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Abstract—We propose a Bluetooth topology construction protocol that works in conjunction with a priority-based polling scheme. A

master assigns a priority to its slaves including bridges for each polling cycle and then polls them as many times as the assigned

priority. The slaves can spend their idle time either in a power-saving mode or perform new node discovery. The topology

construction algorithm works in a bottom-up manner in which isolated nodes join to form small piconets. These small piconets can

combine to form larger piconets. Larger piconets can start sharing bridge nodes to form a scatternet. Individual piconets can also

discover new nodes while participating in the master-driven polling process. The shutting down of master and slave nodes is

detected for dynamic restructuring of the scatternet. The protocol can handle situations when all the Bluetooth nodes are not within

radio range of each other.

Index Terms—Bluetooth, priority-based polling, bridge scheduling, scatternet formation, dynamic reconstruction.
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1 INTRODUCTION

BLUETOOTH technology uses a frequency hopping spread
spectrum technique for communication between active

nodes [3], [9], [15]. A node, after being powered up, must
first synchronize its frequency hopping sequence with an
existing network before participating in packet exchange.
A “piconet” is an ad hoc network of such frequency-
synchronized Bluetooth devices. One of the nodes in a
piconet takes the role of “master” while the rest become
“slaves.” A given piconet can contain one and only one
master and up to seven active slaves at any point in time.
A larger collection of Bluetooth devices forms a “scatter-
net,” which is an inter-networking of piconets joined by
“bridge” nodes.

A challenge in the successful operation of a network of

Bluetooth devices is the setting up and maintenance of a

scatternet topology. The task is complex due to a number

of reasons. Bluetooth devices are symmetric in terms of

their ability to take up any role; hence, there is no a priori

identification of such devices as master, slave, or bridge.

The symmetry is broken only after a piconet or a scatternet

has been successfully set up with the master(s), the

slave(s), and the bridge(s) identified. A scatternet is a

truly ad hoc network with no infrastructure other than the

nodes themselves. Hence, the nodes can be powered on,

shut down, or moved around at any point of time. Any
assumption about the initial state of the network in terms
of the number and type of the devices is invalid. While it is
always good to have a few desirable properties in a
scatternet configuration, one cannot possibly run rigorous
optimization algorithms to achieve such properties. The
reason is twofold. First, Bluetooth devices are power and
memory-constrained devices, so running computation-
intensive algorithms is not feasible. Second, due to the
ad hoc nature of the network, with possibly no information
about the initial state itself, such algorithms cannot be
implemented efficiently. The topology construction and
reconstruction process must be carried out along with the
usual packet exchange procedure governed by a master-
driven scheduling scheme. Algorithms should have a
localized nature so that small regional perturbations can
be handled without disturbing the entire network.

In the next section, we provide a background on the
various approaches to topology construction and schedul-
ing in Bluetooth. We then give a brief overview of a
priority-based scheduling scheme proposed earlier by us in
Section 3. This is followed by a detailed discussion on the
topology construction algorithm in Section 4. Simulation
results are presented in Section 5 and we conclude in the
last section of the paper.

2 BACKGROUND

Attempts have been made during the last few years to
develop new and innovative algorithms for Bluetooth
topology construction. We review only those approaches
that consider dynamic or distributed construction of
topologies, since these are the two most important features
of a Bluetooth scatternet formation protocol. Detailed
surveys may be found in [1], [2], [11], [12], [14], [23]. One
of the first such algorithms was proposed by Salonidis et al.
[20], called the Bluetooth Topology Construction Protocol
(BTCP). Tan et al. proposed a distributed Tree Scatternet
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Formation (TSF) protocol [22]. Their method works well in
dynamic environments, in which nodes can arrive and
leave at arbitrary time instants. Simulation results indicate
relatively short latency during scatternet formation. How-
ever, TSF does not minimize the number of piconets. Each
master usually has fewer than three slaves. Cuomo et al.
have proposed a distributed algorithm that generates a
treelike structure, which can dynamically adapt to the
mobility of devices [7]. Their approach has a self-healing
property since minor changes in the topology may be
absorbed in the remaining network. QoS provisioning in
scatternets has been considered in a separate work by
Cuomo et al. [8]. After generating a tree-shaped scatternet,
a second procedure is used to produce a meshed topology
by applying a distributed scatternet optimization algo-
rithm. A tree-structured scatternet was also proposed by
Záruba et al. [24]. Chiasserini et al. suggested a distributed
algorithm for topology formation that considers insertion
and deletion of a node to/from a Bluetooth personal area
network [6]. While this method can be implemented with
moderate complexity, it may generate suboptimal topolo-
gies. Stojmenovic proposed a dominating set-based Blue-
tooth scatternet formation protocol [21]. It assumes that
each node knows its position and that of all its neighbors.

Most of the above algorithms assume the Bluetooth
nodes to be within radio range of each other. Recently, new
scatternet formation algorithms have been proposed that
work even without this restriction [13], [16]. Basagni et al.
[1] compare a number of scatternet formation protocols for
networks of Bluetooth devices. They show that Bluestar [16]
is the fastest protocol for scatternet formation and also
generates scatternets with lower numbers of piconets and
shorter average route lengths. It may be noted that a
number of the approaches discussed so far consider a fixed
set of devices and do not handle the addition or deletion of
nodes [14], [16], [24]. Many of them execute complex
optimization algorithms as part of topology construction
[12], [14], [21]. Also, most of the techniques use knowledge
about the entire topology and the algorithms do not operate
on localized information [14], [16], [20].

