
Mining Sequential Patterns

Rakesh Agrawal Ramakrishnan Srikant�

IBM Almaden Research Center

��� Harry Road� San Jose� CA �����

Abstract

We are given a large database of customer transac�
tions� where each transaction consists of customer�id�
transaction time� and the items bought in the transac�
tion� We introduce the problem of mining sequential
patterns over such databases� We present three algo�
rithms to solve this problem� and empirically evalu�
ate their performance using synthetic data� Two of
the proposed algorithms� AprioriSome and Apriori�
All� have comparable performance� albeit AprioriSome
performs a little better when the minimum number
of customers that must support a sequential pattern
is low� Scale�up experiments show that both Apri�
oriSome and AprioriAll scale linearly with the num�
ber of customer transactions� They also have excel�
lent scale�up properties with respect to the number of
transactions per customer and the number of items in
a transaction�

� Introduction

Database mining is motivated by the decision sup�
port problem faced by most large retail organizations�
Progress in bar�code technology has made it possible
for retail organizations to collect and store massive
amounts of sales data� referred to as the basket data�
A record in such data typically consists of the trans�
action date and the items bought in the transaction�
Very often� data records also contain customer�id� par�
ticularly when the purchase has been made using a
credit card or a frequent�buyer card� Catalog compa�
nies also collect such data using the orders they re�
ceive�

We introduce the problem of mining sequential pat�
terns over this data� An example of such a pattern is

�Also Department of Computer Science� University of Wis�
consin� Madison�

that customers typically rent �Star Wars�� then �Em�
pire Strikes Back�� and then �Return of the Jedi��
Note that these rentals need not be consecutive� Cus�
tomers who rent some other videos in between also
support this sequential pattern� Elements of a sequen�
tial pattern need not be simple items� �Fitted Sheet
and �at sheet and pillow cases�� followed by �com�
forter�� followed by �drapes and ru�es� is an example
of a sequential pattern in which the elements are sets
of items�

Problem Statement We are given a database D
of customer transactions� Each transaction consists
of the following 	elds
 customer�id� transaction�time�
and the items purchased in the transaction� No cus�
tomer has more than one transaction with the same
transaction�time� We do not consider quantities of
items bought in a transaction
 each item is a binary
variable representing whether an item was bought or
not�
An itemset is a non�empty set of items� A sequence

is an ordered list of itemsets� Without loss of gener�
ality� we assume that the set of items is mapped to a
set of contiguous integers� We denote an itemset i by
�i�i����im�� where ij is an item� We denote a sequence
s by h s�s����sn i� where sj is an itemset�
A sequence h a�a����an i is contained in another se�

quence h b�b����bm i if there exist integers i� � i� �
��� � in such that a� � bi� � a� � bi� � ���� an � bin � For
example� the sequence h �� �� �� ��� i is contained in
h ��� � �� ��� �� � �� ��� i� since �� � � ��� �� ��� ��
� �� and ��� � ���� However� the sequence h �� ��� i is
not contained in h � �� i �and vice versa�� The former
represents items and � being bought one after the
other� while the latter represents items and � being
bought together� In a set of sequences� a sequence s is
maximal if s is not contained in any other sequence�
All the transactions of a customer can together

be viewed as a sequence� where each transaction
corresponds to a set of items� and the list of

Customer Id TransactionTime Items Bought

� June �� �� �
� June � �� ��
� June �� �� ��� ��
� June �� �� �
� June �� �� ��� ��� ��
 June �� �� �� ��� ��
� June �� �� �
� June � �� ��� ��
� July �� �� ��
� June �� �� ��

Figure �
 Database Sorted by Customer Id and Trans�
action Time

Customer Id Customer Sequence
� h ��� ���� i
� h ��� ��� ��� ��� �� ��� i
 h �� �� ��� i
� h ��� ��� ��� ���� i
� h ���� i

Figure �
 Customer�Sequence Version of the Database

transactions� ordered by increasing transaction�time�
corresponds to a sequence� We call such a se�
quence a customer�sequence� Formally� let the
transactions of a customer� ordered by increasing
transaction�time� be T�� T�� ���� Tn� Let the set
of items in Ti be denoted by itemset�Ti�� The
customer�sequence for this customer is the sequence
h itemset�T�� itemset�T�� ��� itemset�Tn� i�
A customer supports a sequence s if s is contained

in the customer�sequence for this customer� The sup�
port for a sequence is de	ned as the fraction of total
customers who support this sequence�
Given a database D of customer transactions� the

problem of mining sequential patterns is to 	nd the
maximal sequences among all sequences that have a
certain user�speci	ed minimum support� Each such
maximal sequence represents a sequential pattern�
We call a sequence satisfying the minimum support

constraint a large sequence�

Example Consider the database shown in Fig� ��
�This database has been sorted on customer�id and
transaction�time�� Fig� � shows this database ex�
pressed as a set of customer sequences�
With minimumsupport set to ���� i�e�� a minimum

support of � customers� two sequences
 h ��� ���� i
and h ��� ��� ��� i are maximal among those satis�
fying the support constraint� and are the desired se�

Sequential Patterns with support � ���
h ��� ���� i

h ��� ��� ��� i

Figure
 The answer set

quential patterns� The sequential pattern h ��� ���� i
is supported by customers � and �� Customer � buys
items ��� ��� in between items � and ��� but supports
the pattern h ��� ���� i since we are looking for pat�
terns that are not necessarily contiguous� The sequen�
tial pattern h � ��� ��� i is supported by customers �
and �� Customer � buys �� along with �� and ��� but
supports this pattern since ��� ��� is a subset of ���
�� ����
An example of a sequence that does not have mini�

mum support is the sequence h ��� ��� ��� i� which is
only supported by customer �� The sequences h ��� i�
h ���� i� h ���� i� h ���� i� h ��� ���� i� h ��� ���� i and
h ��� ��� i� though having minimum support� are not
in the answer because they are not maximal�

Related Work In ���� the problem of discovering
�what items are bought together in a transaction�
over basket data was introduced� While related� the
problem of 	nding what items are bought together
is concerned with 	nding intra�transaction patterns�
whereas the problem of 	nding sequential patterns is
concerned with inter�transaction patterns� A pattern
in the 	rst problem consists of an unordered set of
items whereas a pattern in the latter case is an or�
dered list of sets of items�
Discovering patterns in sequences of events has

been an area of active research in AI �see� for example�
����� However� the focus in this body of work is on dis�
covering the rule underlying the generation of a given
sequence in order to be able to predict a plausible
sequence continuation �e�g� the rule to predict what
number will come next� given a sequence of numbers��
We on the hand are interested in 	nding all common
patterns embedded in a database of sequences of sets
of events �items��
Our problem is related to the problem of 	nding

text subsequences that match a given regular expres�
sion �c�f� the UNIX grep utility�� There also has been
work on 	nding text subsequences that approximately
match a given string �e�g� ��� ������ These techniques
are oriented toward 	nding matches for one pattern�
In our problem� the di�culty is in 	guring out what
patterns to try and then e�ciently 	nding out which
ones are contained in a customer sequence�
Techniques based on multiple alignment ���� have

been proposed to 	nd entire text sequences that are
similar� There also has been work to 	nd locally simi�
lar subsequences ��� ��� ���� However� as pointed out in
����� these techniques apply when the discovered pat�
terns consist of consecutive characters or multiple lists
of consecutive characters separated by a 	xed length
of noise characters�
Closest to our problem is the problem formulation

in ���� in the context of discovering similarities in a
database of genetic sequences� The patterns they wish
to discover are subsequences made up of consecutive
characters separated by a variable number of noise
characters� A sequence in our problem consists of list
of sets of characters �items�� rather than being sim�
ply a list of characters� Thus� an element of the se�
quential pattern we discover can be a set of characters
�items�� rather than being simply a character� Our
solution approach is entirely di�erent� The solution
in ���� is not guaranteed to be complete� whereas we
guarantee that we have discovered all sequential pat�
terns of interest that are present in a speci	ed mini�
mum number of sequences� The algorithm in ���� is
a main memory algorithm based on generalized su�x
tree ��� and was tested against a database of ��� se�
quences �although the paper does contain some hints
on how they might extend their approach to handle
larger databases�� Our solution is targeted at millions
of customer sequences�

Organization of the Paper We solve the problem
of 	nding all sequential patterns in 	ve phases
 i� sort
phase� ii� litemset phase� iii� transformation phase� iv�
sequence phase� and v� maximalphase� Section � gives
this problem decomposition� Section examines the
sequence phase in detail and presents algorithms for
this phase� We empirically evaluate the performance
of these algorithms and study their scale�up proper�
ties in Section �� We conclude with a summary and
directions for future work in Section ��

� Finding Sequential Patterns

Terminology The length of a sequence is the num�
ber of itemsets in the sequence� A sequence of length
k is called a k�sequence� The sequence formed by the
concatenation of two sequences x and y is denoted as
x�y�
The support for an itemset i is de	ned as the frac�

tion of customers who bought the items in i in a sin�
gle transaction� Thus the itemset i and the ��sequence
h i i have the same support� An itemset with minimum

Large Itemsets Mapped To
��� �
���� �
����
��� ��� �
���� �

Figure �
 Large Itemsets

support is called a large itemset or litemset� Note that
each itemset in a large sequence must have minimum
support� Hence� any large sequence must be a list of
litemsets�

��� The Algorithm

We split the problem of mining sequential patterns
into the following phases

�� Sort Phase� The database �D� is sorted� with
customer�id as the major key and transaction�time as
the minor key� This step implicitly converts the orig�
inal transaction database into a database of customer
sequences�

�� Litemset Phase� In this phase we 	nd the set
of all litemsets L� We are also simultaneously 	nding
the set of all large ��sequences� since this set is just
fh l i j l � Lg�
The problem of 	nding large itemsets in a given set

of customer transactions� albeit with a slightly di�er�
ent de	nition of support� has been considered in ���
���� In these papers� the support for an itemset has
been de	ned as the fraction of transactions in which
an itemset is present� whereas in the sequential pat�
tern 	nding problem� the support is the fraction of
customers who bought the itemset in any one of their
possibly many transactions� It is straightforward to
adapt any of the algorithms in ��� to 	nd litemsets�
The main di�erence is that the support count should
be incremented only once per customer even if the
customer buys the same set of items in two di�erent
transactions�
The set of litemsets is mapped to a set of contigu�

ous integers� In the example database given in Fig� ��
the large itemsets are ���� ����� ����� ��� ��� and
����� A possible mapping for this set is shown in Fig���
The reason for this mapping is that by treating litem�
sets as single entities� we can compare two litemsets
for equality in constant time� and reduce the time re�
quired to check if a sequence is contained in a customer
sequence�

�� Transformation Phase� As we will see in Sec�
tion � we need to repeatedly determine which of a
given set of large sequences are contained in a cus�
tomer sequence� To make this test fast� we transform
each customer sequence into an alternative represen�
tation�

In a transformed customer sequence� each transac�
tion is replaced by the set of all litemsets contained
in that transaction� If a transaction does not con�
tain any litemset� it is not retained in the transformed
sequence� If a customer sequence does not contain
any litemset� this sequence is dropped from the trans�
formed database� However� it still contributes to the
count of total number of customers� A customer se�
quence is now represented by a list of sets of litemsets�
Each set of litemsets is represented by fl�� l�� � � � � lng�
where li is a litemset�

This transformed database is called DT � Depend�
ing on the disk availability� we can physically create
this transformed database� or this transformation can
be done on�the��y� as we read each customer sequence
during a pass� �In our experiments� we physically cre�
ated the transformed database��

The transformation of the database in Fig� � is
shown in Fig� �� For example� during the transfor�
mation of the customer sequence with Id �� the trans�
action ��� ��� is dropped because it does not contain
any litemset and the transaction ��� �� ��� is replaced
by the set of litemsets f����� ����� ��� ���g�

�� Sequence Phase� Use the set of litemsets to
	nd the desired sequences� Algorithms for this phase
are described in Section �

�� Maximal Phase� Find the maximal sequences
among the set of large sequences� In some algorithms
in Section � this phase is combined with the sequence
phase to reduce the time wasted in counting non�
maximal sequences�
Having found the set of all large sequences S in the

sequence phase� the following algorithm can be used
for 	nding maximal sequences� Let the length of the
longest sequence be n� Then�

for � k � n� k � �� k�� � do
foreach k�sequence sk do

Delete from S all subsequences of sk

Data structures �the hash�tree� and algorithm to
quickly 	nd all subsequences of a given sequence are
described in �� �and are similar to those used to 	nd
all subsets of a given itemset �����

� The Sequence Phase

The general structure of the algorithms for the se�
quence phase is that they make multiple passes over
the data� In each pass� we start with a seed set of
large sequences� We use the seed set for generating
new potentially large sequences� called candidate se�

quences� We 	nd the support for these candidate se�
quences during the pass over the data� At the end
of the pass� we determine which of the candidate se�
quences are actually large� These large candidates be�
come the seed for the next pass� In the 	rst pass� all
��sequences with minimum support� obtained in the
litemset phase� form the seed set�
We present two families of algorithms� which we call

count�all and count�some� The count�all algorithms
count all the large sequences� including non�maximal
sequences� The non�maximal sequences must then be
pruned out �in the maximal phase�� We present one
count�all algorithm� called AprioriAll� based on the
Apriori algorithm for 	nding large itemsets presented
in �����

We present two count�some algorithms
 Apriori�
Some and DynamicSome� The intuition behind these
algorithms is that since we are only interested in maxi�
mal sequences� we can avoid counting sequences which
are contained in a longer sequence if we 	rst count
longer sequences� However� we have to be careful
not to count a lot of longer sequences that do not
have minimum support� Otherwise� the time saved by
not counting sequences contained in a longer sequence
may be less than the time wasted counting sequences
without minimumsupport that would never have been
counted because their subsequences were not large�
Both the count�some algorithms have a forward

phase� in which we 	nd all large sequences of certain
lengths� followed by a backward phase� where we 	nd
all remaining large sequences� The essential di�erence
is in the procedure they use for generating candidate
sequences during the forward phase� As we will see
momentarily� AprioriSome generates candidates for a
pass using only the large sequences found in the pre�
vious pass and then makes a pass over the data to 	nd
their support� DynamicSome generates candidates on�
the��y using the large sequences found in the previ�
ous passes and the customer sequences read from the

�The AprioriHybrid algorithm presented in ��� did better
than Apriori for �nding large itemsets� However� it used the
property that a k�itemset is present in a transaction if any two
of its 	k�
��subsets are present in the transaction to avoid
scanning the database in later passes� Since this property does
not hold for sequences� we do not expect an algorithm based
on AprioriHybrid to do any better than the algorithm based on
Apriori�

Customer Id Original Transformed After
Customer Sequence Customer Sequence Mapping

