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This paper defines a major computer security problem called a virus. The virus is interesting 
because of its ability to attach itself to other programs and cause them to become viruses as well. 
There are two spellings for the plural of virus; 'virusses', and 'viruses'. We use the one found in 
Webster's 3rd International Unabridged Dictionary Given the wide spread use of sharing in 
current computer systems, the threat of a virus carrying a Trojan horse [Anderson72] [Linde75] is 
significant. Although a considerable amount of work has been done in implementing policies to 
protect from the illicit dissemination of information [Bell73] [Denning82], and many systems 
have been implemented to provide protection from this sort of attack [McCauley79] [Popek79] 
[Gold79] [Landwehr83], little work has been done in the area of keeping information entering an 
area from causing damage [Lampson73] [Biba77]. There are many types of information paths 
possible in systems, some legitimate and authorized, and others that may be covert [Lampson73], 
the most commonly ignored one being through the user. We will ignore covert information paths 
throughout this paper.  

The general facilities exist for providing provably correct protection schemes 
[Feiertag79], but they depend on a security policy that is effective against the types of attacks 
being carried out. Even some quite simple protection systems cannot be proven 'safe' 
[Harrison76]. Protection from denial of services requires the detection of halting programs which 
is well known to be undecidable [Garey79]. The problem of precisely marking information flow 
within a system [Fenton73] has been shown to be NP-complete. The use of guards for the passing 
of untrustworthy information [Woodward79] between users has been examined, but in general 
depends on the ability to prove program correctness which is well known to be NP-complete.  
The Xerox worm program [Shoch82] has demonstrated the ability to propagate through a 
network, and has even accidentally caused denial of services. In a later variation, the game of 
'core wars' [Dewdney84] was invented to allow two programs to do battle with one another. Other 
variations on this theme have been reported by many unpublished authors, mostly in the context 
of night time games played between programmers. The term virus has also been used in 
conjunction with an augmentation to APL in which the author places a generic call at the 
beginning of each function which in turn invokes a preprocessor to augment the default APL 
interpreter [Gunn74].  

The potential threat of a widespread security problem has been examined [Hoffman82] 
and the potential damage to government, financial, business, and academic institutions is extreme. 
In addition, these institutions tend to use ad hoc protection mechanisms in response to specific 
threats rather than sound theoretical techniques [Kaplan82]. Current military protection systems 
depend to a large degree on isolationism, however new systems are being developed to allow 
'multilevel' usage [Klein83]. None of the published proposed systems defines or implements a 
policy which could stop a virus.  

In this paper, we open the new problem of protection from computer viruses. First we 
examine the infection property of a virus and show that the transitive closure of shared 
information could potentially become infected. When used in conjunction with a Trojan horse, it 
is clear that this could cause widespread denial of services and/or unauthorized manipulation of 
data. The results of several experiments with computer viruses are used to demonstrate that 
viruses are a formidable threat in both normal and high security operating systems. The paths of 
sharing, transitivity of information flow, and generality of information interpretation are 
identified as the key properties in the protection from computer viruses, and a case by case 
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analysis of these properties is shown. Analysis shows that the only systems with potential for 
protection from a viral attack are systems with limited transitivity and limited sharing, systems 
with no sharing, and systems without general interpretation of information (Turing capability). 
Only the first case appears to be of practical interest to current society. In general, detection of a 
virus is shown to be undecidable both by a-priori and runtime analysis, and without detection, 
cure is likely to be difficult or impossible.  

Several proposed countermeasures are examined and shown to correspond to special 
cases of the case by case analysis of viral properties. Limited transitivity systems are considered 
hopeful, but it is shown that precise implementation is intractable, and imprecise policies are 
shown in general to lead to less and less usable systems with time. The use of system wide viral 
antibodies is examined, and shown to depend in general on the solutions to intractable problems.  

It is concluded that the the study of computer viruses is an important research area with 
potential applications to other fields, that current systems offer little or no protection from viral 
attack, and that the only provably 'safe' policy as of this time is isolationism.  
 
A Computer Virus 
 
We define a computer 'virus' as a program that can 'infect' other programs by modifying them to 
include a possibly evolved copy of itself. With the infection property, a virus can spread 
throughout a computer system or network using the authorizations of every user using it to infect 
their programs. Every program that gets infected may also act as a virus and thus the infection 
grows.  