Research work in Bluetooth has also progressed in a
different direction, in which efficient polling schemes have
been proposed by researchers. The default polling scheme
in Bluetooth is Round Robin (RR). Capone et al. [5]
proposed a polling scheme that achieves high efficiency
by reducing the rate of polling of slaves that return empty
packets in the previous polling. Zhu et al. [25] suggested a
policy in which a master serves the slave that has packet
with smallest expected arrival time. Their policy predicts
the packet length and the number of packets. Bruno et al.
introduced an Efficient Double Cycle (EDC) to improve the
RR polling [4]. Kalia et al. [10] presented a priority-based
polling (PP) scheme and a K-fairness polling policy (KFP)
for Bluetooth. We have earlier proposed a distributed
Bluetooth topology construction protocol that can work in a
dynamic environment where a node may be started or shut
down at any point of time [18]. We have also suggested a
polling scheme with priority for handling packet loss,
power utilization, delay, and slot wastage problems faced in
a Bluetooth piconet of heterogeneous devices [17]. Recently,

we have extended this scheme to consider both intrapiconet
as well as bridge scheduling in scatternets [19].

A careful analysis of existing research results in the field
of Bluetooth, including our earlier work, reveals that the
two problems, namely, topology construction and schedul-
ing, have so far been considered independently. While
setting up the topology, the fact that all message transfers
can only be carried out through a master-driven polling
process is overlooked. Similarly, at the time of suggesting
efficient polling schemes, the amount of time a master or a
slave must spend in new node/piconet discovery is not
taken into consideration. To the best of our knowledge,
there is no report on dynamic and distributed topology
construction for Bluetooth that considers the finite amount
of time available for node discovery along with master-
slave polling for intrapiconet and interpiconet packet
transfer. In this paper, we propose a simple and implemen-
table Bluetooth scatternet formation protocol that uses only
local information and considers the amount of time the
devices need to spend in the master-slave polling process.
The rest of their time is utilized for new node discovery,
topology construction, and reconstruction. We consider
both intrapiconet and interpiconet packets while designing
the scatternet formation protocol. The Bluetooth nodes need
not be within radio range of each other.

3 PRIORITY-BASED POLLING SCHEME WITH BRIDGE

SCHEDULING

We have earlier proposed a polling technique in which the
polling sequence is determined by a priority assigned by a
master to each of its slaves, including bridges. The slaves
are polled in decreasing order of their priority and a slave is
polled as many times as its priority before the next slave is
polled. While the details of the method are available in our
earlier work [17], [19], we briefly describe the main features
needed for building the context in which the proposed
scatternet formation algorithm can be appreciated.

In each polling cycle, a master polls its slaves and also
calculates their priority for the next cycle using a Master
Communication Protocol (MCP). In order to initiate the
polling process, slaves send their buffer sizes when they
first communicate with the master. Thereafter, in each cycle,
when a slave is polled for the last time, it lets the master
know about the packets generated since the last polling
cycle and the next k head-of-line packet length structure in
its buffer using a Slave Communication Protocol (SCP). For
scheduling the bridges, a bridge is assigned to each piconet
for a quantum of time determined by the interpiconet
traffic. We define three states of a bridge in a Bridge
Communication Protocol (BCP). These are 1) to_stay: A
bridge is part of a given piconet and will not leave the
piconet during the next polling cycle, 2) to_join: A bridge is
waiting to join a given piconet and its master will try to
include it in the next polling cycle, and 3) to_release: A
bridge is expected to leave its current piconet in the next
polling cycle after receiving an unhold message from the
new master. When any master gets control of a bridge, it
first calculates the time for which the bridge can be retained
using a bridge scheduling table. After the time is elapsed,
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the current master releases the bridge if there is another
master waiting for this bridge. Otherwise, the current
master continues to use the bridge for the complete polling
cycle and then tries to release it in the next polling cycle.

In each polling cycle, a slave with higher priority is
polled a higher number of times than one with lower
priority. The priority calculation step is based on 1) the
packet arrival rate and the available buffer space in each
slave, 2) the number of packets stored in the master buffer
for each slave, and 3) the states of the bridges of the
piconet. The slaves are made aware of the polling sequence
so that they can go to the hold power-saving mode between
polling in two successive cycles and wake up in between
to listen to broadcast messages. This polling scheme has
been shown to have better performance compared to other
priority-based schemes in terms of throughput, packet loss,
and delay [17], [19].

In static situations, the slaves spend their “idle” time in a
power-saving mode. However, to take into account the
dynamic growth of a scatternet, we modify our earlier
protocol and let the nodes spend this idle time in new
node/piconet discovery as well. When the traffic in a
piconet is low, a master can also participate in the node
discovery process.

