
LATENT SEMANTIC INDEXING 

Taking a Holistic View 
Regular keyword searches approach a document collection with a kind of accountant mentality: a 
document contains a given word or it doesn't, with no middle ground. We create a result set by 
looking through each document in turn for certain keywords and phrases, tossing aside any 
documents that don't contain them, and ordering the rest based on some ranking system. Each 
document stands alone in judgement before the search algorithm - there is no interdependence of 
any kind between documents, which are evaluated solely on their contents.  
Latent semantic indexing adds an important step to the document indexing process. In addition to 
recording which keywords a document contains, the method examines the document collection as a 
whole, to see which other documents contain some of those same words. LSI considers documents 
that have many words in common to be semantically close, and ones with few words in common to 
be semantically distant. This simple method correlates surprisingly well with how a human being, 
looking at content, might classify a document collection. Although the LSI algorithm doesn't 
understand anything about what the words mean, the patterns it notices can make it seem 
astonishingly intelligent.  
When you search an LSI-indexed database, the search engine looks at similarity values it has 
calculated for every content word, and returns the documents that it thinks best fit the query. 
Because two documents may be semantically very close even if they do not share a particular 
keyword, LSI does not require an exact match to return useful results. Where a plain keyword 
search will fail if there is no exact match, LSI will often return relevant documents that don't contain 
the keyword at all. 
To use an earlier example, let's say we use LSI to index our collection of mathematical articles. If 
the words n-dimensional, manifold and topology appear together in enough articles, the search 
algorithm will notice that the three terms are semantically close. A search for n-dimensional 
manifolds will therefore return a set of articles containing that phrase (the same result we would 
get with a regular search), but also articles that contain just the word topology. The search engine 
understands nothing about mathematics, but examining a sufficient number of documents teaches it 
that the three terms are related. It then uses that information to provide an expanded set of results 
with better recall than a plain keyword search. 
Ignorance is Bliss 
We mentioned the difficulty of teaching a computer to organize data into concepts and demonstrate 
understanding. One great advantage of LSI is that it is a strictly mathematical approach, with no 
insight into the meaning of the documents or words it analyzes. This makes it a powerful, generic 
technique able to index any cohesive document collection in any language. It can be used in 
conjunction with a regular keyword search, or in place of one, with good results. 
Before we discuss the theoretical underpinnings of LSI, it's worth citing a few actual searches from 
some sample document collections. In each search, a red title or astrisk indicates that the document 
doesn't contain the search string, while a blue title or astrisk informs the viewer that the search 
string is present. 

• In an AP news wire database, a search for Saddam Hussein returns articles on the Gulf 
War, UN sanctions, the oil embargo, and documents on Iraq that do not contain the Iraqi 
president's name at all.  

• Looking for articles about Tiger Woods in the same database brings up many stories about 
the golfer, followed by articles about major golf tournaments that don't mention his name. 
Constraining the search to days when no articles were written about Tiger Woods still brings 
up stories about golf tournaments and well-known players.  

• In an image database that uses LSI indexing, a search on Normandy invasion shows 
images of the Bayeux tapestry - the famous tapestry depicting the Norman invasion of 
England in 1066, the town of Bayeux, followed by photographs of the English invasion of 
Normandy in 1944.  

In all these cases LSI is 'smart' enough to see that Saddam Hussein is somehow closely related to 
Iraq and the Gulf War, that Tiger Woods plays golf, and that Bayeux has close semantic ties to 
invasions and England. As we will see in our exposition, all of these apparently intelligent 
connections are artifacts of word use patterns that already exist in our document collection. 

http://javelina.cet.middlebury.edu/lsa/iraq_sample.htm
http://javelina.cet.middlebury.edu/lsa/tiger_woods.htm
http://javelina.cet.middlebury.edu/lsa/normandy_invasion.htm


