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An analytical method based on the kinematic limit approach is presented for stability analysis of nailed soil slopes.

Earthquake effects were considered in an approximate manner in terms of seismic coefficient-dependent horizontal

forces. Two kinds of failure surfaces, a planar failure surface and a circular failure surface, were considered in this

study. The proposed method can be viewed as an extension of the method of slices, but it provides a more accurate

treatment of forces because they are represented in an integral form. The factor of safety and nail forces obtained by

the proposed method were found to be in good agreement with the published results for an 8 m high vertical soil-

nailed wall.

Notation
Basic SI units are given in parentheses.

c cohesion of soil (N/m2)

Fs factor of safety (dimensionless)

G weight of soil wedge (N/m)

H height of slope (m)

h height of elementary slice (m)

Kh horizontal seismic acceleration coefficient

(dimensionless)

Kt average tensile strength of reinforcement (N/m)

N normal force on the base of slice (N/m)

n number of reinforcement layers (dimensionless)

R maximum shear resistance acting on the base of slice

(N/m)

S shear force on the base of slice (N/m)

Ti tensile strength of reinforcement per unit horizontal

spacing (N/m)

Tmax maximum axial force in nail (kN)

t thickness of rupture layer (mm)

[v] velocity jump vector (dimensionless)

Æ angle of inclination of reinforcement (8)

� slope angle (8)

ª unit weight of soil (kN/m3)

_� strain rate (dimensionless)

Ł angle of failure plane (8)

º non-negative scalar multiplier (dimensionless)

� angle of inclination of reinforcement with velocity of

discontinuity (8)

� soil friction angle (8)

_ø angular velocity of rotation (rad/s)

1. Introduction
Soil nailing is one of the recent techniques available for stabilis-

ing in situ soil slopes or cuts. The process of soil nailing includes

installation of nails in excavated cuts or in slopes either by

driving or grouting in predrilled holes. The stability of the slope

face between nails is ensured by providing thin layers of shotcrete

reinforced with wire mesh. The nails are generally steel bars,

metal tubes or other metal rods that can resist not only tensile

force but also shear stress and bending moment. The nailing

method has been used in both granular and cohesive soils and in

relatively heterogeneous deposits.

The general consensus among practising engineers is that soil-

nailed walls perform reasonably well under seismic conditions.

However, documented performance of soil-nailed systems is

almost non-existent in the literature. Most of the literature

(Gassler, 1988; Koseki et al., 1998; Matsuo et al., 1998;

Sakaguchi, 1996; Sivakumar Babu and Singh, 2008) on nailed

soil structures emphasises the mechanism of reinforcement and

the design of structures under static load only. The failure

mechanisms for slopes under static loading have typically been

extended to stability analysis of slopes under seismic loading

using a pseudo-static approach (Mononobe and Matsuo, 1929),

but the effects of seismic excitation on the failure pattern of

slopes have not been addressed. Only a handful of full-scale and

model tests in the laboratory have been conducted on a soil-

nailed system (Giri and Sengupta, 2009; Tufenkjian and Vucetic,

2000; Vucetic et al., 1993). Consequently only limited data on

the earthquake resistance and corresponding failure mechanisms

for steep nailed slopes are available to date. The seismic
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resistance and the failure mechanism of a nailed soil slope during

an earthquake event are not clearly understood and need to be

investigated properly.

There are several methods currently available for the design of

soil-nailed slopes, such as the German method (Stocker et al.,

1979), the Davis method (Mitchell and Villet, 1987), the method

developed by Gassler and Gudehus (1981), the French method

(Schlosser, 1982), and the finite-element method (Dawson et al.,

1999, Griffiths and Lane, 1999). The first four methods are based

on the limit equilibrium approach whereas the fifth one is based

on the limit analysis. The finite-element method is certainly the

most comprehensive approach to analyse the performance of soil

structures subjected to seismic loading. However, it requires

accurate measurement of the properties of the component materi-

als, which is often difficult to achieve. In addition, further

difficulties arise from modelling failure in frictional materials.

The majority of the existing methods of design and analysis of a

soil-nailed system are based on the pseudo-static approach, where

the effect of earthquake on a potential failure soil mass is

represented by a horizontal force acting at the centre of gravity.

The horizontal force is calculated as the product of a seismic

intensity coefficient and the weight of the potential sliding mass.