4 DYNAMIC TOPOLOGY CONSTRUCTION—
A BOTTOM-UP APPROACH

To accommodate the requirements identified in the Intro-
duction, we must consider the Bluetooth topology con-
struction algorithm to be an inherent property of the
devices just like their participation in the polling activity.
The primary goal of the proposed protocol is twofold: 1) An
isolated node should be able to connect to another isolated
node or to an existing piconet within its radio proximity
and 2) an existing piconet should be able to discover
another existing piconet, thus forming or extending a
scatternet. While building the topology, the protocol should
also attempt to form a fully connected and balanced
network. By fully connected, we mean a scatternet config-
uration in which any two piconets are directly connected by
a bridge. If some of the nodes are outside the radio range of
each other, such a fully connected scatternet may not be
achieved. Further, if the node density is very high, although
there is a higher probability of two piconets getting
connected, they may only be connected through a third
piconet instead of being connected directly through a
bridge. It can be shown that a fully connected scatternet
can be formed only when the number of Bluetooth nodes is
less than or equal to 36 even when all the nodes are within
radio range of each other. This situation is quite rare in
practice and, even if it happens, our protocol attempts to
minimize the number of hops to connect one piconet to
another. A balanced network is one in which all the
piconets have a similar number of nodes so that none of
the masters is unduly loaded. In this paper, the term
optimum denotes a configuration in which a scatternet is
balanced and all the piconets are either fully connected or
connected through the minimum number of hops.

4.1 Protocol Overview

In the topology construction protocol, any node can become
ON at any instant in time. Here, ON means that either a
new node has been powered up or an existing node has
come within radio proximity of another node. There are
four roles that an ON node can take up—Isolated (I), Master
(M), Slave (S), and Bridge (B). A node can also become OFF
at any instant in time. Here, OFF means that the node is
unable to communicate with its master (or its slave(s) if the
given node is a master) either because it is powered off or
has moved out of the radio range. Due to mobility, a node
that has become OFF in one piconet can become ON in
another piconet. This reflects a real world situation in which
battery-powered Bluetooth devices are powered up, join
other nodes forming an ad hoc network, and then either
shut down after exchanging voice/data packets for a
limited period of time or moved to a new location.

In this paper, we do not mention the Page and the Page-
scan states explicitly, but assume that they always follow
Inquiry and Inquiry-scan. During the Page and Page-scan
states, symmetric information exchange occurs between the
nodes. Although Bluetooth baseband specifications do not
put the restrictions, in the scatternet formed using the
proposed algorithm, two piconets are connected through a
single bridge. Also, only a slave is used as a bridge node,
which is usually shared by at most two piconets. The reason
is that, other than the masters, the bridge nodes are the ones
that handle most of the scatternet traffic. If a bridge is
shared by more than two piconets, throughput decreases
and there is a possibility of bridge node failure due to high
power consumption. This condition is relaxed only if there
is no other way of forming a scatternet. The same
arguments hold for our consideration of only slave nodes
as bridges.

4.2 Protocol Details

In this section, we explain our protocol using all possible
scenarios when two nodes discover each other. The
implementation details are provided in Section 4.3. The
different scenarios have been shown as different cases in
Fig. 1. The figure refers to two routines, namely, Piconet
Formation and Modification Routine (PFMR) and Scatternet
Formation and Modification Routine (SFMR) of Figs. 2 and
3, respectively, depending on the roles of the nodes that
discover each other and the configurations of the piconets
(if any) to which they belong.

A newly started node takes the role I and executes an
Isolated Node Protocol (INP), as shown in Fig. 4. It enters
the Inquiry or the Inquiry-scan state with equal probability.
The time it spends in either of the states is chosen randomly
between 0.3125 and 1.35 sec. These two limits were
determined through extensive simulation. Switching from
one state to the other is repeated till it latches with another
node. While running INP, the new node can be latched
either to another isolated node or to a master/slave of an
existing piconet performing node discovery. If the second
node is also isolated, the two together form a piconet of just
two nodes using the Piconet Formation and Modification
Routine of Fig. 2, with one taking up the role of master and
the other that of slave. The node with higher capability in
terms of memory and available power is given the role of
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master as shown in the figure. PFMR is also called if a

master discovers an isolated node (Case 2 of Fig. 1) and the

node can be included in the existing piconet (Case 2a).
However, if the piconet already has seven slaves and no

nonbridge slave is in the radio range of the new node, the

master sends the least busy slave into Park mode and

includes the new node in its piconet. If there are more than

seven slaves in a piconet, the master keeps on sending an

active slave into Park mode and Unparking an already

parked slave following either a least priority policy or any

other policy as governed by the master, ensuring fairness

among the slaves. Apart from listening to beacon train or

broadcast messages sent by a master, a parked slave can

also spend the rest of the time in device discovery, acting

like an isolated node. If a master does not receive any

response from a parked slave within the link supervision
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timeout period set for that slave, it considers the slave to be
disconnected or moved to another piconet. If there is at least
one nonbridge slave of an existing piconet that is within

radio range of the new node, a new piconet is created with
the isolated node as its master. One such nonbridge slave
within radio range of both the original master and the new
master is considered the bridge node connecting the two

piconets. The Scatternet Formation and Modification Rou-
tine of Fig. 3 is used to handle this condition. If there is more
than one nonbridge slave of the original piconet that are
within radio range of the new master, local load balancing

is performed by transferring up to four such slaves for
improving the scatternet configuration.

