firewall
rules of the network, Internet may have access to some ser-
vices in the network.

In the backward chaining approach, the algorithm starts
with a goal node, finds list of exploits that can yield the
desired condition. For multiple such exploits, it makes a
decision to chose the easiest one. This exploit is considered
for next iteration while others are pushed into the stack
and processed later. In the next iteration, the algorithm
finds a list of hosts (including Internet) through which that
exploit can be executed. Once again, the algorithm makes
decision to pick the host which is easiest to exploit and push
others into the stack. All the nodes in a path are stored in a

queue and flagged. Whenever the exploration is completed,
successfully or in the dead end, the algorithm backtracks
and evaluates other hosts or exploits from the stack. Thus,
all the host and vulnerabilities are evaluated at least once.
Hence, no vulnerability which is exploitable and contributes
in at least one attack path will be ignored. Two heuristics
are computed to select an easiest exploit or host:

1. CVSS exploitability score of vulnerability : This heuris-
tic is based on the assumption that when multiple vul-
nerabilities exist in a host, the attackers choose the
one easiest to exploit. This can be measured by the
CVSS exploitability score [18].

2. Number of vulnerabilities in a host : As per the con-
nectivity in the network, an exploit can be executed
from multiple hosts. An attacker can use any of these
hosts as intermediate steps to reach to his goal. Our
assumption is the host with higher number of vulner-
abilities is more likely to be detected and used by the
attacker to execute the exploit. When more than one
hosts have the same number of vulnerabilities, CVSS
exploitability score of vulnerabilities is used to resolve
the tie.

7. RECOMMENDING MITIGATION MEA-
SURES

Ideally, any administrator intends make the network se-
cure as well as completely operational. However, a major
concern with achieving a desired level of security is the cost
incurred to the organization. In reality, organizations have
a predefined budget for security purpose, within which they
have to make their networks secure. Hence, there is a trade-
off between the targeted security level and the fixed budget.
In this situation, the security experts have to make decisions
as regards to prioritizing or properly ordering the network
hardening actions. In NetSecuritas, we define a novel miti-
gation metric which will be computed for all exploit nodes
in the generated attack graph, and based on the values ob-
tained, an appropriate security action will be recommended.
The cost of this action can be given as input either in terms
of the vulnerability patching cost or the impact generated
on the network if a certain service is blocked.

7.1 Mitigation metric
The proposed mitigation metric combines both the logical

representation of attack scenarios and real security actions
to be taken. It comprises of the following two sub-metrics:

7.1.1 Graph Metric
Graph metric is based on the in-degree measures of exploit

nodes in the attack graph. In-degree can be an indicator of
the number of attacks in which the exploit is involved. Intu-
itively, an exploit with higher in-degree will be involved in
more attack paths. Therefore, if indeg1, indeg2, . . . , indegN
are the in-degree measures of N nodes of an exploit depen-
dency graph, then, at a particular instant, the graph metric
is given as:

µgrp = MAX{indeg1, indeg2, . . . , indegN} (1)

7.1.2 Cost Metric

Input: exploitList, hostList
Output: Exploit Dependency Graph
from goal condition G(H);
initialize stack;
initialize path;
form a starting node startNode;
push(stack,G(H));
while Stack is not empty do

currentNode ← getTOS(stack);
if currentNode ∈ path then

backtrack(stack, path);
continue;

end
if path exists from currentNode then

path.add(currentNode);
savePath(currentNode);
backtrack(stack, path);
continue;

end
if currentNode is of type condition then

exploitList← findRequiredExploit(currentNode);
if exploitList == φ then

backtrack(stack, path);
continue;

end
heuristicalSortExploit(exploitList);
for each exploit ∈ exploitList do

push(stack, exploit);
end

end
else

conditionList C ←
findExploitPostcondition(currentNode);
if C == φ then

backtrack(stack, path);
continue;

end
if startNode ∈ C then

remove startNode from C;
path.add(startNode);
savePath(path);
path.remove(startNode);
if C == φ then

backtrack(stack, path);
continue;

end

end
heuristicalSortHost(C);
for each condition ∈ C do

if condition ∈ path then
remove condition from C;

end
else

push(stack, condition);
end

end

end
end
Algorithm 1: Exploit Dependency Graph Generation

In exploit dependency graph, for each node, there exists
a service s and its corresponding vulnerability v. Therefore,
two possible network securing options/actions are: (1)patch-
ing vulnerability v, and (2)blocking service s. Some cost is
associated with both these actions. While, the vulnerability
patch is expressed in monetary terms, the cost of stopping
a service is proportional to the impact it generated on the
organization.