The following pseudo-program shows how a virus might be written in a pseudo-computer 
language. The ":= symbol is used for definition, the ":" symbol labels a statement, the ";" 
separates statements, the "=" symbol is used for assignment or comparison, the "~" symbol stands 
for not, the "{" and "}" symbols group sequences of statements together, and the "..." symbol is 
used to indicate that an irrelevant portion of code has been left implicit.  
 
program virus:= 
{1234567; 
 
subroutine infect-executable:= 
 {loop:file = get-random-executable-file; 
 if first-line-of-file = 1234567 then goto loop; 
 prepend virus to file; 
 } 
 
subroutine do-damage:= 
 {whatever damage is to be done} 
 
subroutine trigger-pulled:= 
 {return true if some condition holds} 
 
main-program:= 
 {infect-executable; 
 if trigger-pulled then do-damage; 
 goto next;} 
 
next:} 
 



A Simple Virus "V"  
 
This example virus (V) searches for an uninfected executable file (E) by looking for executable 
files without the "1234567" in the beginning, and prepends V to E, turning it into an infected file 
(I). V then checks to see if some triggering condition is true, and does damage. Finally, V 
executes the rest of the program it was prepended to. When the user attempts to execute E, I is 
executed in its place; it infects another file and then executes as if it were E. With the exception 
of a slight delay for infection, I appears to be E until the triggering condition causes damage.  

A common misconception of a virus relates it to programs that simply propagate through 
networks. The worm program, 'core wars', and other similar programs have done this, but none of 
them actually involve infection. The key property of a virus is its ability to infect other programs, 
thus reaching the transitive closure of sharing between users. As an example, if V infected one of 
user A's executables (E), and user B then ran E, V could spread to user B's files as well.  

It should be pointed out that a virus need not be used for evil purposes or be a Trojan 
horse. As an example, a compression virus could be written to find uninfected executables, 
compress them upon the user's permission, and prepend itself to them. Upon execution, the 
infected program decompresses itself and executes normally. Since it always asks permission 
before performing services, it is not a Trojan horse, but since it has the infection property, it is 
still a virus. Studies indicate that such a virus could save over 50% of the space taken up by 
executable files in an average system. The performance of infected programs would decrease 
slightly as they are decompressed, and thus the compression virus implements a particular time 
space tradeoff. A sample compression virus could be written as follows:  
 
program compression-virus:= 
{01234567; 
 
subroutine infect-executable:= 
 {loop:file = get-random-executable-file; 
 if first-line-of-file = 01234567 then goto loop; 
 compress file; 
 prepend compression-virus to file; 
 } 
 
main-program:= 
 {if ask-permission then infect-executable; 
 uncompress the-rest-of-this-file into tmpfile; 
 run tmpfile;} 
} 

A Compression Virus "C"  
 
 
This program (C) finds an uninfected executable (E), compresses it, and prepends C to form an 
infected executable (I). It then uncompresses the rest of itself into a temporary file and executes 
normally. When I is run, it will seek out and compress another executable before decompressing 
E into a temporary file and executing it. The effect is to spread through the system compressing 
executable files, and decompress them as they are to be executed. Users will experience 
significant delays as their executables are decompressed before being run.  
As a more threatening example, let us suppose that we modify the program V by specifying 
trigger-pulled as true after a given date and time, and specifying do-damage as an infinite loop. 
With the level of sharing in most modern systems, the entire system would likely become 



unusable as of the specified date and time. A great deal of work might be required to undo the 
damage of such a virus. This modification is shown here:  
 
... 
subroutine do-damage:= 
 {loop: goto loop;} 
 
subroutine trigger-pulled:= 
 {if year>1984 then return true otherwise return false;} 
... 

A Denial of Services Virus  
 
 

As an analogy to a computer virus, consider a biological disease that is 100% infectious, spreads 
whenever animals communicate, kills all infected animals instantly at a given moment, and has 
no detectable side effects until that moment. If a delay of even one week were used between the 
introduction of the disease and its effect, it would be very likely to leave only a few remote 
villages alive, and would certainly wipe out the vast majority of modern society. If a computer 
virus of this type could spread throughout the computers of the world, it would likely stop most 
computer usage for a significant period of time, and wreak havoc on modern government, 
financial, business, and academic institutions.  
 

Prevention of Computer Viruses 

We have introduced the concept of viruses to the reader, and actual viruses to systems. Having 
planted the seeds of a potentially devastating attack, it is appropriate to examine protection 
mechanisms which might help defend against it. We examine here prevention of computer 
viruses.  

Basic Limitations 

In order for users of a system to be able to share information, there must be a path through which 
information can flow from one user to another. We make no differentiation between a user and a 
program acting as a surrogate for that user since a program always acts as a surrogate for a user in 
any computer usage, and we are ignoring the covert channel through the user. In order to use a 
Turing machine model for computation, we must consider that if information can be read by a 
user with Turing capability, then it can be copied, and the copy can then be treated as data on a 
Turing machine tape.  