HOW LSI WORKS 

The Search for Content 
We mentioned that latent semantic indexing looks at patterns of word distribution (specifically, word 
co-occurence) across a set of documents. Before we talk about the mathematical underpinnings, 
we should be a little more precise about what kind of words LSI looks at.  
Natural language is full of redundancies, and not every word that appears in a document carries 
semantic meaning. In fact, the most frequently used words in English are words that don't carry 
content at all: functional words, conjunctions, prepositions, auxilliary verbs and others. The first 
step in doing LSI is culling all those extraeous words from a document, leaving only content words 
likely to have semantic meaning. There are many ways to define a content word - here is one recipe 
for generating a list of content words from a document collection:  

1. Make a complete list of all the words that appear anywhere in the collection  
2. Discard articles, prepositions, and conjunctions  
3. Discard common verbs (know, see, do, be)  
4. Discard pronouns  
5. Discard common adjectives (big, late, high)  
6. Discard frilly words (therefore, thus, however, albeit, etc.)  
7. Discard any words that appear in every document  
8. Discard any words that appear in only one document  

This process condenses our documents into sets of content words that we can then use to index our 
collection. 
Thinking Inside the Grid 
Using our list of content words and documents, we can now generate a term-document matrix. 
This is a fancy name for a very large grid, with documents listed along the horizontal axis, and 
content words along the vertical axis. For each content word in our list, we go across the 
appropriate row and put an 'X' in the column for any document where that word appears. If the 
word does not appear, we leave that column blank. 
Doing this for every word and document in our collection gives us a mostly empty grid with a sparse 
scattering of X-es. This grid displays everthing that we know about our document collection. We can 
list all the content words in any given document by looking for X-es in the appropriate column, or 
we can find all the documents containing a certain content word by looking across the appropriate 
row. 
Notice that our arrangement is binary - a square in our grid either contains an X, or it doesn't. This 
big grid is the visual equivalent of a generic keyword search, which looks for exact matches 
between documents and keywords. If we replace blanks and X-es with zeroes and ones, we get a 
numerical matrix containing the same information. 
The key step in LSI is decomposing this matrix using a technique called singular value 
decomposition. The mathematics of this transformation are beyond the scope of this article (a 
rigorous treatment is available here), but we can get an intuitive grasp of what SVD does by 
thinking of the process spatially. An analogy will help.  
Breakfast in Hyperspace 
Imagine that you are curious about what people typically order for breakfast down at your local 
diner, and you want to display this information in visual form. You decide to examine all the 
breakfast orders from a busy weekend day, and record how many times the words bacon, eggs and 
coffee occur in each order. 
You can graph the results of your survey by setting up a chart with three orthogonal axes - one for 
each keyword. The choice of direction is arbitrary - perhaps a bacon axis in the x direction, an eggs 
axis in the y direction, and the all-important coffee axis in the z direction. To plot a particular 
breakfast order, you count the occurence of each keyword, and then take the appropriate number of 
steps along the axis for that word. When you are finished, you get a cloud of points in three-
dimensional space, representing all of that day's breakfast orders. 

http://javelina.cet.middlebury.edu/lsa/top_words.htm
http://www.acm.org/sigmm/MM98/electronic_proceedings/huang/node4.html