The cost incurred in patching a vulnerability is obtained

from the CVSS Remediation Level [18], which is one of the
temporal metrics defined under the common vulnerability
scoring system. Four qualitative categories under remedia-
tion level are: (i) official-fix (OF), (ii) temporary-fix (TF),
(iii) workaround (W), (iv) unavailable/not defined (U). For
estimating the cost of patches, we need to quantify the above
mentioned qualitative categories. Assigning values to quali-
tative categories is subjective, and depends on the security
experts of organizations. Implementing all such estimation
methods is not feasible. However, NetSecuritas allows ad-
ministrators to import their tailor-made inputs for evaluat-
ing the cost and impact parameters.

In this paper, we present one such method of estimation.
Let the values assigned to the qualitative categories be as
follows: OF = 4, TF = 3,W = 2, U = 1. We scale down
the quantitative values, such that cost of patching (cv) lies
within the range [0, 1]. If λ is the scaling function, then we
have: λOF = 1.0, λTF = 0.75, λW = 0.5, λU = 0.25.

Similarly, if a service is blocked for security reasons, the
impact generated on the organization is proportional to its
criticality. The higher the criticality of service, the greater
will be the impact, and vice-versa. We define three quali-
tative categories to characterize criticality of a service: (i)
high (H), (ii) medium (M), and low (L). For estimating the
cost of impact, these qualitative categories are quantified as:
H = 10,M = 5, and L = 1. Likewise, we scale down down
the quantitative values, such that cost of blocking a service
(cs) lies within the range [0, 1]. If λ is the scaling function,
then we have: λH = 1.0, λM = 0.5, λL = 0.1.

For any node i in the exploit dependency graph that has
maximum in-degree measure, the cost metric is given as the
minimum of costs associated with the two actions:

µi
cost = MIN{civ, cis} (2)

7.2 Mitigation Strategy
We propose a greedy approach-based mitigation strategy,

which comprises of two steps:

• Selection of exploit node from the present attack graph
based on µgrp measures.

• Selection of mitigation action based on µcost value.

In every iteration, the node to be eliminated from the ex-
ploit dependency graph is determined by the graph metric
(using Equation 1), and the action to be taken is decided
by the cost metric (using Equation 2). This continues un-
til the summation of costs of subsequent mitigation actions
surpasses the predefined security budget. In each iteration,
a node is removed from the exploit dependency graph, a new
graph is regenerated, and the mitigation metrics for the new
graph is computed.

As explained above, the cost metric is subjective and
varies from one organization to another. It will be difficult
for NetSecuritas to pre-compute the cost of patching a vul-
nerability or blocking a service. Moreover, the cost budget
and the level of security to be achieved are organization-
specific. These parameters are independent of the attack
graph and are to be provided as input by a network admin-
istrator to obtain optimal mitigation strategy. However, as
the graph metric is based on the generated exploit depen-
dency graph, NetSecuritas presents a summary of in-degree
measures of all nodes to the user from which the mitigation
actions can be decided.

8. RESULTS AND DISCUSSIONS
In this section, we analyze the results related to exploit

dependency graph generation and compare our methodology
with the existing ones in the literature. Also, we illustrate
the efficacy of choosing in-degree of attack graph nodes as
one of the mitigation metrics.

8.1 Analysis of Exploit Dependency Graph Gen-
eration Algorithm

The exploit dependency graph generation algorithm (refer
to Algorithm 1) starts from the specified goal condition and
moves backwards till it reaches the initial condition. The
algorithm first finds the easiest path from the goal node
to the start node (which may be Internet) based on the
above discussed heuristics. As the algorithm starts from the
goal condition and terminates only after reaching the initial
condition, it can be claimed that if there exists one and only
one attack path, the algorithm guarantees to find it. This
proves the completeness of the proposed algorithm.