Given a general purpose system in which users are capable of using information in their 
possession as they wish and passing such information as they see fit to others, it should be clear 
that the ability to share information is transitive. That is, if there is a path from user A to user B, 
and there is a path from user B to user C, then there is a path from user A to user C with the 
witting or unwitting cooperation of user B.  

Finally, there is no fundamental distinction between information that can be used as data, 
and information that can be used as program. This can be clearly seen in the case of an interpreter 
that takes information edited as data, and interprets it as a program. In effect, information only 
has meaning in that it is subject to interpretation.  

In a system where information can be interpreted as a program by its recipient, that 
interpretation can result in infection as shown above. If there is sharing, infection can spread 



through the interpretation of shared information. If there is no restriction on the transitivity of 
information flow, then the information can reach the transitive closure of information flow 
starting at any source. Sharing, transitivity of information flow, and generality of interpretation 
thus allow a virus to spread to the transitive closure of information flow starting at any given 
source.  

Clearly, if there is no sharing, there can be no dissemination of information across 
information boundaries, and thus no external information can be interpreted, and a virus cannot 
spread outside a single partition. This is called 'isolationism'. Just as clearly, a system in which no 
program can be altered and information cannot be used to make decisions cannot be infected 
since infection requires the modification of interpreted information. We call this a 'fixed first 
order functionality' system. We should note that virtually any system with real usefulness in a 
scientific or development environment will require generality of interpretation, and that 
isolationism is unacceptable if we wish to benefit from the work of others. Nevertheless, these are 
solutions to the problem of viruses which may be applicable in limited situations.  

Partition Models 

Two limits on the paths of information flow can be distinguished, those that partition users into 
closed proper subsets under transitivity, and those that don't. Flow restrictions that result in closed 
subsets can be viewed as partitions of a system into isolated subsystems. These limit each 
infection to one partition. This is a viable means of preventing complete viral takeover at the 
expense of limited isolationism, and is equivalent to giving each partition its own computer.  

The integrity model [Biba77] is an example of a policy that can be used to partition 
systems into closed subsets under transitivity. In the Biba model, an integrity level is associated 
with all information. The strict integrity properties are the dual of the Bell-LaPadula properties; 
no user at a given integrity level can read an object of lower integrity or write an object of higher 
integrity. In Biba's original model, a distinction was made between read and execute access, but 
this cannot be enforced without restricting the generality of information interpretation since a 
high integrity program can write a low integrity object, make low integrity copies of itself, and 
then read low integrity input and produce low integrity output.  

If the integrity model and the Bell-LaPadula model coexist, a form of limited isolationism 
results which divides the space into closed subsets under transitivity. If the same divisions are 
used for both mechanisms (higher integrity corresponds to higher security), isolationism results 
since information moving up security levels also moves up integrity levels, and this is not 
permitted. When the Biba model has boundaries within the Bell-LaPadula boundaries, infection 
can only spread from the higher integrity levels to lower ones within a given security level. 
Finally, when the Bell-LaPadula boundaries are within the Biba boundaries, infection can only 
spread from lower security levels to higher security levels within a given integrity level. There are 
actually 9 cases corresponding to all pairings of lower boundaries with upper boundaries, but the 
three shown graphically below are sufficient for understanding.  
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 Same Divisions  Biba within B-L  B-L within Biba 
  ---------------------  --------------------  --------------------- 
Biba   B-L   Result Biba   B-L   Result Biba   B-L   Result 
------   ----    --------- ----      ----   --------- ----      ----    --------- 
|\\|      |//|     |XX| |\\|      |//|     |XX| |\\|      |//|     |XX| 
|\\|      |//|     |XX| |\\|      |  |     |\\| |  |      |//|     |//| 
|  |  +  |  |  = |    | |  |  +  |  |  = |   | |  |  +  |  |  = |  | 
|//|      |\\|     |XX| |//|      |  |     |//| |  |      |\\|     |\\| 
|//|      |\\|     |XX| |//|      |\\|     |XX| |//|      |\\|     |XX| 
------   ----    --------- ----      ----   --------- ----      ----    --------- 
\\ = can't write   // = can't read    XX = no access    \ + / = X 
 

 
Biba's work also included two other integrity policies, the 'low water mark' policy which makes 
output the lowest integrity of any input, and the 'ring' policy in which users cannot invoke 
everything they can read. The former policy tends to move all information towards lower 
integrity levels, while the latter attempts to make a distinction that cannot be made with 
generalized information interpretation.  