The stability of soil structures under this force is expressed by a

factor of safety which is usually defined as the ratio of the

resisting force to the destabilising force. Failure occurs when the

safety factor drops below 1. However, pseudo-static analysis is

generally considered conservative, since even when the factor of

safety drops below 1, the soil structures could experience a finite

displacement rather than a complete failure.

An alternative analytical method is presented here based on the

kinematics theorem of limit analysis to study the stability of

reinforced slopes under the seismic loading condition. The

kinematic theorem (Juran et al., 1988, 1990) states that slopes

will collapse if the rate of work done by external loads and body

forces exceeds the energy dissipation rate for any assumed

kinematically admissible failure mechanism. Soil deformation is

assumed to be plastic and failure is associated with Coulomb’s

yield condition.

In the present approach, the following assumptions were made.

(a) The effect of pore pressure build-up and change of soil

strength due to earthquake shaking were ignored. In most

cases, weep holes are provided in the walls for safe drainage

of water from behind the wall. Furthermore, the backfill soil

is usually chosen as cohesionless and free-draining material.

(b) The slope is made of homogeneous cohesionless soil. Strictly

speaking, soil is not a homogeneous material, but it is often

assumed to be one, only to simplify the calculations in hand.

(c) The reinforcement layers are finite in number and have the

same length. Seldom, nails of different length and dimension

are utilised in a wall construction.

(d ) The resistance to shear, bending and compression is ignored.

The nails are typically not designed for bending and

compressional loads.

(e) The critical failure surface is assumed to pass through the toe

of the slopes. For the shallow failure surfaces, spalling of the

face wall is ignored as they may not necessarily represent the

critical case.

( f ) The available pullout resistance is assumed to be either the

bond strength between soil and reinforcement or the tensile

strength of the reinforcement, whichever is smaller. This is a

very common assumption in the traditional design of bond

length.

Under the above assumptions, the reinforcements provide tensile

forces acting in the horizontal direction. The rate of external

work is due to soil weight and inertia force induced by the

earthquake and the only contribution to energy dissipation is that

provided by the reinforcement.

The possible failure modes considered are illustrated in Figures 1

to 3.

Figure 1 shows a rotational mechanism involving a circular

failure surface passing through the toe of a slope of height, H,

angle, �, and with reinforcements of uniform length, LT: The

circular failure surface may extend within (in Figure 1(a)) and

also beyond (in Figure 1(b)) the reinforced zone. Figure 2 shows

a translational slope failure mechanism. Figure 3 shows the direct

sliding mechanism, in which the reinforced soil mass slides over

the bottom layers. Let us assume that a rigid plastic body

occupies a domain V, and v is a velocity field on V with a

discontinuous boundary S. When a particle tends to move to S

from the negative side to the positive side of the velocity field, a

unit velocity vector normal to S can be defined as a velocity jump

vector (Jacov, 1996). As shown in Figures 1 to 3, the velocity

jump vector, v, makes an angle equal to the angle of friction �
with the failure surface(s). The slope is unstable when one of the

above-considered failure mechanisms occurs.

2. Methods of analysis
An analytical method based on the kinematics limit equilibrium

(Juran et al., 1988, 1990) is presented for the stability analysis of

nailed soil slopes. It is assumed in kinematic approach of limit

analysis that the soil and the reinforcements are perfectly plastic

and their deformation is governed by associated flow rule.

Mathematically, _�p1ij ¼ º
@ f (� ij)

@� ij

º > 0 if f ¼ 0 and º ¼ 0 if f , 01:

Where _�p1ij is the plastic strain rate tensor in a kinematically

admissible velocity field, � ij is the stress tensor associated with

strain rate tensor, º is a non-negative scalar multiplier and

f (� ij) ¼ 0 is the yield criteria. Mohr–Coulomb failure criteria
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are assumed and the discontinuity vector (velocity jump) is

assumed to be inclined to the rupture surface at the angle of

internal friction, �.

The kinematics theorem of limit analysis (Juran et al., 1988,

1990) states that when the rate of work done by the external

forces and the body forces exceeds the rate of internal dissipation

energy, the structure will collapse. This theorem is usually

referred to as the upper bound theorem, because it allows the

calculation of an upper bound to the limiting force causing

failure.