8.1.1 Time Complexity
According to Algorithm 1, whenever a path is found, all

the nodes constituting the path are flagged to indicate that
a path exists from them. Now, in any further path explo-
ration, if the search reaches to any of those “flagged” nodes,
the algorithm knows that at least one path already exists
from there onwards. Hence that exploration is called suc-
cessful and a new path is saved. This way, every exploit and
every condition are explored only once. Thus, time complex-
ity can be estimated as: T (n, e) = O(n ∗ T (condition) + e ∗
T (exploit)) where, n= total number of hosts, e= total num-
ber of exploits, T (condition) = time required for exploring a
condition node, and T (exploit) = time to explore an exploit
node. In the worst case, if it is assumed that a condition
is generated by e number of exploits, then T (condition) =
O(e). Similarly, exploring an exploit node is about finding
all preconditions or all the hosts from which the exploit can
be executed. In the worst case, a particular exploit may
be present in all the hosts of the network, resulting in the
upper-bound time complexity as T (exploit) = O(n).

Thus, the total time complexity is T (n, e) = O(n ∗O(e) +
e ∗ O(n)) = O(ne). Therefore, unless the number of ex-
ploits is exponential to the size of the network size, the
proposed algorithm yields the exploit dependency graph in
polynomial time. However, in realistic scenario, for a large
network, with stringent access policy and vulnerability as-
sessment strategy, the availability of exponential number of
exploits is infeasible.

8.1.2 Space Complexity
In the worst case, if a completely connected topology is

considered, such that every host is allowed to access every
service from all the other hosts, then every exploit can be
executed from all the other hosts. Thus at any instance, the
maximum number of nodes that can be pushed into the stack
is given by: n+(n−1)+(n−2)+. . .+1+e = n(n+1)/2+e =
O(n2 + e). Therefore, similar to the time complexity, the
space requirement is also polynomial to the number of hosts
in the network, if e is bounded by a polynomial.

8.1.3 Performance
For measuring the performance of our attack graph gen-

eration module, we simulated two types of networks:

1. Flat topology : Consists of a single subnet, in which
each host is connected to every other host and can
access any service running in any of the hosts.

2. Enclave topology : It is equivalent to networks of aca-
demic institutions and medium to large size enterprise
networks. Here, a network is divided into multiple
subnets.

Figures 3 and 4 show the running time of Algorithm 1
with respect to the number of hosts, for flat and enclave
networks, respectively. Both the graphs show linear time in-
crease with increased number of hosts. For enclave network
structure, extra time is incurred for computing reachability
of the hosts.

Figure 3: Running time of Algorithm 1 on Flat Net-
work Topology

Figure 4: Running time of Algorithm 1 on Enclave
Network Topology

8.2 Comparison with Reported Works
Literature survey on attack graphs show that researchers

have used both custom algorithms [5] [13] [15] [22] as well as
formal methods [3] [11] [17] [19] [21] [22] to generate attack
graphs. Formal methods typically involve representation of
attacks, networks, and vulnerabilities in some formal lan-
guage and providing them as input to the model checkers.
This, in turn, generates attack paths as counter-examples
to show that a security condition is violated. Attack graphs
with one single goal as well as those with multiple goals
have been generated for network security assessment. The
results of research works which deal with generation of at-
tack graphs are presented in Table 2.

8.3 Analysis of Mitigation Strategy
In Section 7, we have explained an exploit-dependency

graph based mitigation strategy. It reduces the number of

attack scenarios from an attack graph, by recommending
mitigation actions. In Figures 5, 6, and 7, we study the
effects of four mitigation strategies (in-degree, out-degree,
sum of in- and out-degrees, random weight) on the numbers
of iterations required to reduce an attack graph. The fig-
ures show the results corresponding to the number of attack
paths, edges, and nodes, respectively.

Figure 5: Effect on the Number of Attack Paths

Figure 6: Effect on the Number of Edges

Figure 7: Effect on the Number of Nodes

As is evident from these studies, the steepest decrease in
all graph-related parameters occurs when vulnerabilities are
patched according to the maximum in-degree. This vali-
dates our choice of in-degree as a part of attack graph-based
mitigation metric. However, the action to be taken on the
physical network for mitigation is driven by cost of patch
and impact on the enterprise if a service is blocked.

9. CONCLUSION
Security in enterprise networks has become a major con-

cern with the proliferation of the Internet and web-based
technology. Sophisticated cyber attacks combine vulnera-
bilities existing on different hosts and use them as pivots to
compromise targeted resources. The attack graph (or ex-
ploit dependency graph) models such correlated multi-stage
attack scenarios, thus giving an administrator a holistic idea
of a network’s security loopholes. In this paper, we presented
the description of a network security assessment tool, Net-
Securitas, which integrates different phases of penetration

Table 2: Comparative Study with Related Work

Reference Approach Results Remarks
Ammann,
2002 [1]

Custom algorithm has been developed. A
small test network with 3 hosts/6 vulner-
abilities has been taken.

