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Abstract—Analysis of meteorological attributes of-
ten involves the investigation of other secondary at-
tributes which exhibit high spatial correlation with
the primary attribute and among themselves. For mul-
tivariate spatial analysis, one of the major research
challenges is to choose the influential secondary at-
tributes with respect to the primary one and rank
them accordingly as per their degree of influence. This
research work focuses on electing the most suitable
secondary attribute(s) which is/are correlated with
the primary and prioritize them individually or as a
group, for the corresponding spatial analysis. Time-
series forecasting of the meteorological attributes has
been chosen as the candidate analysis technique for the
case study. A Granger causality test based approach
is carried out to determine how a group of secondary
time-series is statistically significant to forecast the
primary. Among several meteorological attributes, the
rainfall is chosen as the primary time-series, and the soil
moisture, relative humidity, and land surface temperature
are considered as the secondary time-series to forecast
the rainfall.

Keywords—Multivariate spatial analysis, Time-series
data, Forecasting, Granger causality test.

I. Introduction
Prediction or forecasting in time-series data often in-

volves the correlated attributes information to enhance
the prediction accuracy. Following the law of geographic
proximity in two dimensional space, the spatial attributes
exhibit high spatial correlation among themselves [1].
Therefore, the forecasting of one meteorological attribute,
in the field of remote sensing (RS) and geographic informa-
tion system (GIS), certainly involves further investigations
on other attributes, which influence the primary attribute
of interest. Thus, an utmost research challenge is to select
the attribute or a group of attributes which influence the
primary one and to prioritize them according to their
degree of influence. The involvement of these significant
influencing attributes helps to yield better precision in ac-
tual analysis. Therefore, extracting the causal dependency
between the meteorological attributes is mandatory for any
multivariate spatial analysis, which can be regarded as a
pre-processing step to carry out the actual spatial analysis.
In this work, we have investigated the causal linkages
between different meteorological attributes to forecast a
primary attribute for multivariate time-series forecasting.
To carry out the case study, the causal relationships

between the rainfall (as primary time-series) and soil
moisture, relative humidity, and land surface temperature
(as secondary time-series) [2] [3] are investigated further.

This work presents a Granger causality (GC ) [4]
[5] test based data pre-processing framework for the
dependency analysis of meteorological attributes. The
GC test is a purely data driven approach, which initially
developed for the applications in econometrics, by the
British economist, Clive Granger. Further, it has been
extended in different fields of study to explore the causal
relationships among several stochastic variables. It mainly
aims at the minimization of error in prediction and
forecasting. For the bivariate analysis, Granger [4] has
defined the causality hypothesis as: “if some other series
yt contains information in past terms that helps in the
prediction of xt and if this information is contained in
no other series used in the predictor, then yt is said
to cause xt”. This causal relationship can be extended
in multivariate scenario and different combinations
of secondary attributes can be tested to check which
combination is the most influential and statistically
significant for the primary time-series, hence prioritizing
them accordingly.

Background:
A substantial amount of scientific investigations have been
reported in many literatures, in the field of meteorolog-
ical analysis, involving the Granger causality testing for
extracting causal dependency. Lozano et al. [6] have pre-
sented a data centric approach for spatio-temporal causal
modeling of climate change attribution. For their own
dataset, they have reported that the change in atmospheric
temperature is heavily dependent on the presence of CO2
in the environment and other green-house gases. Salvucci
et al. [7] have tested the causal dependency between soil
moisture and precipitation for the study region Illinois,
USA. Attanasio et al. [8] have presented a review on
Granger causality technique based approaches, in order
to study the causes of global warming. Smirnov et al. [9]
have proposed the notion of long-term Granger causality
and found CO2 to play a significant role for the rise in
temperature over the last several decades. Sfetsos et al. [10]
have applied Granger causality based technique to extract
the causal relationships between daily PM10 exceedances
with PM10 concentrations. Kodra et al. [11] have proposed
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a reverse cumulative Granger causality test to check the
causal relationship between the globally averaged land
surface temperature and CO2 in the atmosphere. Dutta et
al. [12] have proposed an online feature selection technique
for neural network based prediction of rainfall. They have
identified the influential features of past rainfall data to
forecast in future.