Just as systems based on the Bell-LaPadula model tend to cause all information to move 
towards higher levels of security by always increasing the level to meet the highest level user, the 
Biba model tends to move all information towards lower integrity levels by always reducing the 
integrity of results to that of the lowest incoming integrity. We also know that a precise system 
for integrity is NP-complete (just as its dual is NP-complete).  
The most trusted programmer is (by definition) the programmer that can write programs 
executable by the most users. In order to maintain the Bell-LaPadula policy, high level users 
cannot write programs used by lower level users. This means that the most trusted programmers 
must be those at the lowest security level. This seems contradictory. When we mix the Biba and 
Bell-LaPadula models, we find that the resulting isolationism secures us from viruses, but doesn't 
permit any user to write programs that can be used throughout the system. Somehow, just as we 
allow encryption or declassification of data to move it from higher security levels to lower ones, 
we should be able to use program testing and verification to move information from lower 
integrity levels to higher ones.  

Another commonly used policy used to partition systems into closed subsets is the 
category policy used in typical military applications. This policy partitions users into categories, 
with each user only able to access information required for their duties. If every user in a strict 
category system has access to only one category at a time, the system is secure from viral attack 
across category boundaries because they are isolated. Unfortunately, in current systems, users 
may have simultaneous access to multiple categories. In this case, infection can spread across 
category boundaries to the transitive closure of information flow.  

Flow Models 

In policies that don't partition systems into closed proper subsets under transitivity, it is possible 
to limit the extent over which a virus can spread. The 'flow distance' policy implements a distance 



metric by keeping track of the distance (number of sharings) over which data has flowed. The 
rules are; the distance of output information is the maximum of the distances of input 
information, and the distance of shared information is one more than the distance of the same 
information before sharing. Protection is provided by enforcing a threshold above which 
information becomes unusable. Thus a file with distance 8 shared into a process with distance 2 
increases the process to distance 9, and any further output will be at at least that distance.  
As an example, we show the flow allowed to information in a distance metric system with the 
threshold set at 1 and each user (A-E) able to communicate with only the 2 nearest neighbors. 
Notice that information starting at C can only flow to user B or user D, but cannot transit to A or 
E even with the cooperation of B and D.  
 
Rules: 
  D(output) = max(D(input)) 
  D(shared input)=1+D(unshared input) 
  Information is accessible iff D < const 
 
   A     B     C     D     E 
  +-+   +-+   +-+   +-+   +-+ 
  |X|---|1|---|0|---|1|---|X| 
  +-+   +-+   +-+   +-+   +-+ 
 
A Distance Metric with a Threshold of 1 
 
 
The 'flow list' policy maintains a list of all users who have had an effect on each object. The rule 
for maintaining this list is; the flow list of output is the union of the flow lists of all inputs 
(including the user who causes the action). Protection takes the form of an arbitrary boolean 
expression on flow lists which determines accessibility. This is a very general policy, and can be 
used to represent any of the above policies by selecting proper boolean expressions.  
The following figure shows an example of a flow list system implementing different restrictions 
(indicated by A and B) for different users (at row,col 1,3 and 2,5). Notice that although 
information is allowed to get to 1,5, it can't actually get there because there is no path from its 
source at 1,3. As in the distance metric system, transitivity of information flow does not hold, so 
that even if information indicated by B were able to reach 2,3, it could not transit any further.  
Rules: 



 
  F(output)=Union(F(inputs)) 
  Information is accessible iff B(F)=1 
   1     2     3     4     5     6 
  +-+   +-+   +-+   +-+   +-+   +-+ 
1 |A|---|A|---|A|---| |---|A|---|B| 
  +-+   +-+   +-+   +-+   +-+   +-+ 
   |     |     |     |     |     | 
  +-+   +-+   +-+   +-+   +-+   +-+ 
2 | |---| |---|A|---| |---|B|---|B| 
  +-+   +-+   +-+   +-+   +-+   +-+ 
   |     |     |     |     |     | 
  +-+   +-+   +-+   +-+   +-+   +-+ 
3 |B|---|B|---|B|---|B|---|B|---|B| 
  +-+   +-+   +-+   +-+   +-+   +-+ 
 

A Sample Flow List System 
 
The above example uses a fairly simple boolean function, but in general, very complex 
conditionals can be used to determine accessibility. As an example, user A could only be allowed 
to access information written by users (B and C) or (B and D), but not information written by B, 
C, or D alone. This can be used to enforce certification of information by B before C or D can 
pass it to A. The flow list system can also be used to implement the Biba and the distance models. 
As an example, the distance model can be realized as follows: @center[OR(users <= distance 1) 
AND NOT(OR(users > distance 1))]  

In a system with unlimited information paths, limited transitivity may have an effect if 
users don't use all available paths, but since there is always a direct path between any two users, 
there is always the possibility of infection. As an example, in a system with transitivity limited to 
a distance of 1 it is 'safe' to share information with any user you 'trust' without having to worry 
about whether that user has incorrectly trusted another user.  