If a slave discovers a node, it forms a temporary piconet
with the discovered node for information exchange. We use
a special Link Manager Protocol PDU (Protocol Data Unit)

similar to [16] in order to facilitate such communication and
information exchange in the temporary piconet. Details of

such a PDU are given in the next section. While choosing a
slave for device discovery, a master prefers the one with the
least traffic load. In order to cover a large geographical area
surrounding its piconet, the master can also choose a slave at
random. Such a node is polled at the start of a polling cycle if
its calculated priority is greater than the average priority of
all the slaves. Otherwise, the master polls it at the end of the
polling cycle. Thus, the master ensures that the designated
slave has the maximum time for device discovery. When a
slave discovers an isolated node (Case 3 of Fig. 1) and the
number of existing slaves in the piconet is less than seven
(Case 3a), the isolated node can be included in the existing
piconet by calling PFMR if it is within radio range of the
master. However, if the isolated node is not within radio
range of the master or the number of existing slaves is seven
(Case 3b), we create a new piconet having the isolated node
as master and one of the nonbridge slaves of the existing
piconet as the bridge. Since the slave under consideration
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had discovered the isolated node, existence of at least one
slave within radio range of the isolated node (master of the
new piconet) is guaranteed. SFMR is used to handle this
situation. Local load balancing is also applied, if possible.

Instead of discovering an isolated node, it is possible
that, during node discovery, the slave discovers or is
discovered by an existing master or a slave of another
piconet (Cases 4 and 5, respectively). In these situations, if
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the total number of slaves in the two piconets discovering

each other is 14 and no bridge exists between these two

piconets, the master sends its least busy slave into Park

mode and makes the discovering or discovered slave a

bridge node between these two piconets. It may be argued

that one could create three piconets using the two masters

and the 14 slaves if a sufficient number of bridges were

identified. However, this leads to high message complexity

in scatternet reconfiguration and, hence, we avoid such

restructuring. If the total number of slaves in the two

piconets is less than 14, restructuring is done as required

by calling either PFMR or SFMR.
A master can also go in device discovery mode if the

traffic load is low in its piconet or the number of slaves is

low (two or three). The slaves stay in power-saving mode

during this phase. Also, a master can send a slave for more

than one polling cycle in device discovery phase if the

number of slaves is low (two or three). Situations in which a

master discovers an isolated node or a slave of another

piconet have already been discussed above. However, a

master may also discover or be discovered by another

master (Case 6). Such situations are handled in a manner

similar to the case where a slave discovers a slave.

4.3 Implementation Details

In this section, we give a detailed description about how
the above-mentioned protocols can be implemented in
Bluetooth. We propose a special Link Manager Protocol
PDU (named LMSFP–Link Manager Scatternet Formation
Protocol) for control and information exchange during
scatternet formation. It is a special type of DM3 packet [3]
whose payload body is shown in Fig. 5. The first bit is the
transaction ID, which is 0 if the PDU forms part of a
transaction that was initiated by a master and 1 if initiated
by a slave. A 15-bit operation code represents the type of
information being exchanged by a particular LMSFP. The
3-bit No_Device (Number of Devices) field indicates the
number of devices whose information is present in the
payload body. This field is followed by a 1-bit OTR
(Operation Time Range) that takes a value of 1 if the
payload body contains the operation start time ðTStartÞ and
operation end time ðTEndÞ and 0 otherwise.

At the start of any polling cycle, a master polls the slave
that was sent for device discovery in the previous cycle. In
response to the polling, the slave sends back an LMSFP
packet. The LMSFP packet includes the device ID, clock
value, and role of each member of the other piconet if the
slave had discovered a slave or the master of another
piconet. If an isolated node was discovered, the LMSFP
packet contains the device ID and clock value of the isolated
node. For any discovered node, LMSFP also contains (in the
Tstart, Tend values) the time negotiated between the slave
and slave/master of the other piconet to start the piconet
merging/reshuffling procedure. If no node was discovered,
the slave responds with a NULL packet.

After receiving this packet from the slave, the master
broadcasts a new LMSFP packet to all its slaves and then
starts piconet merging/reshuffling at the negotiated time.
At the end of this stage, the master broadcasts the updated
piconet information to all its slaves. This update contains
the device ID, clock value, and role of each of the members
of the existing piconet in the form of an LMSFP packet with
OTR bit set to zero. The master then calculates the priority
and timing sequence of each slave using the above-
mentioned method and sends the new slave to device
discovery. It broadcasts the new configuration within its
piconet.

Whenever a slave in the device discovery phase detects
another slave or a master, it makes a temporary piconet
with the peer and exchanges piconet information (ID, clock
value, and role of each member of its piconet) using an
LMSFP. The LMSFP also contains the time after which that
slave will be polled for the next cycle. Since the slave has all
this information about its own piconet, it can determine
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whether piconet merging or reshuffling is possible. Based
on this, the slave chooses the appropriate protocol (SFMR or
PFMR) and also the state (page or page scan) in which the
slave/master should go. The slave considers the larger of
the two time values left for polling in the two piconets as
the reference time (suppose that, for one piconet, the next
polling starts after time T1 and, for the other piconet, it
starts after time T2, where T2 > T1; then, T2 is taken as the
reference time) and they exchange necessary information
with each other. Then, the temporary piconet is broken and
both the nodes go back to their previous states.