Though many research works have applied Granger
causality test based approach to infer the causal relation-
ship between attributes, this study attempts to involve
multiple attributes in order to identify the best possible
combination, for the prediction of a primary time-series.
In multivariate analysis, it might happen that a group
of attributes is the most suitable to cause another, other
than causing it individually. Though it is not statisti-
cally significant when tested as individual, but causes
the primary attribute when grouped with one or more
than one time-series. Therefore, a bottom-up approach is
proposed, staring from the individual attribute to each
type of combinations, and prioritizing them with respect
to their influence on the primary attribute. The spatial
autocorrelation property can also be verified from this test,
such that the nearby locations would yield similar causal
dependency than the distant pair. Similarly, for temporal
analysis, it can be verified whether inter annual climate
change has affected the causal dependencies for different
spatial locations. We have followed the classical F-test
methodology for the GC test. So, the main objectives of
this work can be stated as follows:

• proposing a bottom-up approach for exhaustive bi-
variate and multivariate Granger causality check-
ing, in different spatial locations

• ranking each group of attributes according to their
degree of influence on the primary attribute, de-
pending on the F statistic metric

• checking of spatial autocorrelation and its tempo-
ral comparison with time-series data

The rest of the paper is organized as follows: Section II
gives a brief overview of Granger causality testing method,
along with the description of statistical F-test. Section
III presents the description of the proposed bottom-up
approach to check and rank the attributes as per their
F-test measures. The empirical experimentation with real
meteorological data is bring forth in Section IV. Finally,
the conclusion is summarized in section V.

II. Granger Causality Testing
The fundamental hypothesis of Granger causality is

based on the notion of single directional causality in time
dimension, i.e., the future value can be determined by the
past measures, but the reverse is not true. Similarly, if the
change of attribute Y is caused by the change in attribute
X, then including X as an independent influencing at-
tribute for the analysis of Y , should increase the accuracy
in result. Based on this notion, the following hypotheses
can be formulated:

• X causes Y implies that the future value of Y is
dependent on the past values of both X and Y

• Y causes X implies that the future value of X is
dependent on the past values of both X and Y

• X causes Y and Y causes X both imply that the
future value of both X and Y are dependent on
the past values of both X and Y

• X does not cause Y and Y does not cause X imply
that X and Y both are independent of each other

The univariate autoregressive representation of Y (order:
N) is given as follows:

yt = θ0 + a1yt−1 + a2yt−2 + · · · + aN yt−N + ϵt

= θ0 +
N∑

i=1

aiyt−i + ϵt

where, yi is the time-series value of Y at time i; θ0, ai are
the constants and ϵt is the residual at time t. Similarly,
the bivariate autoregressive representation of Y , including
the lagged values of X is given as follows:

yt = ϕ0 + a1yt−1 + a2yt−2 + · · · + aN yt−N + b1xt−1 +
b2xt−2 + · · · + bN xt−N + ξt

= ϕ0 +
N∑

i=1

aiyt−i +
N∑

i=1

bixt−i + ξt

where, xi is the time-series value of X at time i; ϕ0, bi are
the constants and ξt is the residual at time t. If X Granger
causes Y , vector b is a non-zero vector of dimension N
and bivariate autoregressive representation of Y should
produce better result than univariate autoregression.
Granger causality can be checked through a series of
statistical hypothesis testing methods. In this work, we
have chosen statistical F-test for null hypothesis checking.

F-test:
The statistical F-test [13] has been considered to determine
whether a group of attributes or its subsets are jointly
significant for the primary attribute. The F-test can be
regarded as any statistical test where the test statistic
has an F-distribution under the null hypothesis. The null
hypothesis of Granger causality test for this work can be
stated as follows: for the univariate autoregressive repre-
sentation of Y , yi ∈ Y does not cause yj ∈ Y . It is a variant
of actual Granger causality hypothesis. This hypothesis
can also be represented as all the coefficients ai to be zero
in vector a. The alternative hypothesis is given as ai ̸= 0
for at least one i in vector a.