Limited Interpretation 

With limits on the generality of interpretation less restrictive than fixed first order interpretation, 
the ability to infect is an open question because infection depends on the functions permitted. 
Certain functions are required for infection. The ability to write is required, but any useful 
program must have output. It is possible to design a set of operations that don't allow infection in 
even the most general case of sharing and transitivity, but it is not known whether any such set 
includes non fixed first order functions.  
As an example, a system with only the function 'display-file' can only display the contents of a 
file to a user, and cannot possibly modify any file. In fixed database or mail systems, this may 
have practical applications, but certainly not in a development environment. In many cases, 
computer mail is a sufficient means of communications, and so long as the computer mail system 
is partitioned from other applications so that no information can flow between them except in the 
covert channel through the user, this may be used to prevent infection.  
Although no fixed interpretation scheme can itself be infected, a high order fixed interpretation 
scheme can be used to infect programs written to be interpreted by it. As an example, the 
microcode of a computer may be fixed, but code in the machine language it interprets can still be 
infected. LISP, APL, and Basic are all examples of fixed interpretation schemes that can interpret 



information in general ways. Since their ability to interpret is general, it is possible to write a 
program in any of these languages that infects programs in any or all of these languages.  
In limited interpretation systems, infections cannot spread any further than in general 
interpretation systems, because every function in a limited system must also be able to be 
performed in a general system. The previous results therefore provide upper bounds on the spread 
of a virus in systems with limited interpretation.  

Precision Problems 

Although isolationism and limited transitivity offer solutions to the infection problem, they are 
not ideal in the sense that widespread sharing is generally considered a valuable tool in 
computing. Of these policies, only isolationism can be precisely implemented in practice because 
tracing exact information flow requires NP-complete time, and maintaining markings requires 
large amounts of space [Denning82]. This leaves us with imprecise techniques. The problem with 
imprecise techniques is that they tend to move systems towards isolationism. This is because they 
use conservative estimates of effects in order to prevent potential damage. The philosophy behind 
this is that it is better to be safe than sorry.  
The problem is that when information has been unjustly deemed unreadable by a given user, the 
system becomes less usable for that user. This is a form of denial of services in that access to 
information that should be accessible is denied. Such a system always tends to make itself less 
and less usable for sharing until it either becomes completely isolationist or reaches a stability 
point where all estimates are precise. If such a stability point existed, we would have a precise 
system for that stability point. Since we know that any precise stability point besides isolationism 
requires the solution to an NP-complete problem, we know that any non NP-complete solution 
must tend towards isolationism.  

Summary and Conclusions 

The following table summarizes the limits placed on viral spreading by the preventative 
protection just examined. Unknown is used to indicate that the specifics of specific systems are 
known, but that no theory has been shown to predict limitations in these categories.  
 
 
                     Limits of viral infection 
 
         general interpretation           limited interpretation 
      \Transitivity 
Sharing\  limited      general                  limited       general 
               |--------------|--------------|       |----------------|---------------| 
general    | unlimited | unlimited |       | unknown   |  unknown  | 
                |-------------|--------------|       |----------------|----------------| 
limited      | arbitrary  |  closure   |       | arbitrary     |     closure  | 
                 |-------------|--------------|       |----------------|---------------| 
 

Cure of Computer Viruses 
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Since prevention of computer viruses may be infeasible if widespread sharing is desired, the 
biological analogy leads us to the possibility of cure as a means of protection. Cure in biological 
systems depends on the ability to detect a virus and find a way to overcome it. A similar 
possibility exists for computer viruses. We now examine the potential for detection and removal 
of a computer virus.  