 
If you draw a line from the origin of the graph to each of these points, you obtain a set of vectors 
in 'bacon-eggs-and-coffee' space. The size and direction of each vector tells you how many of the 
three key items were in any particular order, and the set of all the vectors taken together tells you 
something about the kind of breakfast people favor on a Saturday morning.  
What your graph shows is called a term space. Each breakfast order forms a vector in that space, 
with its direction and magnitude determined by how many times the three keywords appear in it. 
Each keyword corresponds to a separate spatial direction, perpendicular to all the others. Because 
our example uses three keywords, the resulting term space has three dimensions, making it 
possible for us to visualize it. It is easy to see that this space could have any number of dimensions, 
depending on how many keywords we chose to use. If we were to go back through the orders and 
also record occurences of sausage, muffin, and bagel, we would end up with a six-dimensional 
term space, and six-dimensional document vectors.  
Applying this procedure to a real document collection, where we note each use of a content word, 
results in a term space with many thousands of dimensions. Each document in our collection is a 
vector with as many components as there are content words. Although we can't possibly visualize 
such a space, it is built in the exact same way as the whimsical breakfast space we just described. 
Documents in such a space that have many words in common will have vectors that are near to 
each other, while documents with few shared words will have vectors that are far apart. 
Latent semantic indexing works by projecting this large, multidimensional space down into a smaller 
number of dimensions. In doing so, keywords that are semantically similar will get squeezed 
together, and will no longer be completely distinct. This blurring of boundaries is what allows LSI to 
go beyond straight keyword matching. To understand how it takes place, we can use another 
analogy.  
Singular Value Decomposition 
Imagine you keep tropical fish, and are proud of your prize aquarium - so proud that you want to 
submit a picture of it to Modern Aquaria magazine, for fame and profit. To get the best possible 
picture, you will want to choose a good angle from which to take the photo. You want to make sure 
that as many of the fish as possible are visible in your picture, without being hidden by other fish in 
the foreground. You also won't want the fish all bunched together in a clump, but rather shot from 
an angle that shows them nicely distributed in the water. Since your tank is transparent on all sides, 
you can take a variety of pictures from above, below, and from all around the aquarium, and select 
the best one. 
In mathematical terms, you are looking for an optimal mapping of points in 3-space (the fish) onto 
a plane (the film in your camera). 'Optimal' can mean many things - in this case it means 
'aesthetically pleasing'. But now imagine that your goal is to preserve the relative distance between 
the fish as much as possible, so that fish on opposite sides of the tank don't get superimposed in 
the photograph to look like they are right next to each other. Here you would be doing exactly what 
the SVD algorithm tries to do with a much higher-dimensional space. 
Instead of mapping 3-space to 2-space, however, the SVD algorithm goes to much greater 
extremes. A typical term space might have tens of thousands of dimensions, and be projected down 
into fewer than 150. Nevertheless, the principle is exactly the same. The SVD algorithm preserves 
as much information as possible about the relative distances between the document vectors, while 
collapsing them down into a much smaller set of dimensions. In this collapse, information is lost, 
and content words are superimposed on one another.  

Information loss sounds like a bad thing, but here it is a blessing. What we are losing is noise 
from our original term-document matrix, revealing similarities that were latent in the document 



collection. Similar things become more similar, while dissimilar things remain distinct. This 
reductive mapping is what gives LSI its seemingly intelligent behavior of being able to correlate 
semantically related terms. We are really exploiting a property of natural language, namely that 
words with similar meaning tend to occur together.  
 
LSI EXAMPLE - INDEXING A DOCUMENT 

Putting Theory into Practice 
While a discussion of the mathematics behind singular value decomposition is beyond the scope of 
our article, it's worthwhile to follow the process of creating a term-document matrix in some detail, 
to get a feel for what goes on behind the scenes. Here we will process a sample wire story to 
demonstrate how real-life texts get converted into the numerical representation we use as input for 
our SVD algorithm.  
The first step in the chain is obtaining a set of documents in electronic form. This can be the hardest 
thing about LSI - there are all too many interesting collections not yet available online. In our 
experimental database, we download wire stories from an online newspaper with an AP news feed. 
A script downloads each day's news stories to a local disk, where they are stored as text files. 
Let's imagine we have downloaded the following sample wire story, and want to incorporate it in our 
collection: 

O'Neill Criticizes Europe on Grants 
PITTSBURGH (AP) 

Treasury Secretary Paul O'Neill expressed irritation 
Wednesday that European countries have refused to go 
along with a U.S. proposal to boost the amount of 
direct grants rich nations offer poor countries. 
The Bush administration is pushing a plan to increase 
the amount of direct grants the World Bank provides 
the poorest nations to 50 percent of assistance, 
reducing use of loans to these nations.  