� h ��� ���� i h f���g f����g i h f�g f�g i
� h ��� ��� ��� ��� �� ��� i h f���g f����� ����� ��� ���g i h f�g f�� � �g i
 h �� �� ��� i h f���� ����g i h f�� g i
� h ��� ��� ��� ���� i h f���g f����� ����� ��� ���g f����g i h f�g f�� � �g f�g i
� h ���� i h f����g i h f�g i

Figure �
 Transformed Database

L� � flarge ��sequencesg� �� Result of litemset phase
for � k � �� Lk�� �� �� k � do

begin

Ck � New candidates generated from Lk��

�see Section ������
foreach customer�sequence c in the database do

Increment the count of all candidates in Ck

that are contained in c�
Lk � Candidates in Ck with minimum support�
end

Answer � Maximal Sequences in
S
k Lk�

Figure �
 Algorithm AprioriAll

database�

Notation In all the algorithms� Lk denotes the set
of all large k�sequences� and Ck the set of candidate
k�sequences�

��� Algorithm AprioriAll

The algorithm is given in Fig� �� In each pass� we
use the large sequences from the previous pass to gen�
erate the candidate sequences and then measure their
support by making a pass over the database� At the
end of the pass� the support of the candidates is used
to determine the large sequences� In the 	rst pass� the
output of the litemset phase is used to initialize the
set of large ��sequences� The candidates are stored in
hash�tree ��� �� to quickly 	nd all candidates contained
in a customer sequence�

����� Apriori Candidate Generation

The apriori�generate function takes as argument
Lk��� the set of all large �k� ���sequences� The func�
tion works as follows� First� join Lk�� with Lk��

insert into Ck

select p�litemset� � ���� p�litemsetk��� q�litemsetk��
from Lk�� p� Lk�� q

Large Candidate Candidate
�Sequences ��Sequences ��Sequences

�after join� �after pruning�
h � � i h � � � i h � � � i
h � � � i h � � � i
h � � i h � � � i
h � � i h � � � i
h � � i

Figure �
 Candidate Generation

where p�litemset� � q�litemset� � � � ��
p�litemsetk�� � q�litemsetk�� �

Next� delete all sequences c � Ck such that some
�k � ���subsequence of c is not in Lk���
For example� consider the set of �sequences L�

shown in the 	rst column of Fig� �� If this is given as
input to the apriori�generate function� we will get the
sequences shown in the second column after the join�
After pruning out sequences whose subsequences are
not in L�� the sequences shown in the third column
will be left� For example� h � � � i is pruned out be�
cause the subsequence h � � i is not in L�� Proof of
correctness of the candidate generation procedure is
given in ���

����� Example

Consider a database with the customer�sequences
shown in Fig� �� We have not shown the original
database in this example� The customer sequences
are in transformed form where each transaction has
been replaced by the set of litemsets contained in the
transaction and the litemsets have been replaced by in�
tegers� The minimum support has been speci	ed to be
��� �i�e� � customer sequences�� The 	rst pass over
the database is made in the litemset phase� and we
determine the large ��sequences shown in Fig� �� The
large sequences together with their support at the end
of the second� third� and fourth passes are also shown
in the same 	gure� No candidate is generated for the

h f� �g f�g fg f�g i
h f�g fg f�g f �g i
h f�g f�g fg f�g i
h f�g fg f�g i
h f�g f�g i

Figure �
 Customer Sequences

	fth pass� The maximal large sequences would be the
three sequences h � � � i� h � � i and h � � i�

��� Algorithm AprioriSome

This algorithm is given in Fig� ��� In the forward
pass� we only count sequences of certain lengths� For
example� we might count sequences of length �� �� �
and � in the forward phase and count sequences of
length and � in the backward phase� The func�
tion next takes as parameter the length of sequences
counted in the last pass and returns the length of
sequences to be counted in the next pass� Thus�
this function determines exactly which sequences are
counted� and balances the tradeo� between the time
wasted in counting non�maximal sequences versus
counting extensions of small candidate sequences� One
extreme is next�k� � k � �k is the length for which
candidates were counted last�� when all non�maximal
sequences are counted� but no extensions of small can�
didate sequences are counted� In this case� Apriori�
Some degenerates into AprioriAll� The other extreme
is a function like next�k� � ��� � k� when almost no
non�maximal large sequence is counted� but lots of ex�
tensions of small candidates are counted�
Let hitk denote the ratio of the number of large

k�sequences to the number of candidate k�sequences
�i�e�� jLkj�jCkj�� The next function we used in the
experiments is given below� The intuition behind
the heuristic is that as the percentage of candidates
counted in the current pass which had minimum sup�
port increases� the time wasted by counting extensions
of small candidates when we skip a length goes down�

function next�k	 integer�
begin

if �hitk �
����� return k� ��
elsif �hitk �
��� return k� ��
elsif �hitk �
��
� return k� ��
elsif �hitk �
���� return k� ��
else return k� ��

end

We use the apriori�generate function given in
Section ���� to generate new candidate sequences�
However� in the kth pass� we may not have the large