Detection of Viruses 

In order to determine that a given program 'P' is a virus, it must be determined that P infects other 
programs. This is undecidable since P could invoke the decision procedure 'D' and infect other 
programs if and only if D determines that P is not a virus. We conclude that a program that 
precisely discerns a virus from any other program by examining its appearance is infeasible. In 
the following modification to program V, we use the hypothetical decision procedure D which 
returns "true" iff its argument is a virus, to exemplify the undecidability of D.  
 
program contradictory-virus:= 
{... 
main-program:= 
 {if ~D(contradictory-virus) then 
    {infect-executable; 
    if trigger-pulled then do-damage; 
    } 
 goto next; 
 } 
} 

Contradiction of the Decidability of a Virus "CV" 

By modifying the main-program of V, we have assured that if the decision procedure D 
determines CV to be a virus, CV will not infect other programs, and thus will not act as a virus. If 
D determines that CV is not a virus, CV will infect other programs, and thus be a virus. 
Therefore, the hypothetical decision procedure D is self contradictory, and precise determination 
of a virus by its appearance is undecidable.  

Evolutions of a Virus  

In our experiments, some viruses took less than 4000 bytes to implement on a general purpose 
computer. Since we could interleave any program that doesn't halt, terminates in finite time, and 
doesn't overwrite the virus or any of its state variables, and still have a virus, the number of 
possible variations on a single virus is clearly very large. In this example of an evolutionary virus 
EV, we augment V by allowing it to add random statements between any two necessary 
statements.  
 
program evolutionary-virus:= 
{... 
subroutine print-random-statement:= 
 {print random-variable-name, " = ", random-variable-name; 
 loop:if random-bit = 0 then 
    {print random-operator, random-variable-name; 



    goto loop;} 
 print semicolon; 
 } 
 
subroutine copy-virus-with-random-insertions:= 
 {loop: copy evolutionary-virus to virus till semicolon-found; 
 if random-bit = 1 then print-random-statement; 
 if ~end-of-input-file goto loop; 
 } 
 
main-program:= 
 {copy-virus-with-random-insertions; 
 infect-executable; 
 if trigger-pulled do-damage; 
 goto next;} 
 
next:} 
 

An Evolutionary Virus "EV"  
 
In general, proof of the equivalence of two evolutions of a program 'P' ('P1' and 'P2') is 
undecidable because any decision procedure 'D' capable of finding their equivalence could be 
invoked by P1 and P2. If found equivalent they perform different operations, and if found 
different they act the same, and are thus equivalent. This is exemplified by the following 
modification to program EV in which the decision procedure D returns "true" iff two input 
programs are equivalent.  
 
program undecidable-evolutionary-virus:= 
{... 
subroutine copy-with-undecidable-assertion:= 
 {copy undecidable-evolutionary-virus to file till line-starts-with-zzz; 
 if file = P1 then print "if D(P1,P2) then print 1;"; 
 if file = P2 then print "if D(P1,P2) then print 0;"; 
 copy undecidable-evolutionary-virus to file till end-of-input-file; 
 } 
 
main-program:= 
 {if random-bit = 0 then file = P1 otherwise file = P2; 
 copy-with-undecidable-assertion; 
 zzz: 
 infect-executable; 
 if trigger-pulled do-damage; 
 goto next;} 
 
next:} 
 

Undecidable Equivalence of Evolutions of a Virus "UEV"  
 

The program UEV evolves into one of two types of programs P1 or P2. If the program type is P1, 
the statement labeled "zzz" will become:  



if D(P1,P2) then print 1; 
while if the program type is P2, the statement labeled "zzz" will become:  

if D(P1,P2) then print 0; 
 

The two evolutions each call decision procedure D to decide whether they are equivalent. If D 
indicates that they are equivalent, then P1 will print a 1 while P2 will print a 0, and D will be 
contradicted. If D indicates that they are different, neither prints anything. Since they are 
otherwise equal, D is again contradicted. Therefore, the hypothetical decision procedure D is self 
contradictory, and the precise determination of the equivalence of these two programs by their 
appearance is undecidable.  

Since both P1 and P2 are evolutions of the same program, the equivalence of evolutions 
of a program is undecidable, and since they are both viruses, the equivalence of evolutions of a 
virus is undecidable. Program UEV also demonstrates that two unequivalent evolutions can both 
be viruses. The evolutions are equivalent in terms of their viral effects, but may have slightly 
different side effects.  

An alternative to detection by appearance, is detection by behavior. A virus, just as any 
other program, acts as a surrogate for the user in requesting services, and the services used by a 
virus are legitimate in legitimate uses. The behavioral detection question then becomes one of 
defining what is and is not a legitimate use of a system service, and finding a means of detecting 
the difference.  