Michalowski (1998) represented this theorem mathematically as

ð
V

D( _� IJ )dV >

ð
S

TividS þ
ð
V

ªividV
2:

The left-hand side of the equation represents the rate of energy

dissipation (D) during an incipient failure of a structure and the

right-hand side includes the rate of work done by all the external

forces. In the above equation, Ti is the stress vector on the

boundary S, vi is the velocity vector in the kinematically

admissible mechanism. ªi is the specific weight and V is the

volume of the mechanism (refer to Figure 4). The mathematical

form of the theorem states that the rate of energy dissipation is

not less than the rate of work done by external forces in any

kinematically admissible failure mechanism. The total force on

the boundary, S, can be calculated only if velocity, vi, on this

boundary is constant. If the geometry of the structure is given

and all loads and material parameters are known, the safety factor

can be calculated. Earthquake effects are considered in terms of

seismic coefficient-dependent horizontal forces. Two kinds of

failure surfaces were considered in this study, namely a planar

failure surface and a circular failure surface. The proposed

method is an extension of the method of slices (Duncan and

Wright, 2005), but it provides a more accurate treatment of forces

because they are represented in an integral form.

ω

ω

Reinforcement

Reinforcement

ν

ν

φ

φ

Circular failure

Circular failure

Toe

Toe

H

H

LT

LT

(a)

(b)

Figure 1. Circular failure surface: (a) extended within reinforced

zone; (b) extended beyond reinforced zone

H
φν

Sliding (planar) failure surface

LT

�

Figure 2. Translational slope failure mechanism

H

φ
φ

ν0

ν1

Failure surface

LT

�

Figure 3. Direct sliding mechanism
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2.1 Planar failure surface

Failure surfaces in homogeneous or layered non-homogeneous

sandy slopes are essentially planar. A planar failure surface may

occur in a slope where permeable soils such as sandy soil and

gravel or other permeable soils with some cohesion exist and

where shear strength is principally provided by friction. For

cohesionless sandy soils the planar failure surface may occur if

strong planar discontinuities develop, as in the soil beneath the

ground surface in natural hillsides or in a man-made cutting.

Figure 5(a) shows a plane failure surface, AB for a slope with

height, H and slope angle �. In the elementary slice, defg, as

shown in Figure 5(b), the self-weight of the slice is given by

dG ¼ ªhdx where ª is the unit weight of soil and h is the height

of the slice. This method assumes that resultant inter-slice forces

Xl and Xr acting on de and fg, respectively, are equal and opposite

and
P

(X l � X r) may be zero for the whole failure wedge. The

inter-slice shearing forces acting on faces de and fg are opposite

and parallel to each other and may be neglected when equilibrium

of the total section is considered. The normal and shearing forces

on the sliding surface, ef, are given by

N ¼ ªhdx cos Ł� Khªhdx sin Ł3:

S ¼ ªhdx sinŁþ Khªhdx cos Ł4:

where Ł is the angle of the failure plane and Kh is the horizontal

seismic coefficient.

The normal force, N, can produce a maximum shearing resis-

tance, R, given by

R ¼ cdx sec Łþ ªhdx(cos Ł� Kh sinŁ) tan�5:

The equation of line AB in Figure 5(a) is, y1 ¼ x tan �: The

equation of line AC is, y2 ¼ x tanŁ and that of line CB is

y3 ¼ H.

The total rate of work done is given by

_W ¼ ªv cos� sin Ł

ð
(y1 � y2)dxþ

ð
(H � y2)dx

� ��

þ Kh cos Ł

ð
(y1 � y2)dxþ

ð
(H � y2)dx

� ��
6:

T Boundary surface S
εi
.

εi
.

ν

V

Figure 4. Problem domain for the kinematic limit analysis
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Figure 5. (a) Planar failure mechanism; (b) forces acting on

elementary slice defg
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¼ ªv cos� sin Ł

ð l

0

(x tan �� x tan Ł)dx

"(

þ
ð L

l

(H � x tan Ł)dx

#

þ Kh cos Ł

ð l

0

(x tan �� x tan Ł)dx

"

þ
ð L

l

(H � x tan Ł)dx

#)
7:

The above expression can be simplified to

_W ¼ v cos�(sin Łþ Kh cos Ł)G8:

where G is the weight of failed soil wedge and given by

G ¼ ªH2

2
(cot Ł� cot �)9:

The rate of internal energy dissipation due to cohesion and

tensile force of reinforcement may be expressed as

_D ¼ Rv cos�þ v cosj
X

Ti cos(Łþ Æ)

þ v sin�
X

Ti sin(Łþ Æ)10:

where
P

Ti is the sum of tensile reinforcement force per

horizontal spacing of reinforcement.