As discussed in case 2b of Fig. 1, when a master having
seven active slaves discovers an isolated node, it first
determines if there is any nonbridge slave of its piconet in
the radio range of the isolated node. The procedure for
range or neighbor determination works as follows:

Step 1. The master sends the device ID and clock value of
all the members of its piconet, paging start time (the time
after which the isolated node should start paging each
nonbridge slave of the piconet) and paging end time (the
time within which the isolated node should complete paging
of all nonbridge slaves) using an LMSFP packet. The paging
start time is generally the time when the master comes to
normal communication in the piconet and broadcasts the
control information (directing each nonbridge slave to go
into page scan mode) in its piconet. Since the isolated node
has the device ID and clock value of each node, it can
directly page each device. This is done in order to check the
availability of nodes in its communication range.

Step 2. At the beginning of the next polling cycle, the
master sends a control packet to all its members, directing
each nonbridge slave to go into page scan mode.

Step 3. The isolated node pages all the nonbridge slaves
one after another and decides which is in its communication
range depending on the response from the slave. It then
sends the list of observed slaves to the master using an
LMSFP packet.

Step 4. If there is at least one slave in the observed list
mentioned above, the master calls SFMR. It uses load
balancing as mentioned in Fig. 1. Each master broadcasts its
piconet information to all its slaves. The master also
updates the information of its own piconet as well as the
neighboring piconet.

Step 5. If there is no such slave as mentioned in Step 4
above, the master sends its least busy slave into Park Mode
and includes the isolated node as a new active slave. The
slave in Park mode can also go in device discovery and
behaves like an isolated node while discovering other
devices. If it gets connected to some other piconet, it leaves
the existing piconet.

In a manner similar to above, when a slave discovers an
isolated node, it sends a control packet and directs the
isolated node to go into page scan mode for a time
estimated by the slave. The estimated time is the time after
which the paging of isolated node would be completed. At
the start of next polling cycle, the master polls this slave for
any discovery information. The slave responds with an
LMSFP packet containing information only about the
isolated node. Then, the master goes in page mode and
starts paging the isolated node. If the master can discover
the isolated node during paging, it includes the isolated

node into the existing piconet following the same procedure
as discussed above. Otherwise, it assumes that the isolated
node is not in its radio range. In the latter case, the previous
slave again pages the isolated node and sends an LMSFP
packet containing the device ID, role, and clock value of all
the devices in the existing piconet. It also directs the isolated
node to go into page mode after a quantum of time. This is
the time when the master sends all its nonbridge slaves to
the page scan mode. The process of neighbor node detection
and load balancing is similar to the case described before.
The only difference is that the information exchange
between the isolated node and master of the existing
piconet through LMSFP packet is done via the slave that
discovered the isolated node. It may be noted that all the
information exchanged between a paging and a paged
device is done after successful paging and setting up of a
temporary piconet. As soon as the LMSFP packet exchange
is over, the temporary piconet is broken. Each slave in a
piconet has all the required information (namely, device ID,
clock value, and role of each member of its piconet), so that
it can take the decision, exchange the piconet information
with a discovered device, and direct the isolated node to go
into page or page scan mode accordingly.

When a master discovers a slave or vice versa, the
procedure of finding nodes in radio range and load
balancing is similar to that discussed above. The only
difference is in the steps involved in information exchange
between the discovering device (master or slave) and the
discovered device (master or slave).

4.4 Discussions on the Protocol

It is observed from the protocol details that we avoid the
reassigning of bridges since it has high communication
overhead and also disrupts services of those parts of the
scatternet that were not involved in the current node
discovery. When two piconets discover each other and get
merged, any existing bridge node is converted to a
nonbridge slave. If both the piconets had bridges with a
third piconet, one of the two bridges is not used anymore.
Since a typical routing strategy in Bluetooth is on-demand
routing, such conversion of one bridge node does not
greatly affect the overall routing in the scatternet.

It may be noted that we do a relative priority
calculation. If traffic is high for every node, the one having
maximum traffic load gets maximum priority and the
others are assigned priority based on their ratio of traffic
load. Similarly, if traffic load is low, the one having
maximum traffic load gets maximum priority and the
others get in the same ratio. It means that even if the traffic
is low, the cumulative priority calculation of all slaves, and
thus, the time left for inquiring, does not have a large
variation unless the number of slaves varies. If the number
of slaves is low, the master can send one of them in node
discovery mode for more than one cycle. The master itself
may also go for device discovery when traffic is light or the
number of slaves is low. If traffic is light, the average
packet transmission delay will not be high. On the other
hand, if the number of slaves is low, the master polls the
slaves more frequently after coming back from the node
discovery phase. Once again, the impact on average packet
transmission delay is low. Our algorithm has two main
advantages over other existing algorithms. First, the
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topology construction protocol is ingrained in the basic

communication infrastructure itself rather than being a

separate standalone process. Second, it does not disturb the

whole scatternet for small local perturbations, thus redu-

cing the message complexity and time delay in scatternet

reconstruction and preventing the network resources from

being wasted in topology construction itself because of the

frequent mobility of Bluetooth devices.
In our discussions above, we have not mentioned the

effect of shutting down or moving away nodes. If a slave is

shut down, the master can detect it since the slave will not

respond to polling packets in successive polling cycles. The

master then releases the Bluetooth address of this slave for

reuse. Also, if the available battery power of a master falls

below that of a slave in its piconet, the master and the slave

swap their roles for maximizing the lifetime of the network.