As an example of a legitimate virus, a compiler that compiles a new version of itself is in 
fact a virus by the definition given here. It is a program that 'infects' another program by 
modifying it to include an evolved version of itself. Since the viral capability is in most 
compilers, every use of a compiler is a potential viral attack. The viral activity of a compiler is 
only triggered by particular inputs, and thus in order to detect triggering, one must be able to 
detect a virus by its appearance. Since precise detection by behavior in this case depends on 
precise detection by the appearance of the inputs, and since we have already shown that precise 
detection by appearance is undecidable, it follows that precise detection by behavior is also 
undecidable.  

Limited Viral Protection 

A limited form of virus has been designed [Thompson84] in the form of a special version of the C 
compiler that can detect the compilation of the login program and add a Trojan horse that lets the 
author login. Thus the author could access any Unix system with this compiler. In addition, the 
compiler can detect compilations of new versions of itself and infect them with the same Trojan 
horse. Whether or not this has actually been implemented is unknown (although many say the 
NSA has a working version of it).  

As a countermeasure, we can devise a new login program (and C compiler) sufficiently 
different from the original as to make its equivalence very difficult to determine. If the 'best AI 
program of the day' would be incapable of detecting their equivalence in a given amount of time, 
and the compiler performed its task in less than that much time, it could be reasonably assumed 
that the virus could not have detected the equivalence, and therefore would not have propagated 
itself. If the exact nature of the detection were known, it would likely be quite simple to work 
around it.  

Although we have shown that in general it is impossible to detect viruses, any particular 
virus can be detected by a particular detection scheme. For example, virus V could easily be 
detected by looking for 1234567 as the first line of an executable. If the executable were found to 
be infected, it would not be run, and would therefore not be able to spread. The following 
program is used in place of the normal run command, and refuses to execute programs infected 
by virus V:  

http://www.all.net/refs/Thompson84.html


 
program new-run-command:= 
{file = name-of-program-to-be-executed; 
if first-line-of-file = 1234567 then 
 {print "the program has a virus"; 
 exit;} 
otherwise run file; 
} 
 

Protection from Virus V "PV"  
 
Similarly, any particular detection scheme can circumvented by a particular virus. As an example, 
if an attacker knew that a user was using the program PV as protection from viral attack, the virus 
V could easily be substituted with a virus V' where the first line was 123456 instead of 1234567. 
Much more complex defense schemes and viruses can be examined. What becomes quite evident 
is analogous to the old western saying: "ain't a horse that can't be rode, ain't a man that can't be 
throwed". No infection can exist that cannot be detected, and no detection mechanism can exist 
that can't be infected.  

This result leads to the idea that a balance of coexistent viruses and defenses could exist, 
such that a given virus could only do damage to a given portion of the system, while a given 
protection scheme could only protect against a given set of viruses. If each user and attacker used 
identical defenses and viruses, there could be an ultimate virus or defense. It makes sense from 
both the attacker's point of view and the defender's point of view to have a set of (perhaps 
incompatible) viruses and defenses.  

In the case where viruses and protection schemes didn't evolve, this would likely lead to 
some set of fixed survivors, but since programs can be written to evolve, the program that 
evolved into a difficult to attack program would more likely survive as would a virus that was 
more difficult to detect. As evolution takes place, balances tend to change, with the eventual 
result being unclear in all but the simplest circumstances. This has very strong analogies to 
biological theories of evolution [Dawkins78], and might relate well to genetic theories of 
diseases. Similarly, the spread of viruses through systems might well be analyzed by using 
mathematical models used in the study of infectious diseases [Baily57].  

Since we cannot precisely detect a virus, we are left with the problem of defining 
potentially illegitimate use in a decidable and easily computable way. We might be willing to 
detect many programs that are not viruses and even not detect some viruses in order to detect a 
large number of viruses. If an event is relatively rare in 'normal' use, it has high information 
content when it occurs, and we can define a threshold at which reporting is done. If sufficient 
instrumentation is available, flow lists can be kept which track all users who have effected any 
given file. Users that appear in many incoming flow lists could be considered suspicious. The rate 
at which users enter incoming flow lists might also be a good indicator of a virus.  

This type of measure could be of value if the services used by viruses are rarely used by 
other programs, but presents several problems. If the threshold is known to the attacker, the virus 
can be made to work within it. An intelligent thresholding scheme could adapt so the threshold 
could not be easily determined by the attacker. Although this 'game' can clearly be played back 
and forth, the frequency of dangerous requests might be kept low enough to slow the undetected 
virus without interfering significantly with legitimate use.  
Several systems were examined for their abilities to detect viral attacks. Surprisingly, none of 
these systems even include traces of the owner of a program run by other users. Marking of this 
sort must almost certainly be used if even the simplest of viral attacks are to be detected.  
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Once a virus is implanted, it may not be easy to fully remove. If the system is kept 
running during removal, a disinfected program could be reinfected. This presents the potential for 
infinite tail chasing. Without some denial of services, removal is likely to be impossible unless 
the program performing removal is faster at spreading than the virus being removed. Even in 
cases where the removal is slower than the virus, it may be possible to allow most activities to 
continue during removal without having the removal process be very fast. For example, one could 
isolate a user or subset of users and cure them without denying services to other users.  