�� Forward Phase
L� � flarge ��sequencesg� �� Result of litemset phase
C� � L�� �� so that we have a nice loop condition
last � �� �� we last counted Clast

for � k � �� Ck�� �� � and Llast �� �� k � do
begin

if �Lk�� known� then
Ck � New candidates generated from Lk���

else

Ck � New candidates generated from Ck���
if � k �� next�last� � then begin
foreach customer�sequence c in the database do
Increment the count of all candidates
in Ck that are contained in c�

Lk � Candidates in Ck with minimum support�
last � k�
end

end

�� Backward Phase
for � k��� k �� �� k�� � do
if �Lk not found in forward phase� then begin
Delete all sequences in Ck contained in
some Li� i � k�

foreach customer�sequence c in DT do

Increment the count of all candidates in Ck

that are contained in c�
Lk � Candidates in Ck with minimum support�
end

else �� Lk already known
Delete all sequences in Lk contained in
some Li� i � k�

Answer �
S
k Lk�

Figure ��
 Algorithm AprioriSome

sequence set Lk�� available as we did not count the
�k � ���candidate sequences� In that case� we use the
candidate set Ck�� to generate Ck� Correctness is
maintained because Ck�� � Lk���
In the backward phase� we count sequences for the

lengths we skipped over during the forward phase� af�
ter 	rst deleting all sequences contained in some large
sequence� These smaller sequences cannot be in the
answer because we are only interested in maximal se�
quences� We also delete the large sequences found in
the forward phase that are non�maximal�
In the implementation� the forward and backward

phases are interspersed to reduce the memory used by
the candidates� However� we have omitted this detail
in Fig� �� to simplify the exposition�

L�

��Sequences Support
h � i �
h � i �
h i �
h � i �
h � i �

L�

��Sequences Support
h � � i �
h � i �
h � � i
h � � i
h � i �
h � � i �
h � i
h � i �
h � � i �

L�

�Sequences Support
h � � i �
h � � � i �
h � � i
h � � i �
h � � i �

L�

��Sequences Support
h � � � i �

Figure �
 Large Sequences

h � � i
h � � � i
h � � i
h � � i
h � � i
h � � i

Figure ��
 Candidate �sequences

����� Example

Using again the database used in the example for the
AprioriAll algorithm� we 	nd the large ��sequences
�L�� shown in Fig� � in the litemset phase �during the
	rst pass over the database�� Take for illustration sim�
plicity� f�k� � �k� In the second pass� we count C� to
get L� �Fig� ��� After the third pass� apriori�generate
is called with L� as argument to get C�� The candi�
dates in C� are shown in Fig� ��� We do not count C��
and hence do not generate L�� Next� apriori�generate
is called with C� to get C�� which after pruning� turns
out to be the same C� shown in the third column of
Fig� �� After counting C� to get L� �Fig� ��� we try
generating C�� which turns out to be empty�

We then start the backward phase� Nothing gets
deleted from L� since there are no longer sequences�
We had skipped counting the support for sequences
in C� in the forward phase� After deleting those se�
quences in C� that are subsequences of sequences in
L�� i�e�� subsequences of h � � � i� we are left with
the sequences h � � i and h � � i� These would be
counted to get h � � i as a maximal large �sequence�
Next� all the sequences in L� except h � � i are deleted
since they are contained in some longer sequence� For
the same reason� all sequences in L� are also deleted�

��� Algorithm DynamicSome

The DynamicSome algorithm is shown in Fig� ���
Like AprioriSome� we skip counting candidate se�
quences of certain lengths in the forward phase� The
candidate sequences that are counted is determined by
the variable step� In the initialization phase� all the
candidate sequences of length upto and including step
are counted� Then in the forward phase� all sequences
whose lengths are multiples of step are counted� Thus�
with step set to � we will count sequences of lengths
�� �� and in the initialization phase� and ����������
in the forward phase� We really wanted to count only
sequences of lengths ����������� We can generate se�
quences of length � by joining sequences of length �
We can generate sequences of length � by joining se�
quences of length � with sequences of length � etc�
However� to generate the sequences of length � we
need sequences of lengths � and �� and hence the ini�
tialization phase�

As in AprioriSome� during the backward phase� we
count sequences for the lengths we skipped over dur�
ing the forward phase� However� unlike in Apriori�
Some� these candidate sequences were not generated
in the forward phase� The intermediate phase gen�
erates them� Then the backward phase is identical to
the one for AprioriSome� For example� assume that we
count L� and L�� and L� turns out to be empty in the
forward phase� We generate C� and C	 �intermediate
phase�� and then count C	 followed by C� after delet�
ing non�maximal sequences �backward phase�� This
process is then repeated for C� and C�� In actual im�
plementation� the intermediate phase is interspersed
with the backward phase� but we have omitted this
detail in Fig� �� to simplify exposition�

We use apriori�generate in the initialization and
intermediate phases� but use otf�generate in the for�
ward phase� The otf�generate procedure is given in

�� step is an integer 	 �
�� Initialization Phase
L� � flarge ��sequencesg� �� Result of litemset phase
for � k � �� k �� step and Lk�� �� �� k � do
begin