This enhanced Master Protocol is shown in Fig. 6.
Similarly, a slave detects master failure if it is not polled

at the expected time and the broadcast packet is also not

received. The slave then considers itself to be isolated and

runs Isolated Node Protocol. The enhanced Slave Protocol is

shown in Fig. 7. The enhanced Bridge Protocol of Fig. 8 also

shows detection of master failure. If a bridge detects that

one of its masters is not responding, it becomes a nonbridge

slave of the other master.

4.5 Analysis of the Protocol

In this section, we show that the proposed protocol can

indeed form scatternets if the nodes participate in the

routines described above with a lower bound on the

maximum priority that can be assigned to each slave. We

first formulate the problem of maximum time required for

latching two Bluetooth nodes while one is in Inquiry and

the other is in the Inquiry-scan state. This analysis is done

considering a situation in which all the nodes are within

radio range of each other.
The node doing Inquiry runs its clock—at double the

rate of the node running Inquiry-scan. So, the worst-case
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latching time is 32 normal Bluetooth clock pulses since
there are 32 frequencies in the hopping sequence at the time
of Inquiry. In the best case, the latching time is one clock
cycle and the average case latching time is 16 clock cycles.
The amount of time a slave spends in Inquiry-scan depends
on the current traffic condition in the piconet. Let us
assume that each node is being polled by the maximum
priority number “P” in the polling scheme of our algorithm.
Let us also assume that each slave generates one, three, or
five slot-length packets with equal probability and, hence,
the average packet size is three slots. So, each slave gets
ð3þ 1ÞP ¼ 4P slots for its use. If there are seven slaves, then
the total number of slots used is 28P. The first slave to be
polled gets the broadcast packet, uses 4P slots for packet
transfer, and then gets 24P slots before the next broadcast
from the master. So, for each slave, the 28P slots are divided
in three parts: 1) Time from broadcast to the time it gets
polled first, 2) slots used for its own packet transfer, and
3) remaining time before the next broadcast. Table 1 shows
these three components of time for all the seven slaves of a
piconet.

It is seen from Table 1 that the worst-case time for node
discovery is 12P. It should be noted that, if all the slaves
reach the maximum priority level, then none of these can be

released for node discovery. If one node goes for node
discovery from a piconet, it is most likely a node with a
least priority of 1. Hence, this slave will be polled last in a
polling cycle according to our priority-based polling
algorithm shown in Fig. 6. Thus, the time available for this
slave for new node discovery will be 24, 28, 32, . . . , up to
24P slots, depending on the priority structure assigned to
the other slaves by the master in the current polling cycle.
In the case when the other slaves have highest priority P,
the time available for node discovery by the least-priority
slave will be 24P slots. This time will be even less if there
are less than seven slaves in the piconet. A slave goes in
node discovery and stays in the Inquiry-scan state for
24P slots before it gets polled again. If we consider the
discovery of an isolated node, then the isolated node
toggles between Inquiry and Inquiry-scan states, and let us
assume that, in these two states, it spends TI and
TIS number of time slots, respectively. Therefore, the
least time available for latching is ð24P� TISÞ=2 and the
maximum time available is minð24P� TIS;TIÞ. For latch-
ing, this minimum time available must be greater than the
maximum time required for two nodes to align their
frequency cycles and the same is already calculated to be
32 slot times. Therefore, ð24P� TISÞ=2 > 32.
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TABLE 1
Time Available for Different Slaves in a Polling Cycle



When two isolated nodes try to find each other, both of
them toggle between Inquiry and Inquiry-scan states for TI
and TIS time slots, respectively. But, their sequence of
changing states could be out of phase. So, eventually, we
get a situation when, for the min(TI,TIS) slot time, one is in
Inquiry and the other is in the Inquiry-scan state. This is
the maximum amount of time we can get for latching
these isolated nodes. By the aforementioned logic,
minðTI;TISÞ > 32. Combining the two relations, we get
32 <¼ TIS <¼ ð24P� 64Þ, so that P >¼ 4. We typically set
a value of 5 for P in our algorithm so that the probability of
latching becomes higher.

For situations in which all the nodes are not within the
radio range of each other, there is no such straightforward
way of determining the value of P. We therefore ran
extensive simulations to find the most suitable value of P
for node discovery under various types of traffic load
parameters. It was found that a value of P between 4 and 6
is most favorable. Hence, we have taken P ¼ 5 as the
optimal choice.

5 SIMULATION RESULTS

We measure the performance of the protocol through
extensive simulation studies. The TSF approach proposed
by Tan et al. [22] is the one closest to our work when all the
nodes are within radio range of each other. To make an
effective comparison, we show the relative performance of
the proposed Dynamic Topology Construction (DTC)
algorithm with TSF under situations when the geographical
area of random node deployment is in a circle of diameter
10m. As per the specifications, 10m is the radio range of
Bluetooth devices. We also consider two other situations in
which the nodes are distributed over circular areas of
diameters 20m and 30m, respectively. For studying multi-
hop results, we compare our protocol with the multihop
algorithm proposed by Petrioli et al. [16]. For these
comparisons, we consider the nodes to have uniform
distribution within a square area of size (30m � 30m).
Performance of the protocols is observed under three broad
categories: 1) static analysis, 2) dynamic analysis, and
3) quality of network formed. In static analysis, we consider
that new nodes are not joining and nodes are not leaving a
scatternet. The joining and leaving of nodes are considered
in dynamic analysis.