In general, precise removal depends on precise detection, because without precise 
detection, it is impossible to know precisely whether or not to remove a given object. In special 
cases, it may be possible to perform removal with an inexact algorithm. As an example, every file 
written after a given date could be removed in order to remove any virus started after that date.  

One concern that has been expressed and is easily laid to rest is the chance that a virus 
could be spontaneously generated. This is strongly related to the question of how long it will take 
N monkeys at N keyboards to create a virus, and is laid to rest with similar dispatch.  
 

Summary, Conclusions, and Further Work 

To quickly summarize, absolute protection can be easily attained by absolute isolationism, but 
that is usually an unacceptable solution. Other forms of protection all seem to depend on the use 
of extremely complex and/or resource intensive analytical techniques, or imprecise solutions that 
tend to make systems less usable with time.  

Prevention appears to involve restricting legitimate activities, while cure may be 
arbitrarily difficult without some denial of services. Precise detection is undecidable, however 
statistical methods may be used to limit undetected spreading either in time or in extent. Behavior 
of typical usage must be well understood in order to use statistical methods, and this behavior is 
liable to vary from system to system. Limited forms of detection and prevention could be used in 
order to offer limited protection from viruses.  

It has been demonstrated that a virus has the potential to spread throughout any system 
which allows sharing. Every general purpose system currently in use is open to at least limited 
viral attack. In many current 'secure' systems, viruses tend to spread further when created by less 
trusted users. Experiments show the viability of viral attack, and indicate that viruses spread 
quickly and are easily created on a variety of operating systems. Further experimentation is still 
underway.  

The results presented are not operating system or implementation specific, but are based 
on the fundamental properties of systems. More importantly, they reflect realistic assumptions 
about systems currently in use. Further, nearly every 'secure' system currently under development 
is based on the Bell-LaPadula or lattice policy alone, and this work has clearly demonstrated that 
these models are insufficient to prevent viral attack. The virus essentially proves that integrity 
control must be considered an essential part of any secure operating system.  

Several undecidable problems have been identified with respect to viruses and 
countermeasures. The are summarized here:  

Undecidable Detection Problems 

• Detection of a virus by its appearance  
• Detection of a virus by its behavior  
• Detection of an evolution of a known virus  
• Detection of a triggering mechanism by its appearance  
• Detection of a triggering mechanism by its behavior  



• Detection of an evolution of a known triggering mechanism  
• Detection of a virus detector by its appearance  
• Detection of a viral detector by its behavior  
• Detection of an evolution of a known viral detector  

Several potential countermeasures were examined in some depth, and none appear to offer ideal 
solutions. Several of the techniques suggested in this paper which could offer limited viral 
protection are in limited use at this time. To be perfectly secure against viral attacks, a system 
must protect against incoming information flow, while to be secure against leakage of 
information a system must protect against outgoing information flow. In order for systems to 
allow sharing, there must be some information flow. It is therefore the major conclusion of this 
paper that the goals of sharing in a general purpose multilevel security system may be in such 
direct opposition to the goals of viral security as to make their reconciliation and coexistence 
impossible.  

The most important ongoing research involves the effect of viruses on computer 
networks. Of primary interest is determining how quickly a virus could spread to a large 
percentage of the computers in the world. This is being done through simplified mathematical 
models and studies of viral spreading in 'typical' computer networks. The implications of a virus 
in a secure network are also of great interest. Since the virus leads us to believe that both integrity 
and security must be maintained in a system in order to prevent viral attack, a network must also 
maintain both criterion in order to allow multilevel sharing between computers. This introduces 
significant constraints on these networks.  

Significant examples of evolutionary programs have been developed at the source level 
for producing many evolutions of a given program. A simple evolving virus has been developed, 
and a simple evolving antibody is also under development. A flow list mechanism for Unix will 
be implemented when the necessary hardware is available, and the instrumentation of networks is 
expected to continue as long as facilities and funding permit. Statistical detection techniques 
based on the results of instrumentation are also in the planning stages, and a set of guidelines for 
reducing the viral threat have been developed.  
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