Substituting for R and on simplifying

D ¼ cH

sin Ł
þ Gv cos�(cos Ł� Kh sin Ł) tan�

þ v cosj
X

Ti cos(Łþ Æ)

þ v sin�
X

Ti sin(Łþ Æ)11:

Now factor of safety can be expressed as a ratio of Equations 11

and 8 as

Fs ¼
cH

sin Ł
þ G(cos Ł� Kh sin Ł) tan�

G(sin Łþ Kh cos Ł)

þ
X

Ti cos(Łþ Æ)þ tan�
X

Ti sin(Łþ Æ)

G(sin Łþ Kh cos Ł)12:

2.2 Circular failure surface

Figure 6 shows a potential circular failure surface AB with

centres (a, b) and radius r. Earthquake effect is approximated by

a horizontal force equal to KhG acting through the centre of

gravity of the soil wedge. A number of vertical slices are

assumed. The free body diagram of a typical vertical slice defg is

shown in Figure 6. The self-weight of the slice is given by

dG ¼ ªhdx, where dx is the elemental width of slice. The inter-

slice forces Xl and Xr acting on de and fg, respectively, are equal

Y
ω

a  b, r x a b y2 2
3

2�    � � �( ) ( )

Reinforcement

C

�0

�f
B

g

d

d

g

y H2 �
r

r

b y� 3

ν φ

y x1 tan� �

Circular failure
y3

X
lA

e f
�

h
K Ghd

Xr

dG
X1

f

e

dR

x a�

dN

dX

Forces acting on slice defg

dS

Figure 6. Circular failure mechanism
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and opposite and parallel to the base of slice ef.
P

(X l � X r) is

zero for the whole failure mass.

Resolving the forces acting on the base of slice ef

dN ¼ ªhdx cos Ł� Khªhdx sin Ł13:

dS ¼ ªhdx sinŁþ Khªhdx cos Ł14:

where Ł ¼ sin�1 x� að Þ=r and r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
15:

The force dN can produce a maximum shearing resistance dR

given by

dR ¼ cdx sec Łþ ªhdx(cos Ł� sin Ł) tan�

dR ¼ cdx sec Łþ ªhdx(cos Ł� sin Ł) tan�16:

where c is the cohesion of the soil.

The equation of line, AB, in Figure 6, is

y1 ¼ x tan �17a:

The equation of line BC is

y2 ¼ H17b:

The equation of the circular failure surface AC is

y3 ¼ b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � (x� a)2

q
17c:

Then the total rate of work done can be equal to the sum of work

done by dS and is given by

_W ¼ ªvcos� sinŁ

ð l

0

(y1 � y3)dxþ
ð L

l

(H � y3)dx

" #(

þ Kh cosŁ

ð l

0

(y1 � y3)dxþ
ð L

l

(H � y3)dx

" #)

¼ ªvcos�(Is þ Kh Ic)18:

where

Is ¼
ð l

0

(y1 � y3) sin Łdxð Þ þ
ð L

l

(y2 � y3) sin Łdx

¼ H2=2
� �

[(a cot �þ b)� H=3ð Þcosec2�]19:

Ic ¼
ð l

0

(y1 � y3) cos Łdxþ
ð L

l

(y1 � y3) cosŁdx

¼ tan �

6r
[2r2 þ (l � a)2]

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � (l � a)2

q

þ b tan �

r

a2

2
þ b2

3

� 	
þ r

2
(a tan �� H) sin�1 l � a

r

� 	

þ r

2
(a tan �� b) sin�1 a

r
� r

2
(b� H) sin�1 L� a

r

� 	

þ 1

6r
[4r2L� ab2 þ (L� a)(H � a)2]

20:

where

l ¼ H cot � and

L ¼ aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � (b� H)2

q
l ¼ H cot �21:

The rate of dissipation of internal energy is due to shear

resistance and is given by

_D ¼
ð
dRv cos�

¼ v cos�[

ð L

0

c sec Łdx

þ
ð l

o

ª(y1 � y3)(cos Ł� Kh sinŁ) tan�dx

þ
ð L

l

ª(y2 � y3)(cos Ł� Kh sin Ł tan�)dx]

¼ v cos�[rc�þ ª tan�(I c � Kh Is)]22:

where

� ¼ sin�1 L� að Þ=r

 �

þ sin�1 a=rð Þ23:

The rotational failure mechanism is represented by a circular
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failure surface. For a given slope angle and internal angle of

friction, the toe failure is fully described by two parameters W0
and Wf as shown in Figure 6. Rupture of the reinforcement is

interpreted as a plastic flow process consistent with the flow rule.