The algorithm grows at O(n6) with the
size of the network.

Finds shortest path which can be
reached to the goal. Scales to only
hundreds of nodes.

Dawkins,
2004 [5]

Formal method to generate attack chain-
ing trees.

Shows poor scaling results. Generates full attack graph and
finds out a “minimum cut set”.

Jajodia,
2003 [8] [12]

Customized algorithm to automatically
generate attack graphs. A test network
comprising of 3 hosts/4 vulnerabilities
has been taken

Base computation grows as n6. Computes attack graph using vul-
nerability and reachability infor-
mation from Nessus and makes
recommendations to prevent ac-
cess to critical resources.

Ritchey,
2000 [17]

Modeling of network hosts, connectivi-
ties, attacker’s point of view, and exploits
using SMV model checker. A network
consisting of 4 hosts has been used for
case study.

Poor Scalability problem as the size of
the state space increases. Model-
ing of hosts, vulnerabilities, and
exploits are done using arrays.
This prevents dynamic addition
and also their sizes have direct im-
pact on the state space.

Sheyner,
2002 [19]

Uses NuSMV model checker to auto-
matically generate attack graphs. The
proposed methodology has been tested
against a network with 3 hosts/4 vulner-
abilities.

Poor Generates attack graph with the
test network in 5 seconds. But for
a network with 5 hosts/8 vulnera-
bilities, it takes 2 hours to gener-
ate the graph.

Swiler,
2001 [20]

Proof-of-concept attack graph generation
tool. A test network with 2 hosts/5
vulnerabilities have been taken for case
study.

Poor Builds a full attack graph first
and then finds out the shortest
paths to specified goals by assign-
ing some weights on the edges.

Proposed
Work

Uses a customized back-chaining algo-
rithm to generate attack path from man-
ually coded input specification files.

The time complexity is O(ne) and the
space complexity is O(n2e) for n hosts
and e exploits.

Two heuristics have been adopted
to avoid exploration of the sub-
graph which has been generated
earlier. Backtracking scheme also
ensures completeness of the algo-
rithm.

testing. The tool customizes open-source scanner and parses
information from the exploit framework. The attacks have
been modeled in terms of a set of preconditions and post-
conditions. A customized algorithm has been developed for
efficient generation of the exploit dependency graph. We de-
vise a mitigation strategy, based on the graph property and
the security budget, to generate recommendations. Anal-
ysis of results demonstrate the scalability of the tool with
respect to the size of the network, and the practicality of the
proposed mitigation metric.

Acknowledgment
The work is partially supported by a research grant from the
Department of Electronics and Information Technology (De-
itY), Ministry of Communication and Information Technol-
ogy, Government of India under Grant No. 12(14)/09-ESD,
dated 11-Jan-2010. The works of S. K. Das is partially sup-
ported by the US National Science Foundation under Award
Numbers CNS-1404677 and DGE-1433659.

10. REFERENCES
[1] Ammann, P., Wijesekera, D., and Kaushik, S.

Scalable, graph-based network vulnerability analysis.
In Proceedings of CCS 2002: 9th ACM Conference on
Computer and Communications Security (2002), ACM
Press, pp. 217–224.

[2] Artz, M. NetSPA: A Network Security Planner. PhD
thesis, Massachusettes Institute of Technology, May
2002.

[3] Chen, F., Su, J., and Zhang, Y. A scalable
approach to full attack graphs generation. In
Engineering Secure Software and Systems,
F. Massacci, J. Redwine, SamuelT., and N. Zannone,
Eds., vol. 5429 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2009, pp. 150–163.

[4] Cynthia Phillips, L. P. S. A graph based system
for network-vulnerability analysis. NSPW 98
Proceedings of the 1998 workshop on New Security
Paradigms, ACM, pp. 71–79.

[5] Dawkins, J., and Hale, J. A systematic approach to
multi-stage network attack analysis. In Proceedings of
the Second IEEE Internation Information Assurance
Workshop (IWIA ’04) (2004), IEEE Computer
Society, pp. 48–56.