The first thing we do is strip all formatting from the article, including capitalization, punctuation, and 
extraneous markup (like the dateline). LSI pays no attention to word order, formatting, or 
capitalization, so can safely discard that information. Our cleaned-up wire story looks like this: 

o'neill criticizes europe on grants treasury secretary 
paul o'neill expressed irritation wednesday that 
european countries have refused to go along with a us 
proposal to boost the amount of direct grants rich 
nations offer poor countries the bush administration 
is pushing a plan to increase the amount of direct 
grants the world bank provides the poorest nations to 
50 percent of assistance reducing use of loans to 
these nations  

The next thing we want to do is pick out the content words in our article. These are the words we 
consider semantically significant - everything else is clutter. We do this by applying a stop list of 
commonly used English words that don't carry semantic meaning. Using a stop list greatly reduces 
the amount of noise in our collection, as well as eliminating a large number of words that would 
make the computation more difficult. Creating a stop list is something of an art - they depend very 
much on the nature of the data collection. You can see our full wire stories stop list here. 
Here is our sample story with stop-list words highlighted: 

o'neill criticizes europe on grants treasury secretary 
paul o'neill expressed irritation wednesday that 
european countries have refused to go along with a US 
proposal to boost the amount of direct grants rich 
nations offer poor countries the bush administration 
is pushing a plan to increase the amount of direct 
grants the world bank provides the poorest nations to 
50 percent of assistance reducing use of loans to 
these nations  

Removing these stop words leaves us with an abbreviated version of the article containing content 
words only: 

http://javelina.cet.middlebury.edu/lsa/stop_list.htm


o'neill criticizes europe grants treasury secretary 
paul o'neill expressed irritation european countries 
refused US proposal boost direct grants rich nations 
poor countries bush administration pushing plan 
increase amount direct grants world bank poorest 
nations assistance loans nations  

However, one more important step remains before our document is ready for indexing. Notice how 
many of our content words are plural nouns (grants, nations) and inflected verbs (pushing, 
refused). It doesn't seem very useful to have each inflected form of a content word be listed 
seperately in our master word list - with all the possible variants, the list would soon grow unwieldy. 
More troubling is that LSI might not recognize that the different variant forms were actually the 
same word in disguise. We solve this problem by using a stemmer. 
Stemming  
While LSI itself knows nothing about language (we saw how it deals exclusively with a mathematical 
vector space), some of the preparatory work needed to get documents ready for indexing is very 
language-specific. We have already seen the need for a stop list, which will vary entirely from 
language to language and to a lesser extent from document collection to document collection. 
Stemming is similarly language-specific, derived from the morphology of the language. For English 
documents, we use an algorithm called the Porter stemmer to remove common endings from 
words, leaving behind an invariant root form. Here are some examples of words before and after 
stemming: 

information -> inform 
presidency -> presid 
presiding -> presid 
happiness -> happi 
happily -> happi 
discouragement -> discourag 
battles -> battl 
And here is our sample story as it appears to the stemmer:  

o'neill criticizes europe grants treasury secretary 
paul o'neill expressed irritation european countries 
refused US proposal boost direct grants rich nations 
poor countries 
bush administration pushing plan increase amount 
direct grants world bank poorest nations assistance 
loans nations  

Note that at this point we have reduced the original natural-language news story to a series of word 
stems. All of the information carried by punctuation, grammar, and style is gone - all that remains 
is word order, and we will be doing away with even that by transforming our text into a word list. It 
is striking that so much of the meaning of text passages inheres in the number and choice of 
content words, and relatively little in the way they are arranged. This is very counterintuitive, 
considering how important grammar and writing style are to human perceptions of writing. 
Having stripped, pruned, and stemmed our text, we are left with a flat list of words: 
 
  
 administrat 
 amount 
 assist    
 bank    
 boost     
 bush 
 countri (2) 
 direct 
 europ 
 express 
 grant (2) 
 increas 
 irritat 
 loan      
 nation (3) 



 o'neill 
 paul 
 plan 
 poor (2)   
 propos 
 push 
 refus 
 rich 
 secretar 
 treasuri 
 US 
 world 
This is the information we will use to generate our term-document matrix, along with a similar word 
list for every document in our collection. 