Ck � New candidates generated from Lk���
foreach customer�sequence c in DT do

Increment the count of all candidates in Ck

that are contained in c�
Lk � Candidates in Ck

with minimum support�
end

�� Forward Phase
for � k � step� Lk �� �� k � step � do
begin

�� 	nd Lk
step from Lk and Lstep
Ck
step � ��

foreach customer sequences c in DT do

begin

X � otf�generate�Lk� Lstep� c�� See Section ���

For each sequence x � X�� increment its count in
Ck
step �adding it to Ck
step if necessary��

end

Lk
step � Candidates in Ck
step with min support�

end

�� Intermediate Phase
for � k��� k � �� k�� � do
if �Lk not yet determined� then
if �Lk�� known� then

Ck � New candidates generated from Lk���
else

Ck � New candidates generated from Ck���

�� Backward Phase
 Same as that of AprioriSome

Figure ��
 Algorithm DynamicSome

Section ���� The reason is that apriori�generate
generates less candidates than otf�generatewhen we
generate Ck
� from Lk ���� However� this may not
hold when we try to 	nd Lk
step from Lk and Lstep

��
as is the case in the forward phase� In addition� if the
size of jLkj jLstepj is less than the size of Ck
step
generated by apriori�generate� it may be faster to 	nd
all members of Lk and Lstep contained in c than to
	nd all members of Ck
step contained in c�

����� On�the�	y Candidate Generation

The otf�generate function takes as arguments Lk�
the set of large k�sequences� Lj � the set of large j�
sequences� and the customer sequence c� It returns
the set of candidate �k j��sequences contained in c�
The intuition behind this generation procedure is

that if sk � Lk and sj � Lj are both contained in c�
and they don�t overlap in c� then h sk�sj i is a candidate
�k j��sequence� Let c be the sequence h c�c����cn i�
The implementationof this function is as shown below

�� c is the sequence h c�c����cn i
Xk � subseq�Lk � c��
forall sequences x � Xk do

x�end � minfjjx is contained in h c�c����cj ig�
Xj � subseq�Lj � c��
forall sequences x � Xj do

x�start � maxfjjx is contained in h cjcj�����cn ig�
Answer � join of Xk with Xj with the join

condition Xk�end � Xj�start�

For example� consider L� to be the set of se�
quences in Fig� �� and let otf�generate be called
with parameters L�� L� and the customer�sequence
h f�g f�g f �g f�g i� Thus c� corresponds to f�g� c�
to f�g� etc� The end and start values for each sequence
in L� which is contained in c are shown in Fig� ��
Thus� the result of the join with the join condition
X��end � X��start �where X� denotes the set of se�
quences of length �� is the single sequence h � � � i�

����� Example

Continuing with our example of Section ����� consider
a step of �� In the initialization phase� we determine L�

shown in Fig� �� Then� in the forward phase� we get �
candidate sequences in C�
 h � � � i with support of
� and h � � � i with support of �� Out of these� only
h � � � i is large� In the next pass� we 	nd C� to be

�The apriori�generate procedure in Section ��
�
 needs to be
generalized to generate Ck�j from Lk� Essentially� the join
condition has to be changed to require equality of the �rst k� j

terms� and the concatenation of the remaining terms�

Sequence End Start
h � � i � �
h � i �
h � � i � �
h � i �
h � � i � �
h � i �

Figure �
 Start and End Values

empty� Now� in the intermediate phase� we generate
C� from L�� and C� from L�� Since C� turns out to be
empty� we count just C� during the backward phase
to get L��

� Performance

To assess the relative performance of the algorithms
and study their scale�up properties� we performed sev�
eral experiments on an IBM RS����� ��H worksta�
tion with a CPU clock rate of MHz� �� MB of main
memory� and running AIX ��� The data resided in the
AIX 	le system and was stored on a �GB SCSI ���
drive� with measured sequential throughput of about
� MB�second�

��� Generation of Synthetic Data

To evaluate the performance of the algorithms over
a large range of data characteristics� we generated syn�
thetic customer transactions� environment� In our
model of the �real� world� people buy sequences of
sets of items� Each such sequence of itemsets is po�
tentially a maximal large sequence� An example of
such a sequence might be sheets and pillow cases�
followed by a comforter� followed by shams and ruf�
�es� However� some people may buy only some of the
items from such a sequence� For instance� some peo�
ple might buy only sheets and pillow cases followed by
a comforter� and some only comforters� A customer�
sequence may contain more than one such sequence�
For example� a customer might place an order for a
dress and jacket when ordering sheets and pillow cases�
where the dress and jacket together form part of an�
other sequence� Customer�sequence sizes are typically
clustered around a mean and a few customers may
have many transactions� Similarly� transaction sizes
are usually clustered around a mean and a few trans�
actions have many items�
The synthetic data generation program takes the

parameters shown in Table �� We generated datasets

jDj Number of customers �� size of Database�
jCj Average number of transactions per Customer
jT j Average number of items per Transaction
jSj Average length of maximal potentially

large Sequences
jIj Average size of Itemsets in maximal

potentially large sequences
NS Number of maximal potentially large Sequences
NI Number of maximal potentially large Itemsets
N Number of items