The energy dissipation rate in a single reinforcement intersecting

a velocity discontinuity can be derived assuming that the

discontinuity is of finite-thickness, t, with a high-velocity gradient

as shown in Figure 7.

The reinforcement contributes to the stability of the structures

only through its tensile strength (reinforcement resistance to

shear, torsion and bending is neglected). The kinematics requires

that the velocity jump vector [v] be inclined to the velocity

discontinuity at an angle of internal friction �. The reinforcement

is inclined to the velocity discontinuity at an angle � as shown in

Figure 7. No reinforcement is assumed to be pulled out and

sector PQ with length (t=sin �) (where t is the thickness of

rupture layer) is subjected to plastic flow. The rate of energy

dissipation in a single reinforcement intersecting a velocity

discontinuity per unit horizontal spacing of reinforcement may be

calculated as

D ¼
ð t=sin �ð Þ

0

Tl _�dx

¼ Tl[v] cos(�� �)24:

where Tl is the limit tensile force in the reinforcement per unit

horizontal spacing and _� is the strain rate in the direction of

reinforcement.

The strain rate in the reinforcement is given by

_� ¼ [v]
cos(�� �)

t sin �25:

The average strength Kt of reinforcement is given by

Kt ¼ nTl

cosÆ

H26:

where n is the number of reinforcement layers.

The energy dissipation rate per unit area of the discontinuity

surface becomes

_D ¼
ð t= sin �

0

Kt sin �dx _�

¼ Kt[v] cos(�� �) sin �27:

For a circular failure surface, the energy dissipation rate per

infinitesimal length (rdW) increment (refer to Figure 7) is given

by

d _D ¼ Kt _ør2
ð
cos(Wþ Æ� �) sin(Wþ Æ)dW

28:

where _ø is the rate of rotation.

Integrating from W0 to Wf and assuming Kt to be constant

_D ¼ Kt _ør2
ðWf
W0
cos(Wþ Æ� �) sin(Wþ Æ)dW

¼ Kt _ør2(cos�f[sin2 (W0 þ Æ)� sin2 (Wf þ Æ)]=2g

þ sin�f[ Wf � W0ð Þ=2]

� [(sin 2(Wf þ Æ)Þ=4]

þ [(sin 2(W0 þ Æ)Þ=4]g)29:

The total rate of internal energy dissipation is the sum of

cohesive and tensile reinforcement forces and is given by

_D¼ vcos�[rc�þª tan�(Ic� Kh Is)]

þ Kt _ør2(cos�f sin2 (W0þÆ)� sin2 (Wf þÆ)

 �

=2g

þ sin�f Wf �W0ð Þ=2

 �

� sin2(Wf þÆ)ð Þ=4½ �

þ sin2(W0þÆ)ð Þ=4½ �g)30:

The factor of safety, Fs, is calculated by taking the ratio of

Equations 30 and 18, and is given by

t

P

�

αQ

φ[ ]v

Ti

r

d�

�0

r

[ ]v
φ

Velocity jump vector

Figure 7. Velocity jump vector
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Fs ¼
rcłþ ª tan�(Ic � Kh Is)

ª(Is þ Kh Ic)

þ Kt r
f[sin2 (W0 þ Æ)� sin2 (Wf þ Æ)]=2g

ª(I s þ Kh I c)

0
B@

þ tan�f[ Wf � W0ð Þ=2]� [ sin 2(Wf þ Æ)ð Þ=4]
þ[ sin 2(W0 þ Æ)ð Þ=4]g

ª(Is þ Kh Ic)

1
CA

31:

It may be observed from Equation 31 that the factor of safety for

a given slope is a function of parameters such as the coordinate

of failure circle (a, b), angle Wf and W0, and angle Æ. Thus

minimum value of Fs can be found using the minimisation

technique.