THE TERM-DOCUMENT MATRIX 

Doing the Numbers 
As we mentioned in our discussion of LSI, the term-document matrix is a large grid representing 
every document and content word in a collection. We have looked in detail at how a document is 
converted from its original form into a flat list of content words. We prepare a master word list by 
generating a similar set of words for every document in our collection, and discarding any content 
words that either appear in every document (such words won't let us discriminate between 
documents) or in only one document (such words tell us nothing about relationships across 
documents). With this master word list in hand, we are ready to build our TDM. 
We generate our TDM by arranging our list of all content words along the vertical axis, and a similar 
list of all documents along the horizontal axis. These need not be in any particular order, as long as 
we keep track of which column and row corresponds to which keyword and document. For clarity we 
will show the keywords as an alphabetized list. 
We fill in the TDM by going through every document and marking the grid square for all the content 
words that appear in it. Because any one document will contain only a tiny subset of our content 
word vocabulary, our matrix is very sparse (that is, it consists almost entirely of zeroes).  
Here is a fragment of the actual term-document marix from our wire stories database:  
 
Document:  a  b  c  d  e  f  g  h  i  j  k  l  m  n  o  p  q  r   { 3000 more columns }      
 
 
 
 
aa       0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  ...   
amotd    0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  ...   
aaliyah  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  ...   
aarp     0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  ...   
ab       0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  ...   
... 
zywicki  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  ...   

 
We can easily see if a given word appears in a given document by looking at the intersection of the 
appropriate row and column. In this sample matrix, we have used ones to represent 
document/keyword pairs. With such a binary scheme, all we can tell about any given 
document/keyword combination is whether the keyword appears in the document.  
This approach will give acceptable results, but we can significantly improve our results by applying a 
kind of linguistic favoritism called term weighting to the value we use for each non-zero 
term/document pair.  
Not all Words are Created Equal 
Term weighting is a formalization of two common-sense insights:  

1. Content words that appear several times in a document are probably more meaningful than 
content words that appear just once.  

2. Infrequently used words are likely to be more interesting than common words. 

The first of these insights applies to individual documents, and we refer to it as local weighting. 
Words that appear multiple times in a document are given a greater local weight than words that 
appear once. We use a formula called logarithmic local weighting to generate our actual value. 
The second insight applies to the set of all documents in our collection, and is called global term 
weighting. There are many global weighting schemes; all of them reflect the fact that words that 
appear in a small handful of documents are likely to be more significant than words that are 
distributed widely across our document collection. Our own indexing system uses a scheme called 
inverse document frequency to calculate global weights. 
By way of illustration, here are some sample words from our collection, with the number of 
documents they appear in, and their corresponding global weights. 

word     count     global weight 



 
 
 
unit       833     1.44 
cost       295     2.47 
project    169     3.03 
tackle     40      4.47 
wrestler   7       6.22 
 