[6] Ghosh, N., and Ghosh, S. A planner-based
approach to generate and analyze minimal attack
graph. Applied Intelligence 36 (2012), 369–390.

[7] Ingols, K., Lippmann, R., and Piwowarski, K.
Practical attack graph generation for network defense.
In Proceedings of the 22nd Annual Computer Security
Applications Conference (ACSAC ’06) (December
2006), pp. 121–130.

[8] Jajodia, S., Noel, S., and O’Berry, B. Topological
analysis of network attack vulnerability. In Managing
Cyber Threats: Issues, Approaches and Challenges
(2005), vol. V, Springer US, pp. 247–266.

[9] Jha, S., Sheyner, O., and J.Wing. Two formal
analyses of attack graphs. Proceedings of the 15th

IEEE Computer Security Foundations Workshop
(CSFW02).

[10] Lingyu Wang, Anyi Liu, S. J. Using attack graphs
for correlating, hypothesizing, and predicting intrusion
alerts. Computer Communication 29, Issue15
(September 2006), 2917–2933.

[11] Liu, X., Fang, C., Xiao, D., and Xu, H. A
goal-oriented approach for modeling and analyzing
attack graph. In Information Science and Applications
(ICISA), 2010 International Conference on (April
2010), pp. 1–8.

[12] Noel, S., Jajodia, S., O’Berry, B., and Jacobs,
M. Efficient minimum-cost network hardening via
exploit dependency graph. In Proceedings of 19th

Annual Computer Security Applications Conference
(ACSAC 2003) (2003), pp. 86–95.

[13] Ortalo, R., Deswarte, Y., and Kanniche, M.
Experimenting with quantitative evaluation tools for
monitoring operational security. In IEEE Transactions
on Software Engineering, 25(5) (October 1999),
pp. 633–650.

[14] Ou, X., Govindavajhala, S., and Appel, A. W.
Mulval: A logic-based network security analyzer. In
Proceedings of the 14th USENIX Security Symposium
(July 31 – August 5 2005), pp. 113Ű–128.

[15] Phillips, C., and Swiler, L. P. A graph-based
system for network-vulnerability analysis. In
Proceedings of the Workshop on New Security
Paradigms (NSPW) (22-26 September 1998),
pp. 71–79.

[16] Poolsappasit, N., Dewri, R., and Ray, I.
Dynamic security risk management using bayesian
attack graphs. Dependable and Secure Computing,
IEEE Transactions on 9, 1 (2012), 61–74.

[17] Ritchey, R. W., and Ammann, P. Using model
checking to analyze network vulnerabilities. In
Proceedings of the 2000 IEEE Symposium on Security
and Privacy (May 2000), pp. 156–165.

[18] Schiffman, M. Common vulnerability scoring system
(cvss). http://www.first.org/cvss/ (accessed on
October 2014).

[19] Sheynar, O., Jha, S., Wing, J. M., Lippmann,
R. P., and Haines, J. Automated generation and
analysis of attack graphs. In Proceedings of the 2002
IEEE Symposium on Security and Privacy (2002),
pp. 273–284.

[20] Swiler, L. P., Phillips, C., Ellis, D., and
Chakerian, S. Computer-attack graph generation
tool. In Proceedings of the 2nd DARPA Information
Survivability Conference & Exposition (DISCEX II)
(2001), vol. II, IEEE Computer Society, pp. 307–321.

[21] Templeton, S., and Levitt, K. A requires/provides
model for computer attacks. In Proceedings of the
2000 Workshop on New Security Paradigms (18-21
September 2001), ACM Press, pp. 31–38.

[22] Tidwell, T., Larson, R., K.Fitch, and Hale, J.
Modelling internet attacks. In Proceedings of the
Second Annual IEEE SMC Information Assurance
Workshop (June 2001), IEEE Press, pp. 54–59.

[23] Wang, L., Noel, S., and Jajodia, S. Minimum
cost-network hardening using attack graphs. Computer
Communications, 29(18) (November 2006),

3812–3824.

[24] Williams, L., Lippmann, R., and Ingols, K. An
interactive attack graph cascade and reachability
display. VizSEC 2007 (2008), 221–236.

[25] Williams, L., Lippmann, R., and Ingols, K.
GARNET: A graphical attack graph and reachability
network evaluation tool. Visualization for Computer
Security (2008), 44–59.