For the bivariate regression analysis, the F-test method
first determines the F statistic between two models. If there
are n data points to estimate the parameters of both the
models (let, first model has p1 parameters, and second
model has p2 parameters; p2 > p1), then the F statistic
is given as follows:

F =

( SSE1−SSE2
p2−p1

)( SSE2
n−p2

)
where, SSEi is the residual sum of squares of model i,

simply given as
∑

(yi − ȳi)2; ȳi is the mean of series Y .
Though the group with more number of parameters will
always be able to better fit the data than the model with
less parameters, but under the null hypothesis, the former



model would not provide any better fit than the latter.
The null hypothesis is said to be rejected if the F statistic
is greater than the critical value of the F-distribution, for
some significance level s (usually 0.05). The critical value
is defined as, Fcrit(m1, m2) where m1 is the between-group
degrees of freedom and m2 is the within-group degrees of
freedom. The p value is the probability of obtaining the F
statistic at least as extreme as the one which is actually
observed, by accepting the null hypothesis. To reject the
hypothesis, the p value should be lesser than s.

III. Causality Testing Framework: CTF
In multivariate analysis, the ranking of the secondary

attributes is necessary to decide which attribute or the
group of attributes influence the primary attribute most.
In this work, we attempt to identify and rank the group
of secondary meteorological attributes in a bottom-up
approach to forecast the primary one. The rejection of the
null hypothesis in F test states that at least one of the
coefficients in both a and b are non-zero, hence the model is
statistically useful for forecasting Y . However, it cannot be
concluded that the model is the best. In order to choose the
best model, this work proposes an exhaustive hierarchical
approach of grouping the attributes. First, each of the
attributes is Granger tested individually with respect to
the primary attribute. The F statistic is measured for
each of the attributes and they are ranked accordingly
with respect to this metric. As the model with higher F
statistic is statistically more significant, it is assigned lower
rank than the model with lower F statistic. If the null
hypothesis with respect to the individual attribute (with
lower F statistic) is accepted, still this attribute is not
discarded at level 1 from further analysis. It may happen
that this secondary time-series could be able to perform
better when grouped together with other attributes. Then,
each pair of them is clustered together for the second level
of analysis. This step is continued until all the secondary
attributes form a single group at level n (n is the number
of secondary attributes).

Algorithm 1 presents a bottom-up approach of evaluat-
ing the F statistic for different combination of attributes.
Each group of attributes is annotated with the correspond-
ing F statistic. Considering the physical significance of this
metric, i.e., higher value representing higher influence to
the primary attribute, the corresponding ranking can be
assigned to each group. In case of our multivariate analysis,
the model with lower rank, for which the null hypothesis
is rejected, is considered to be the best model.

IV. Empirical Analysis
The empirical experimentation has been carried out for

inferring the causal relationships between real meteorolog-
ical attributes. The followings are the specifications of the
experimental set-up considered for the case study.

Spatial region of interest:
The spatial region Sundarbans, India, (central coordinate:
21◦56′59′′N 89◦10′59.99′′E), which is the largest tidal
halophytic mangrove forest in the world, has been chosen
for this study. This area is selected as its unpredictable
climate change has a major impact in the whole eastern

Input: primary attribute {v0};
secondary attributes {{v1}, {v2}, · · · , {vn}}
Output: F statistic
Model1 = {v0};
Hierarchy H = ϕ;
G = {{v1}, {v2}, · · · , {vn}}
foreach i ∈ 1 to n do

H = H ∪ G
G = G × vi

end
foreach Modeli in H do

F statistic(Model1,Modeli) =
(

SSEgroup1−SSEgroup2
p2−p1

)(
SSEgroup2

n−p2

)
if F statistic(Model1,Modeli) < Fcrit(m1, m2) then

accept null hypothesis with Modeli

discard Modeli
end
else

reject null hypothesis with Modeli

annotate Modeli with F statistic(Model1,Modeli)
end

end
Algorithm 1: Bottom-up F statistic evaluation

India and it has attracted a significant research interest
for different climatological analysis. Due to the proximity
of Bay of Bengal1, the rainfall and humidity is very high
in this region, and often cause a severe damage to the
bordering regions during monsoon.

Area of application:
The time-series forecasting of rainfall (RF) is analysed as
the candidate application to extract the causal dependency
among meteorological attributes. The secondary time-
series are soil moisture (SM ), relative humidity (RH ), and
land surface temperature (LST ). The causal dependencies
of these attributes with RF are investigated for further.