You can see that a word like wrestler, which appears in only seven documents, is considered twice 
as significant as a word like project, which appears in over a hundred.  
There is a third and final step to weighting, called normalization. This is a scaling step designed to 
keep large documents with many keywords from overwhelming smaller documents in our result set. 
It is similar to handicapping in golf - smaller documents are given more importance, and larger 
documents are penalized, so that every document has equal significance. 
These three values multiplied together - local weight, global weight, and normalization factor - 
determine the actual numerical value that appears in each non-zero position of our term/document 
matrix.  
Although this step may appear language-specific, note that we are only looking at word frequencies 
within our collection. Unlike the stop list or stemmer, we don't need any outside source of linguistic 
information to calculate the various weights. While weighting isn't critical to understanding or 
implementing LSI, it does lead to much better results, as it takes into account the relative 
importance of potential search terms. 
The Moment of Truth 
With the weighting step done, we have done everything we need to construct a finished term-
document matrix. The final step will be to run the SVD algorithm itself. Notice that this critical step 
will be purely mathematical - although we know that the matrix and its contents are a shorthand for 
certain linguistic features of our collection, the algorithm doesn't know anything about what the 
numbers mean. This is why we say LSI is language-agnostic - as long as you can perform the steps 
needed to generate a term-document matrix from your data collection, it can be in any language or 
format whatsoever.  
You may be wondering what the large matrix of numbers we have created has to do with the term 
vectors and many-dimensional spaces we discussed in our earlier explanation of how LSI works. In 
fact, our matrix is a convenient way to represent vectors in a high-dimensional space. While we 
have been thinking of it as a lookup grid that shows us which terms appear in which documents, we 
can also think of it in spatial terms. In this interpretation, every column is a long list of coordinates 
that gives us the exact position of one document in a many-dimensional term space. When we 
applied term weighting to our matrix in the previous step, we nudged those coordinates around to 
make the document's position more accurate.  
As the name suggests, singular value decomposition breaks our matrix down into a set of smaller 
components. The algorithm alters one of these components ( this is where the number of 
dimensions gets reduced ), and then recombines them into a matrix of the same shape as our 
original, so we can again use it as a lookup grid. The matrix we get back is an approximation of the 
term-document matrix we provided as input, and looks much different from the original:  
 
             a       b       c       d       e       f       g       h       i       j       k           
  
 
 
 
aa      -0.0006 -0.0006  0.0002  0.0003  0.0001  0.0000  0.0000 -0.0001  0.0007  0.0001  0.0004 ...   
amotd   -0.0112 -0.0112 -0.0027 -0.0008 -0.0014  0.0001 -0.0010  0.0004 -0.0010 -0.0015  0.0012 ...   
aaliyah -0.0044 -0.0044 -0.0031 -0.0008 -0.0019  0.0027  0.0004  0.0014 -0.0004 -0.0016  0.0012 ...   
aarp     0.0007  0.0007  0.0004  0.0008 -0.0001 -0.0003  0.0005  0.0004  0.0001  0.0025  0.0000 ...   
ab      -0.0038 -0.0038  0.0027  0.0024  0.0036 -0.0022  0.0013 -0.0041  0.0010  0.0019  0.0026 ...   
... 
zywicki -0.0057  0.0020  0.0039 -0.0078 -0.0018  0.0017  0.0043 -0.0014  0.0050 -0.0020 -0.0011 ...   

 



Notice two interesting features in the processed data:  

• The matrix contains far fewer zero values. Each document has a similarity value for most 
content words.  

• Some of the similarity values are negative. In our original TDM, this would correspond to a 
document with fewer than zero occurences of a word, an impossibility. In the processed 
matrix, a negative value is indicative of a very large semantic distance between a term and 
a document.  

This finished matrix is what we use to actually search our collection. Given one or more terms in a 
search query, we look up the values for each search term/document combination, calculate a 
cumulative score for every document, and rank the documents by that score, which is a measure of 
their similarity to the search query. In practice, we will probably assign an empirically-determined 
threshold value to serve as a cutoff between relevant and irrelevant documents, so that the query 
does not return every document in our collection. 
The Big Picture 
Now that we have looked at the details of latent semantic indexing, it is instructive to step back and 
examine some real-life applications of LSI. Many of these go far beyond plain search, and can 
assume some surprising and novel guises. Nevertheless, the underlying techniques will be the same 
as the ones we have outlined here.  
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