3. Verification of the proposed method
The published results reported by Sivakumar Babu and Singh

(2008) for a soil-nailed wall supporting a vertical cut of 8 m high

under seismic condition were utilised here to verify the present

method of analysis. The geometry of the soil-nailed wall support-

ing the vertical cut is shown in Figure 8. The 8 m high wall was

designed in conventional manner by using the allowable stress

design procedure. The soil nails were 4.7 m long and placed in

100 mm diameter drill holes. They were grouted in place at 1 m

apart at an angle of 158 with the horizontal axis. The wall was

analysed numerically by using the finite-element method. The

seismic records from Bhuj (Iyengar and Raghu Kanth, 2002) and

Uttarkashi (Chandrasekaran and Das, 1992) earthquakes were

utilised in the reported pseudo-static and dynamic analyses of the

wall. The external failure mode of the nailed soil wall in terms of

global stability and sliding stability was studied under static,

pseudo-static as well as dynamic conditions. In the present study,

the published pseudo-static results reported in the paper were

compared with the results of the present analysis. The horizontal

seismic coefficient, kh, for the pseudo-static analysis correspond-

ing to the Bhuj and Uttarkashi earthquake was adopted from the

paper and given as 0.106 and 0.241, respectively. All other

material parameters adopted from the literature (Sivakumar Babu

and Singh 2008) and utilised in the present analysis are given in

Table 1. Since the critical failure surface in the backfill was not

given in the referred paper, it was found by the minimisation

technique and shown in Figure 8. The factor of safety corre-

sponding to the failure surface was first calculated from Equation

31. The total rate of internal energy dissipated was reduced from

the corresponding factor of safety value. The rate of internal

energy dissipated due to tensile reinforcement force was obtained

from the value of total energy dissipated. The tensile force in the

reinforcements was calculated from Equation 26. In the above

calculations, the velocity jump vector [v] was kept constant, as

factor of safety value is independent of velocity jump. Table 2

shows the comparison between the published results and the

results from the present theory. The factors of safety against

global stability of the nailed wall for the Bhuj and Uttarkashi

earthquakes were found to be 0.91 and 0.78, respectively. These

values are comparable with the corresponding published results

(0.95 and 0.81). The maximum axial force in the nails as

predicted by the present method was found to be 32.4 and

37.98 kN, respectively, for the Bhuj and Uttarkashi earthquakes.

These values are also comparable with the corresponding pub-

lished results.

0·5 m

CIP concrete
facing

Weep hole

8 m
1 m

15°

Ground surface

Grouted
soil nails
100 mm
diameter

4·70 m

Figure 8. The geometry of the soil-nailed wall supporting an 8 m

vertical cut

Parameter Value

Cohesion of the backfill soil, c: kPa 1.0

Friction angle of the backfill soil, �: 8 30.0

Unit weight of the backfill soil, ª: kN/m3 16.0

Slope angle, �: 8 0.0

Angle of inclination of nails, Æ: 8 15.0

Nail length: m 4.7

Maximum axial tensile load capacity of nails, Ti: kN 83.44

Table 1. Material parameters for the soil-nailed wall
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4. Conclusions
An analytical method based on the kinematic limit approach has

been developed for stability analysis of soil-nailed slopes. Two

kinds of failure surfaces, a planar and a circular failure surface,

are considered in the formulation. The proposed method can be

viewed as an extension of the method of slices, but it provides a

more accurate treatment of forces because they are represented in

an integral form. The published result of a soil nail wall

supporting a vertical cut of 8 m high is utilised to verify the

performance of the new methodology. The maximum axial force

in the nails and the factor of safety predicted by the proposed

method are found to be in good agreement with the correspond-

ing published results for the 8 m high soil-nailed vertical cut

under seismic conditions.
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WHAT DO YOU THINK?

To discuss this paper, please email up to 500 words to the

editor at journals@ice.org.uk. Your contribution will be

forwarded to the author(s) for a reply and, if considered

appropriate by the editorial panel, will be published as a

discussion in a future issue of the journal.

Proceedings journals rely entirely on contributions sent in

by civil engineering professionals, academics and students.

Papers should be 2000–5000 words long (briefing papers

should be 1000–2000 words long), with adequate illustra-

tions and references. You can submit your paper online via

www.icevirtuallibrary.com/content/journals, where you

will also find detailed author guidelines.
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