
2.32 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Design and Implementation

 Design and Implementation of OS not “solvable”, but some

approaches have proven successful

 Internal structure of different Operating Systems can vary widely

 Start the design by defining goals and specifications

 Affected by choice of hardware, type of system

 User goals and System goals

 User goals – operating system should be convenient to use,

easy to learn, reliable, safe, and fast

 System goals – operating system should be easy to design,

implement, and maintain, as well as flexible, reliable, error-free,

and efficient

2.33 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Design and Implementation (Cont.)

 Important principle to separate

Policy: What will be done?

Mechanism: How to do it?

 Mechanisms determine how to do something, policies decide

what will be done

 The separation of policy from mechanism is a very important

principle, it allows maximum flexibility if policy decisions are to

be changed later (example – timer)

 Specifying and designing an OS is highly creative task of

software engineering

2.34 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Implementation

 Much variation

 Early OSes in assembly language

 Then system programming languages like Algol, PL/1

 Now C, C++

 Actually usually a mix of languages

 Lowest levels in assembly

 Main body in C

 Systems programs in C, C++, scripting languages like PERL,

Python, shell scripts

 More high-level language easier to port to other hardware

 But slower

 Emulation can allow an OS to run on non-native hardware

2.35 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Structure

 General-purpose OS is very large program

 Various ways to structure ones

 Simple structure – MS-DOS

 More complex -- UNIX

 Layered – an abstrcation

 Microkernel -Mach

2.36 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Simple Structure -- MS-DOS

 MS-DOS – written to provide the

most functionality in the least

space

 Not divided into modules

 Although MS-DOS has some

structure, its interfaces and

levels of functionality are not

well separated

2.37 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Non Simple Structure -- UNIX

UNIX – limited by hardware functionality, the original UNIX

operating system had limited structuring. The UNIX OS

consists of two separable parts

 Systems programs

 The kernel

 Consists of everything below the system-call interface

and above the physical hardware

 Provides the file system, CPU scheduling, memory

management, and other operating-system functions; a

large number of functions for one level

2.38 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Traditional UNIX System Structure

Beyond simple but not fully layered

2.39 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Layered Approach

 The operating system is divided

into a number of layers (levels),

each built on top of lower

layers. The bottom layer (layer

0), is the hardware; the highest

(layer N) is the user interface.

 With modularity, layers are

selected such that each uses

functions (operations) and

services of only lower-level

layers

2.40 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Microkernel System Structure

 Moves as much from the kernel into user space

 Mach example of microkernel

 Mac OS X kernel (Darwin) partly based on Mach

 Communication takes place between user modules using

message passing

 Benefits:

 Easier to extend a microkernel

 Easier to port the operating system to new architectures

 More reliable (less code is running in kernel mode)

 More secure

 Detriments:

 Performance overhead of user space to kernel space

communication

2.41 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Microkernel System Structure

Application

Program

File

System

Device

Driver

Interprocess

Communication

memory

managment

CPU

scheduling

messagesmessages

microkernel

hardware

user

mode

kernel

mode

2.42 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Modules

 Many modern operating systems implement loadable kernel

modules

 Uses object-oriented approach

 Each core component is separate

 Each talks to the others over known interfaces

 Each is loadable as needed within the kernel

 Overall, similar to layers but with more flexible

 Linux, Solaris, etc

2.43 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solaris Modular Approach

2.44 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Hybrid Systems

 Most modern operating systems are actually not one pure model

 Hybrid combines multiple approaches to address

performance, security, usability needs

 Linux and Solaris kernels in kernel address space, so

monolithic, plus modular for dynamic loading of functionality

 Windows mostly monolithic, plus microkernel for different

subsystem personalities

 Apple Mac OS X hybrid, layered, Aqua UI plus Cocoa

programming environment

 Below is kernel consisting of Mach microkernel and BSD Unix

parts, plus I/O kit and dynamically loadable modules (called

kernel extensions)

2.45 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Mac OS X Structure

graphical user interface
Aqua

application environments and services

kernel environment

Java Cocoa Quicktime BSD

Mach

I/O kit kernel extensions

BSD

2.46 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

iOS

 Apple mobile OS for iPhone, iPad

 Structured on Mac OS X, added functionality

 Does not run OS X applications natively

 Also runs on different CPU architecture

(ARM vs. Intel)

 Cocoa Touch Objective-C API for

developing apps

 Media services layer for graphics, audio,

video

 Core services provides cloud computing,

databases

 Core operating system, based on Mac OS X

kernel

2.47 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Android

 Developed by Open Handset Alliance (mostly Google)

 Open Source

 Similar stack to IOS

 Based on Linux kernel but modified

 Provides process, memory, device-driver management

 Adds power management

 Runtime environment includes core set of libraries and Dalvik

virtual machine

 Apps developed in Java plus Android API

 Java class files compiled to Java bytecode then translated

to executable than runs in Dalvik VM

 Libraries include frameworks for web browser (webkit), database

(SQLite), multimedia, smaller libc

2.48 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Android ArchitectureApplications

Application Framework

Android runtime

Core Libraries

Dalvik

virtual machine

Libraries

Linux kernel

SQLite openGL

surface

manager

webkit libc

media

framework

2.49 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating-System Debugging

 Debugging is finding and fixing errors, or bugs

 OS generate log files containing error information

 Failure of an application can generate core dump file capturing

memory of the process

 Operating system failure can generate crash dump file containing

kernel memory

 Beyond crashes, performance tuning can optimize system performance

 Sometimes using trace listings of activities, recorded for analysis

 Profiling is periodic sampling of instruction pointer to look for

statistical trends

Kernighan’s Law: “Debugging is twice as hard as writing the code in the

first place. Therefore, if you write the code as cleverly as possible, you

are, by definition, not smart enough to debug it.”

2.50 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Performance Tuning

 Improve performance by

removing bottlenecks

 OS must provide means of

computing and displaying

measures of system

behavior

 For example, “top” program

or Windows Task Manager

2.51 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

DTrace

 DTrace tool in Solaris,

FreeBSD, Mac OS X allows

live instrumentation on

production systems

 Probes fire when code is

executed within a provider,

capturing state data and

sending it to consumers of

those probes

 Example of following

XEventsQueued system call

move from libc library to

kernel and back

2.52 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Dtrace (Cont.)

 DTrace code to record

amount of time each

process with UserID 101 is

in running mode (on CPU)

in nanoseconds

2.53 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Generation

 Operating systems are designed to run on any of a class of

machines; the system must be configured for each specific

computer site

 SYSGEN program obtains information concerning the specific

configuration of the hardware system

 Used to build system-specific compiled kernel or system-

tuned

 Can general more efficient code than one general kernel

2.54 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

System Boot

 When power initialized on system, execution starts at a fixed

memory location

 Firmware ROM used to hold initial boot code

 Operating system must be made available to hardware so hardware

can start it

 Small piece of code – bootstrap loader, stored in ROM or

EEPROM locates the kernel, loads it into memory, and starts it

 Sometimes two-step process where boot block at fixed

location loaded by ROM code, which loads bootstrap loader

from disk

 Common bootstrap loader, GRUB, allows selection of kernel from

multiple disks, versions, kernel options

 Kernel loads and system is then running

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

End of Chapter 2