Experimental datasets:
Due to inadequacy of real datasets, the meteorological
data used for this study is retrieved from FetchClimate2,
by Microsoft-Research. It provides climate information
service offering the past and present data of climate at-
tributes. The meteorological attributes are fetched from
this explorer for the past four years (2001, 2004, 2007
and 2010). As, rainfall is the primary attribute, the past
data for rainy season (typically, during the month of July-
September) is captured for each of the year, with an
interval of twenty four hours. Five random locations have
been chosen from the whole study region for testing the
causal dependencies.

Statistical tool for analysis:
A predictive analytics software, IBM SPSS Statistics 15.03

has been used for this study. For bivariate analysis, One-
way Anova test is carried out for each pair of attributes.
The multivariate linear regression measures the F statistic
for the combination of more than one attribute.

1http://www.britannica.com/EBchecked/topic/60740/Bay-of-
Bengal; Accessed on August 2014

2http://fetchclimate.cloudapp.net; Accessed on August 2014
3http://www-01.ibm.com/software/in/analytics/spss/; Accessed

on August 2014



The property of spatial autocorrelation is also inves-
tigated through this experimentation. For different types
of spatial proximity, all the locations may not rank the
secondary attributes in a similar manner. However, due
to spatial autocorrelation, the nearby locations must yield
similar results than the distant region. This hypothesis is
tested in terms of similarity between F statistic for each
of the groups among different regions. Due to brevity of
space, the case study is reported for past four years (2001,
2004, 2007, and 2010) only, and the results are specified in
Tables II, III, IV and V, respectively.
Discussion:
For each group <G>, the null hypothesis is: “G does not
Granger cause rainfall (RF)”. The F statistic is specified
for each group, along with the critical value for that
particular F test (refer Tables II, III, IV and V). The
‘Reject?’ column checks whether to reject (X) or accept
(×) the null hypothesis. In individual location, the groups
are ranked with F statistic value. From all the tables
(II, III, IV and V), it is observed that the group of all
the secondary attributes, i.e., <land surface temperature,
soil moisture, relative humidity> together proved to be
a significant model for most of the years. These ranking
can be analysed further for different spatial locations in
the same year for spatial analysis, similarly for different
years in the same location for temporal analysis. Though
the temporal behaviours of the similar groups in the same
location is not much similar, however, the results exhibit
high spatial autocorrelation. For example, locations 1, 4,
and 5 are nearby than location 2, and 3. For the spatial
proximity, high autocorrelation within, and low correlation
among the location clusters can be observed for each of
the year in terms of F statistic. Another very important
observation, from the empirical results: even each of the
individual attributes are not Granger causing the primary
attribute individually, they may do so when in a group.
This is the reason for not discarding the insignificant
attributes in level 1.

For the empirical evidence of the proposed ranking
strategy, the actual forecasting of rainfall is carried out
for the year 2010 for each of the five locations, with
past 3 years (2001, 2004, and 2007) data. In SPSS, the
Time Series analysis is carried out with ARIMA model
for forecasting. The corresponding root mean square error
(RMSE) in prediction is specified in Table I. It is evident
from the Table I that the multivariate time-series forecast-
ing with the group <LST, RH, SM> reports the minimal
error. This group is already found to be statistically most
significant for the past scenarios using GC test.

V. Conclusion
The relationships or the causal linkages between dif-

ferent time-series data play an important role in spatial
analysis. Such analysis, like forecasting of one meteoro-
logical time-series, requires to infer the causal dependen-
cies with other influential attributes. This work presents
a data pre-processing framework for multivariate time-
series forecasting to identify the influential secondary at-
tributes and rank them as per their degree of influence.
A hierarchical Granger causality test based approach is
adopted to estimate the influence of the individual and the

Table I: RMSE IN TIME-SERIES FORECASTING OF
RAINFALL

Locations

1 2 3 4 5

G
ro

up
s

< LST, RH > 1.583 1.440 1.249 1.446 1.334
< LST, SM > 1.611 1.445 1.352 1.497 1.285
< RH, SM > 1.758 2.259 1.661 2.754 2.064

< LST, RH, SM > 1.082 0.967 0.931 0.897 1.004

group of attributes on forecasting. Experimental study also
demonstrates the efficacy of this framework. This method
can be extended further to develop an optimized hierarchy
through grouping and pruning of attributes.
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