For static analysis, we consider two metrics, namely,
1) scatternet formation delay and 2) time spent in node
discovery as shown in Figs. 9 and 10, respectively. From

Fig. 9, it is observed that when the number of nodes is low,
the scatternet formation delay for DTC (20m) and DTC
(30m) is high. The reason is that the probability of finding a
node in the opposite state in the communication range of
any given node is low. However, as the node density
increases, the scatternet formation delay decreases. In case
of TSF, a larger number of connected components finally
merge into a single one. Here, a component refers to a tree
scatternet. When there are a higher number of components,
latching becomes easier and components merge quickly.
But, finally, when only a few components (about two or
three) remain, frequency synchronization becomes difficult,
resulting in a substantial delay in TSF.

The average time spent in discovery mode both before as
well as after establishment of networks is plotted in Fig. 10.
It is seen that the proposed algorithm has a higher amount of
time spent in discovery mode. This is due to the fact that we
give more importance to the dynamic maintenance and
expansion of the scatternet. The priority-based polling
scheme enables us to perform this step, which is not avail-
able in TSF. A coordinator node in TSF is a tree node that is
being elected by its root node for discovering other tree
scatternets or components. In our protocol, all the nonbridge
slaves can potentially go for node discovery while, in case of
TSF, only the coordinator can go in the discovery phase,
which is only one for each component. When the initial
network formation is over, only one component is left with
one coordinator. In a static environment, our algorithm
spends more time in searching. Since it is not really known
whether the network formation is complete, we choose to
keep the option of node discovery running.

To study the dynamic performance of the protocol, we
consider free node connection delay and recovery delay
caused by master failure. Fig. 11 shows free node connection
delay. When the number of nodes is low, the isolated node
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Fig. 9. Scatternet formation delay.
Fig. 10. Average time spent in discovery mode.

Fig. 11. Average free node connection delay.



connection delay for DTC (20m) and DTC (30m) is high.
However, as the node density increases, the node connection
delay decreases. It is also observed that the performance of
DTC and TSF are comparable when the nodes are within
radio range of each other. In DTC, only the nonbridge slaves
and the master go for discovery. Initially, with an increase in
the number of nodes, the number of piconets increases. This,
in turn, increases the number of slaves performing dis-
covery, resulting in lower isolated node discovery time.
However, when the number of nodes is very high, then
many of the slaves are utilized in forming bridges and, thus,
the number of slaves left for discovery does not increase any
further. As a result, the free node connection delay becomes
almost constant.

The recovery delay caused by a single master failure is
plotted in Fig. 12 for DTC only. Here, recovery delay means
the average time taken by all nodes of that piconet in again
becoming part of a full scatternet. Recovery delay depends
on the existing number of piconets. If there are a larger
number of piconets, then the dangling nodes can quickly
attach to other piconets. The average number of nodes in
each piconet depends on the particular configuration
achieved. It is seen that, for a node size of 10, the delay is
high. For DTC operating on larger areas, initial performance
is low. However, as the number of nodes goes up, they
become comparable with DTC (10m). While a larger
number of piconets increases the chances of latching with
more slaves participating in discovery, there is a balancing
effect caused by the unavailability of nonbridge slaves. This
observation is similar to the “healing partition delay” of the
TSF algorithm. However, we cannot compare these two
metrics since TSF forms a tree topology with a single node
failure partitioning the whole network. On the other hand,
in our approach, we obtain a mesh topology. Here, a single
node failure does not necessarily partition the network. If a
slave fails, the master simply removes that slave from its
piconet without affecting the rest of the network, as
explained in Fig. 6. If a bridge node is shut down, then
there is link failure between only the piconets sharing it. It
also does not necessarily partition the network since there
are other indirect links connecting the two, resulting in
increased hop counts for interpiconet packets. In case of a
master failure, once again, there is no partitioning as in TSF.
This only causes some of the slaves to become free nodes as
explained in Fig. 7. Bridges of that master become non-
bridge slaves of the other master as provisioned in Fig. 8.

We next compare the characteristics of the scatternets

formed by the proposed algorithm and other approaches.

The metrics studied are:

1. Number of piconets formed with size of network.
2. Average piconet size with size of network.
3. Standard deviation of load of the piconets represent-

ing how balanced the piconets are. Here, balanced
means all the piconets have almost the same number
of slaves.

4. Average path length between any two nodes of the
network. Path length is a measure of routing delay
too.

5. Maximum path length between any two nodes of the
network.

While comparing the performance, we consider the

optimum parameter values for TSF as suggested by its

authors. Figs. 13a and 13b show the variation of the number

of piconets formed with the number of Bluetooth nodes. In
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Fig. 12. Recovery delay for master failure.

Fig. 13. Number of piconets versus number of nodes. (a) DTC versus
TSF. (b) DTC versus Bluestar.



Fig. 13a, we compare the performance of DTC and TSF both
operating in a scenario where the Bluetooth nodes are
distributed over an area of diameter 10m so that the nodes
are within radio range of each other.