Table �
 Parameters

Name jCj jT j jSj jIj Size
�MB�

C�
�T��S��I���� �
 � � ���� ���
C�
�T��S��I��� �
 � � ��� ��

C�
�T����S��I���� �
 ��� � ���� ���
C�
�T����S��I���� �
 ��� � ���� ��

Table �
 Parameter settings �Synthetic datasets�

by setting NS � ����� NI � ����� and N � ������
The number of customers� jDj was set to �������� Ta�
ble � summarizes the dataset parameter settings� We
refer the reader to �� for the details of the data gen�
eration program�

��� Relative Performance

Fig� �� shows the relative execution times for the
three algorithms for the six datasets given in Table �
as the minimumsupport is decreased from �� support
to ���� support� We have not plotted the execution
times for DynamicSome for low values of minimum
support since it generated too many candidates and
ran out of memory� Even if DynamicSome had more
memory� the cost of 	nding the support for that many
candidates would have ensured execution times much
larger than those for Apriori or AprioriSome� As ex�
pected� the execution times of all the algorithms in�
crease as the support is decreased because of a large
increase in the number of large sequences in the result�
DynamicSome performs worse than the other two

algorithms mainly because it generates and counts
a much larger number of candidates in the forward
phase� The di�erence in the number of candidates gen�
erated is due to the otf�generate candidate genera�
tion procedure it uses� The apriori�generate does
not count any candidate sequence that contains any
subsequence which is not large� The otf�generate

does not have this pruning capability�
The major advantage of AprioriSome over Aprior�

iAll is that it avoids counting many non�maximal se�

C���T��S��I���� C���T��S��I���

0

50

100

150

200

250

300

350

400

450

0.20.250.330.50.751

T
im

e
 (

se
c)

Minimum Support

DynamicSome
Apriori

AprioriSome

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0.20.250.330.50.751

T
im

e
 (

se
c)

Minimum Support

DynamicSome
Apriori

AprioriSome

C���T����S��I���� C���T����S��I����

0

100

200

300

400

500

600

700

0.20.250.330.50.751

T
im

e
 (

se
c)

Minimum Support

DynamicSome
Apriori

AprioriSome

0

200

400

600

800

1000

1200

1400

0.20.250.330.50.751

T
im

e
 (

se
c)

Minimum Support

DynamicSome
Apriori

AprioriSome

Figure ��
 Execution times

quences� However� this advantage is reduced because
of two reasons� First� candidates Ck in AprioriAll
are generated using Lk��� whereas AprioriSome some�
times uses Ck�� for this purpose� Since Ck�� � Lk���
the number of candidates generated using Apriori�
Some can be larger� Second� although AprioriSome
skips over counting candidates of some lengths� they
are generated nonetheless and stay memory resident�
If memory gets 	lled up� AprioriSome is forced to
count the last set of candidates generated even if the
heuristic suggests skipping some more candidate sets�
This e�ect decreases the skipping distance between
the two candidate sets that are indeed counted� and
AprioriSome starts behaving more like AprioriAll� For
lower supports� there are longer large sequences� and
hence more non�maximal sequences� and AprioriSome

does better�

��� Scale�up

Wewill present in this section the results of scale�up
experiments for the AprioriSome algorithm� We also
performed the same experiments for AprioriAll� and
found the results to be very similar� We do not re�
port the AprioriAll results to conserve space� We will
present the scale�up results for some selected datasets�
Similar results were obtained for other datasets�

Fig� �� shows how AprioriSome scales up as the
number of customers is increased ten times from
������� to ���million� �The scale�up graph for increas�
ing the number of customers from ������ to �������
looks very similar�� We show the results for the

1

2

4

6

8

10

250 1000 1750 2500

R
e
la

tiv
e
 T

im
e

Number of Customers (’000s)

2%
1%

0.5%

Figure ��
 Scale�up
 Number of customers

dataset C���T����S��I���� with three levels of mini�
mum support� The size of the dataset for ��� million
customers was �� MB� The execution times are nor�
malized with respect to the times for the ������� cus�
tomers dataset� As shown� the execution times scale
quite linearly�
Next� we investigated the scale�up as we increased

the total number of items in a customer sequence�
This increase was achieved in two di�erent ways
 i�
by increasing the average number of transactions per
customer� keeping the average number of items per
transaction the same� and ii� by increasing the av�
erage number of items per transaction� keeping the
average number transactions per customer the same�
The aim of this experiment was to see how our data
structures scaled with the customer�sequence size� in�
dependent of other factors like the database size and
the number of large sequences� We kept the size of the
database roughly constant by keeping the product of
the average customer�sequence size and the number of
customers constant� We 	xed the minimum support
in terms of the number of transactions in this exper�
iment� Fixing the minimum support as a percentage
would have led to large increases in the number of
large sequences and we wanted to keep the size of the
answer set roughly the same� All the experiments had
the large sequence length set to � and the large item�
set size set to ����� The average transaction size was
set to ��� in the 	rst graph� while the number of trans�
actions per customer was set to �� in the second� The
numbers in the key �e�g� ���� refer to the minimum
support�
The results are shown in Fig� ��� As shown� the