From the figure, it is seen that, in DTC, the number of
piconets varies from two to 24 as the number of nodes varies
from 10 to 120. On the other hand, in TSF, the number of
piconets varies, starting from seven to finally 73. Thus, DTC
outperforms TSF by a large margin. A large number of
piconets leads to a higher interpiconet packet transfer delay.
In Fig. 13b, we compare the performance of DTC with
Bluestar, proposed in [16]. For Bluestar, we consider phase II
and III of their algorithm with two different values of
the parameter tdisc, namely, 10s and 20s. It is seen that
the number of piconets in DTC is fewer, compared with
Bluestar.

Figs. 14a and 14b show the variation in size of the piconet
with the number of nodes in the two algorithms. Fig. 14a
shows the average piconet size versus the number of nodes.
Here, average piconet size means the average number of
nodes in a piconet including the master and all its slaves. In
DTC(10m), the average piconet size increases with the
number of nodes till 30 and then remains almost constant at
7.5 to 8. This implies that most of the piconets formed by our
approach attain the full size of 8 (one master + seven slaves).
Only a few piconets are formed with a fewer number of
slaves. On the other hand, in case of TSF, the average piconet
size remains between 2.5 to 3. This means that most of
piconets have just two devices—one master and one slave.
This structure is inefficient compared to ours since a lot of
time is wasted in interpiconet routing, which also involves
bridge switching. Any inefficient bridge-scheduling algo-
rithm will make a node wait too long, thus causing delay
and possible buffer overflow. In Fig. 14b, we compare the

variation of the average number of slaves per piconet with
the number of nodes for DTC and Bluestar. It is seen that the
average number of slaves per piconet is higher in DTC.

In Fig. 15, we show the effect of the topology construction
algorithm on load balancing. The standard deviation of the
number of nodes in each piconet is plotted against the number
of nodes in the scatternet. After an initial rise, the standard
deviation falls sharply in our approach. This implies that
almost all the piconets have a similar number of nodes.

The average path length in the number of hops between
any two nodes is shown in Fig. 16. The path length between
any two slaves in the same piconet is considered to be 2
since a packet has to move from the originating slave to the
master (first hop) and then from the master to the
destination slave (second hop). Similarly, the path length
between two slaves in neighboring piconets (piconets
sharing a bridge) is 4 (slave-master-bridge-master-slave).
It is seen that DTC consistently outperforms TSF with a
difference of approximately 1.5 hops (� 25%).

In Fig. 17, we show the maximum path length in the
scatternets formed by the two algorithms. In our approach,
the maximum path length initially increases from 4 to 10 for
about 70 nodes and then remains almost constant even for
120 nodes. On the other hand, the maximum path length for
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Fig. 14. (a) Average piconet size versus number of nodes. (b) Average

number of slaves per piconet versus number of nodes.

Fig. 15. Standard deviation of load versus number of nodes.

Fig. 16. Average path length versus number of nodes.

Fig. 17. Maximum path length versus number of nodes.



TSF keeps on increasing, reaching a value of 18 for the same
120 nodes. It can be shown that the worst-case routing
delay is proportional to the maximum path length. Hence,
in terms of routing delay also, the proposed algorithm
performs better than TSF.

Finally, we study the effect of traffic load on scatternet
formation delay and average free node connection delay in
Figs. 18a and 18b. For this study, we consider the nodes to
be uniformly distributed within a square area of size (30m
� 30m). The traffic load shown in the figures is the average
packet arrival rate at each node in terms of the length of
packets (in units of time slots) generated for each time slot
unit. It is seen in Fig. 18a that there is about a 3-4 second
difference in scatternet formation delay between traffic
loads of 0.05 and 0.2. On the other hand, the difference in
the free node connection delay between the two extreme
load levels is about 2 seconds. Both the delays decrease with
initial increase in the number of nodes and then become
almost constant similar to Figs. 9 and 11, respectively.

6 CONCLUSIONS

We have suggested a novel protocol for topology construc-
tion in Bluetooth that is simple and uses only localized
information. The protocol works in an unsupervised
manner in the context of a priority-based polling scheme
for both intrapiconet and interpiconet packets. Bluetooth
nodes are treated as symmetric devices and are capable of
running identical routines. The complete protocol consists
of a set of simple routines which handle connection
between isolated nodes, between an existing piconet and
an isolated node, as well as between two existing piconets.
If the number of nodes to be connected is less than eight and
the nodes are within radio range of the master, a single
piconet is formed with one of the nodes acting as master

and the rest acting as slaves. If, however, the total number
of nodes exceeds eight, a scatternet is formed or an existing
scatternet is extended by forming bridge nodes. In situa-
tions where all the nodes are not within radio range of each
other, multihop paths are formed to extend the piconet. The
routines detect situations in which a master, slave, or a
bridge node is shut down so that local topology reconstruc-
tion can be done without affecting the entire network.

Detailed simulation studies reveal that the proposed
protocol has superior performance compared to protocols
with similar features. Another important advantage of the
proposed work is that it considers the finite amount of time
that is available for the masters and nonbridge slaves to
perform node discovery. We would like to perform a
queuing theoretic analysis of our work to show that the
queues are indeed stable under the conditions in which
polling is done and scatternet protocol is executed.
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