execution times usually increased with the customer�
sequence size� but only gradually� The main reason

for the increase was that in spite of setting the min�
imum support in terms of the number of customers�
the number of large sequences increased with increas�
ing customer�sequence size� A secondary reason was
that 	nding the candidates present in a customer se�
quence took a little more time� For support level of
���� the execution time actually went down a little
when the transaction size was increased� The reason
for this decrease is that there is an overhead associated
with reading a transaction� At high level of support�
this overhead comprises a signi	cant part of the total
execution time� Since this decreases when the number
of transactions decrease� the total execution time also
decreases a little�

� Conclusions and Future Work

We introduced a new problem of mining sequential
patterns from a database of customer sales transac�
tions and presented three algorithms for solving this
problem� Two of the algorithms� AprioriSome and
AprioriAll� have comparable performance� although
AprioriSome performs a little better for the lower val�
ues of the minimum number of customers that must
support a sequential pattern� Scale�up experiments
show that both AprioriSome and AprioriAll scale lin�
early with the number of customer transactions� They
also have excellent scale�up properties with respect to
the number of transactions in a customer sequence and
the number of items in a transaction�

In some applications� the user may want to know
the ratio of the number of people who bought the
	rst k � items in a sequence to the number of
people who bought the 	rst k items� for � � k �
length of sequence� In this case� we will have to make
an additional pass over the data to get counts for all
pre	xes of large sequences if we were using the Apri�
oriSome algorithms� With the AprioriAll algorithm�
we already have these counts� In such applications�
therefore� AprioriAll will become the preferred algo�
rithm�

These algorithms have been implemented on several
data repositories� including the AIX 	le system and
DB������� as part of the Quest project� and have been
run against data from several data� In the future� we
plan to extend this work along the following lines

 Extension of the algorithms to discover sequential
patterns across item categories� An example of
such a category is that a dish washer is a kitchen
appliance is a heavy electric appliance� etc�

0

0.5

1

1.5

2

2.5

3

10 20 30 40 50

R
e
la

tiv
e
 T

im
e

of Transactions Per Customer

200
100
50

0

0.5

1

1.5

2

2.5

3

2.5 5 7.5 10 12.5

R
e
la

tiv
e
 T

im
e

Transaction Size

200
100
50

Figure ��
 Scale�up
 Number of Items per Customer

 Transposition of constraints into the discovery al�
gorithms� There could be item constraints �e�g�
sequential patterns involving home appliances� or
time constraints �e�g� the elements of the patterns
should come from transactions that are at least d�
and at most d� days apart�

References

��� R� Agrawal� T� Imielinski� and A� Swami� Mining
association rules between sets of items in large
databases� In Proc� of the ACM SIGMOD Con�

ference on Management of Data� pages ���!����
Washington� D�C�� May ����

��� R� Agrawal and R� Srikant� Fast algorithms
for mining association rules� In Proc� of the

VLDB Conference� Santiago� Chile� September
����� Expanded version available as IBM Re�
search Report RJ���� June �����

�� R� Agrawal and R� Srikant� Mining sequential
patterns� Research Report RJ ����� IBM Al�
maden Research Center� San Jose� California� Oc�
tober �����

��� S� Altschul� W� Gish� W� Miller� E� Myers� and
D� Lipman� A basic local alignment search tool�
Journal of Molecular Biology� �����

��� A� Califano and I� Rigoutsos� Flash
 A fast look�
up algorithm for string homology� In Proc� of the
�st International Converence on Intelligent Sys�

tems for Molecular Biology� Bethesda� MD� July
����

��� T� G� Dietterich and R� S� Michalski� Discovering
patterns in sequences of events� Arti�cial Intelli�
gence� ��
���!��� �����

��� L� Hui� Color set size problem with applica�
tions to string matching� In A� Apostolico�
M� Crochemere� Z� Galil� and U� Manber� ed�
itors� Combinatorial Pattern Matching� LNCS

���� pages ��!��� Springer�Verlag� �����

��� M� Roytberg� A search for common patterns in
many sequences� Computer Applications in the

Biosciences� ����
��!��� �����

��� M� Vingron and P� Argos� A fast and sensitive
multiple sequence alignment algorithm� Com�

puter Applications in the Biosciences� �
���!����
�����

���� J� T��L� Wang� G��W� Chirn� T� G� Marr�
B� Shapiro� D� Shasha� and K� Zhang� Combina�
torial pattern discovery for scienti	c data
 Some
preliminary results� In Proc� of the ACM SIG�

MOD Conference on Management of Data� Min�
neapolis� May �����

���� M� Waterman� editor� Mathematical Methods for

DNA Sequence Analysis� CRC Press� �����

���� S� Wu and U� Manber� Fast text searching al�
lowing errors� Communications of the ACM�
�����
�!��� October �����

