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ABSTRACT 

A new thermodynamic theory for frictional material has been reviewed. The 
model, though does not require any a priori yield criteria, degenerates to 
different elastic-plastic theories as special cases showing prominent yield 
surface(s) and satisfying Drucker's postulates. The model takes into account 
initial anisotropy, stress-induced anisotropy, compressibility and the stress- 
history dependency often exhibited by frictional materials, llke soil. A 
complete derivation of the theory from the principles of thermodynamics has been 
given and material parameters for an ordinary sand and a cemented sand have been 
obtained from laboratory test results to highlight different features of the 
model and its flexibility to model different material behavior. 

INTRODUCTION 

In most of the granular soils and concrete where contact friction between 

grains obey Coulomb's law, Hill's principle of maximum work and Drucker's 

postulate do not apply. Mandel (1964), Rice (1971) and others have proven a 

long time ago that Drucker's postulate is a sufficient condition of stability 

and not a necessary one. Recently, Lade (1987) reported results of some 

experiments that were stable yet violated Drucker's stability conditions both 

in the large and in the small. It has also been observed in cyclic tests that 

negative plastic work must be done upon a stress reversal if the plastic strain 

is not zero (i.e., the plastic strain increment is in the opposite direction 
I 
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from the stress). Theories based on the fundamental laws of thermodynamcis, 

instead of Drucker°s postulate, circumvent the above mentioned difficulties 

often encountered in modeling behavior of frictional materials like soils~ 

In this paper a thermodynamic model based on second law of thermodynamics 

has been reviewed. The model (Valanis and Peters, 1988) does take into account 

initial anisotropy, stress-induced anisotropy, compressibility (pressure 

dependency) and the stress-history dependency often exhibited by materials like 

soils. Also, unlike many plasticity theories, load reversal in the 

thermodynamic theory under investigation comes about naturally a major 

advantage of the theory. The thermodynamic theory under consideration differs 

from the Endochronic theory of Valanis and Read [32] in many respects. 

Endochronic theory was developed for metals and concrete and thus permitted only 

shear-induced contraction. The theory was not suitable for frictional 

materials, like soils, which show dilatancy during shearing. The present theory 

models contraction as well as dilatancy exhibited by most of the soils The 

original Endochronic theory was criticized because it showed openness of the 

hysteresis loop and did not satisfy Drucker°s postulates. In the present theory 

above problems have been rectified by introducing a weakly singular kernel 

function in the formulation. The new theory not only exhibits hysteresis loop 

closure but also satisfies Drucker's stability postulates under certain 

situations. The greatest triumph of the present theory is that it does not 

require any a priori definition of yield function, yet depending on the chosen 

material parameters, it automatically degenerates to various established elasto- 

plastic constitutive theories showing prominent yield surfaces. Commonly 

observed behaviors of soils like dilation, strain-softening, etc., are admitted 

by the theory due to the very fact that the second law of thermodynamics is not 

violated under these situations as long as the entropy of the whole system 

remains positive. Thus the thermodynamic theory under investigation possesses 

the ability to model the constitutive behaviors of a large number of different 

types of material. The theory attempts to unify different prevailing plasticity 

theories in the sense that they may be obtained and justified as special cases 

of the present theory. 

A complete derivation of the theory from the basic principles of 

thermodynamics has been shown. Procedures for the material parameters 

determination have been delineated with two different examples. Attempts have 

been made to explain the physical meaning of each material parameter and its 

relations to traditional soil mechanics principles. 



THE THERMODYNAMIC THEORY 

The theory under consideration is different from the classical theories 

of plasticity in that it is based on irreversible thermodynamic principles 

instead of conservation of mechanical energy. The theory is guided by the 

requirement of positive entropy production to satisfy Clausius-Duhem inequality. 

Attempts to introduce thermodynamics to describe the behavior of different 

materials are not new. In the mld-1950's, Blot published a series of papers 

(1954, 1955, 1956) and showed how irreversible thermodynamics can be combined 

with a mechanical theory to form a basis for a thermomechanical theory of small 

visco-elastic deformation. Truesdall (1965) carried on Blot's work further and 

developed axiomatic approach to describe complex nonlinear behavior of solids. 

In 1964, Coleman developed a thermodynamic theory of a simple material. He 

presented a series of axioms based on the principles of fading memory to show 

stress, heat flow, internal energy and entropy as functional of the history of 

the deformation gradient and temperature as well as functions of current 

temperature. 

Kestln and Rice (1971) in their papers discussed the difficulties 

encountered in extending thermostatics to the description of irreversible 

processes in solid materials. They examined the role of internal variables in 

bringing inelastic behavior within the framework of the classical theory. They 

proved the existence of a potential function of stress for rate dependent 

materials, at each set of internal variables from which the inelastic strain 

rate may be derived. Rice (1971) has discussed the role of internal variables 

by which inelastic structural rearrangements of a rate dependent material can 

be related to its macroscopic deformation. He applied this kind of theory to 

metals deforming plastically through dislocation motion. Oden (1973) and 

Perzyna (1968) have also discussed the use Of internal variables to describe the 

material behavior. 

It is to be noted that a constitutive relation based on thermodynamic laws 

has certain restrictions. For a constitutive law of this type to hold good, it 

is essential that for the material under investigation a free energy density 

function,~, should exist and should be dlfferentiable at every stage. In 

general ~ is a function of strains, %j, temperature, 8 and n internal 

variables, q~), which may be infinite in number and are representative of the 

material's internal structure. If # exists and is dlfferentlable then the 

following thermodynamic relations will hold good: 

a~ 
~i j -  a~q (1) 

= - a -~  ( 2 )  



ov oI" Oo ,) = - - - y ; 7  .: k o 
oqij  

Q!9 Oe 
,~ = ~ ( . )  h i = h ' i i O )  h, O i < O  (3) 

oqi j ' , -- 
where, aij are the stress tensors, ~ is the entropy density, Q~ are the 

internal forces, h i are the heat flux vectors, #o is the reference temperature 

and Ki3 are the thermal conductivity tensors. 

In 1967 Valanls proposed that the internal forces, QI~ >, are proportional 

to the intrinsic time rate of change of ~(=) uij , that is, 

Q!,.) = b (0 dq~ ) 
,~ ~kL dZ (4) 

where Z is an intrinsic time measure and dZ is the infinitesimal increment of 

Z. bijkl is a fourth order positive definite tensor (also known as "resistance" 

tensor) and is a material property in the sense that in general it will vary 

from material to material. 

In the original theory, Valanis defined incremental intrinsic time measure 

as 

dZ2 = Pijkl dEij dskl (5) 

where Pijk~ is a fourth order positive definite tensor. Above definition shows 

nonelastic unloading-reloading and openness of hysteresis loop. So it was later 

redefined as the length of the path in plastic strain space instead of total 

strain space. Mathematically it may be written as 

dZ 2 = Pijkt dEi 5 d ~ t  (5a) 

where d~j and de[t are the plastic strain vectors. 

If the definition of internal forces, Q~) is substituted in the equation 

(3), it is possible to write 

d fir) 
O~b h(r) -Y~I = 0  r =  1 ,2 , . .  , n .  b_(r) + ~ijkl dZ  

For  i s o t r o p i c  m a t e r i a l s ,  V a l a n i s  and  Read [32] have  shown t h a t  i t  i s  p o s s i b l e  

t o  have  u n c o u p l e d  d e v i a t o r i c  and  h y d r o s t a t i c  r e s p o n s e s .  I f  t h e  s u b s c r i p t  D and 

H r e f e r  t o  t h e  d e v i a t o r i c  and h y d r o s t a t i c  p a r t s ,  r e s p e c t i v e l y ,  t h e n  i t  i s  

possible to express ~b as follows: 

¢' = ~,o + ~n (6) 



@D and~can be further partitioned into elastic (denoted by superscript e) and 

plastic (denoted by superscript p) components such that 

and 

where, 

and 

'¢D = ¢~, + e~ (7) 

¢,~, = ~:~(~,) (9) 

¢,~ = ¢,~(~p, 4~,)) (1o) 

¢,~i = ¢ 7 , ( : )  (11) 

~,~ = , / ,~ ( : ,p t , ) )  (12) 

m e are elastic (deviatoric) strains, e p are plastic (deviatoric) strains, ee are 

elastic (hydrostatic) strains, E p are plastic (hydrostatic) strains,-qCr} are 

devlatorlc components of internal variables and pCr) are the hydrostatic 

components of the internal variables. 

From the theory of irreversible thermodynamics, it is possible to write 

a~p (13) 

with 

0~<,> > o, lld4C~)II > o (14) 

and 

a = 0 ¢ ~  
Oep (15) 

with 

- 0,¢~) dp¢~) > 0, Idp¢,)l > o (16) 

where ~ and a a r e  the  d e v i a t o r i c  and h y d r o s t a t i c  s t r e s s e s ,  r e s p e c t i v e l y .  

It has been shown [32] that if quadratic forms for the free energies are 

assumed then the expressions for the free energy are reducible to the following 

canonical forms given below 



- % I1" 
r = l  

1 ~ ~(r)(c p - -  n(r)~2 
e~,= ~ - , -~k  , '~k,  ( i S )  

r=l 
where  A or> and  B(r~are  f o u r t h  o r d e r  p o s i t i v e  d e f i n i t e  t e n s o r s  t o  b e  d e f i n e d  

later. 

So, it is possible to write 

0¢'5 b?,' '~°(~) 
04(,. ) + - - ~  = 0 (19) 

o~,('.) ~ = o (2o) 

where b~ ) and b~ ) are the resistance coefficients in shear and hydrostatic 

deformation, respectively. Both b~[ ) and b~ ) are functions of intrinsic time 

scale and can be expressed as 

-1~ fD(Z) (21) 

and 

b~)(Z) = b~ ~) fH(Z)  (22) 

where, b~ r) and b°~ r) are constants and f0(Z) and fs(Z) are the hardening 

parameters for deviatoric and hydrostatic conditions, respectively. If f0 and 

fH increase with Z, the material will harden, while if they decrease with Z, the 

material will exhibit softening behavior. But under no circumstances they can 

be negative quantities. 

It is possible now for one to introduce a material time scale as 

d z  ~- = dZ~ + k ~ ~Z ~. (23)  

where 
dZ 

dZ 
dZH = , f .  = l d : l  (25) 

and k is a coupling term. i d~ denotes norm of the incremental plastic 

devlatoric strain tensor and I de~ represents the absolute value of plastic 

hydrostatic strain. 

With the above definitions it is possible to write 
0~/'~ + b~, ) d~ (,) (26) 
Oq(') ~ = 0 

0~,~ ,,o(,'} dP (') (27) 
o ~p(")' + ~22 ~ = 0 
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Substituting the expression for~and~ into the above equations and defining 
internal forces Qr and Pr as 

Or = 0¢~ (28) 
04(') 

p~= O@~ (29) 
Op( r ) 

it is possible to write equations (26) and (27) as 

- d O , -  d~P 

and 

dPr _ de p 

where, 

(30) 

(31) 

and 

If it is assumed that, at Z H = Z D = 0 

and 

A r  
Or = ha(,.) 

~II 

ar ~r-- 
bO(O 22 

Or(o) = 0 :  

Pr(O) = PC 

integration of the equations (30) and (31) yields 

and 

~o z" 8~P 
= p(zv - z) - ~  dZ 

~o zH OE p a = ~(Zn - Z) ~-~ d Z  

where, 

(32) 

(33) 

(34) 

(35) 

(36) 

(3T) 

p(zo) = ~ Ar e - ° ' z °  
r 

~(Zn) = E B,. e - ~ ' z n  
r 



In order to satisfy the Clauslus-Duhem inequality, it is necessary that a r ~ O, 

~r ~ 0 and A~ ~ 0, B z ~ 0. Moreover, to ensure that p(Z~) and ~(Z~) are singular 

at the origin and integrable over a finite domain, we must have 

p(o) = i A ~  = ~ (3s) 
r=l 

~(o) = ~ B ~  =oc (39) 
r= |  

and 

A~ < ~ ,  < c~ (40) 

r = l  Or = 

I t  may be  n o t e d  t h a t  w h i l e  t h e  sums o f  t h e  i n t e r n a l  f o r c e s  Qt and  Pr a r e  

a s s u m e d  t o  be  z e r o  i n i t i a l l y  ( i . e . ,  a t  Zu - Z D - 0 ) ,  t h e y  do n o t  r e q u i r e  t h e  

i n d i v i d u a l  i n t e r n a l  f o r c e s  t o  be  i d e n t i c a l l y  z e r o  i n i t i a l l y .  Thus t h e  above  

equations have implications regarding initial anisotropy as discussed by Valanis 

and Peters [31]. 

The soils, unlike metals, are in general compressible materials. The 

response of coheslonless soils, subjected to shear, depends on the initial 

relative density of the soil. If the initial relative density is less than a 

critical value, that is, a loose soil, the shear stress typically increases 

monotonically with increasing shear strain to a limiting shear stress, the value 

of which depends on the confining pressure. The volume of the soll will 

contract up to a certain limit after which the soil starts to behave like a 

dense incompressible material. If, however, the initial relative density is 

greater than critical, that is a dense soil, the stress-strain curve will first 

increase to a peak stress and then decrease towards a finite limiting stress 

depending on the confining pressure. The volume of the soil may first 

experience contraction due to initial densificatlon of the soil particles but 

later on shows large dilation with the emergence of cracks and sometimes shear 

bands. 

In the Endochronic theory of Valanis and Read (eqns. (36) and (37)), 

coupling between shear and hydrostatic components is achieved through the 

definition of the intrinsic time scale (refer to eqn. (23)) which permits only 

shear-lnduced contraction. To take care of the dilation part during shearing, 

the theory needs to be modified. To incorporate such behavior, a coupling term 

into the hydrostatic rate equations has been introduced giving rise to a 

coupling between shear and hydrostatic components that can produce either 

contraction or dilation. 

It has been assumed that though the devlatoric plastic work is a cause of 



hydrostatic plastic strain, it is external to the hydrostatic process in the 

sense that it is not a hydrostatic mechanism. Thus it qualifies as a 

thermodynamic internal force of the first kind in the sense of Valanis [31}. 

Thus, the thermodynamic equations appropriate to represent the plastic 

behavior of a frictional material, like soil, are given by 

d~l(") of.,~ + h ( ,  ~ = 0 (41/ 
Of 1(,) dZ 

0~,~ + b~,,J "~ --dPd;) = R, (4"2) 
Op(') 

where 

O~P (43} Ib = -b2t(~}~ • -~ -  

It may be noted that equation (41) is the same as equation (26). But unlike 

equation (27), equation (42) contains an additional term R r given by equation 

(43) through which the coupling between the hydrostatic and deviatoric strain 

rates and the corresponding internal forces are achieved. In the above equation 

and ~ are given by equations (17) and (18), and b~ ~, b~ ~ and b~[ ~ are kno~ 

as resistance coefficients or Onsager coefficients, b~[ ) and b~are not 

constants but are related to the hardening functions fD and fHby equations (21) 

and (22). The coefficient b22 in a frictional material will depend very 

strongly on the prevailing hydrostatic stress, a, as well as on the porosity (or 

equivalently the density or plastic volumetric strain, ~P) and the dependence 

is likely t o  be substantially additive. 

Like before if it is assumed that, at Z a - Z n 

0, . (o)  = o 

and P~(O) = 0 

it is possible to express the deviatoric and hydrostatic stresses as 

and 

where, 

- 0  

(44) 

(45) 

N 
p(ZD) = ~ Ar e - a ' z °  (45) 

t = l  

N 
¢(ZH) --- ~ B~ e - o ' z "  (49) 

r = l  

Zo O~p (46) 
= p ( z o  - z )  T f  dZ 

~ , ,  / z .  0~, / z .  o~, 
= - T  = ¢(zH - z )  -g-f d z  + r ( z .  - z )  8.  -g-f d z  (47) 
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r ( z . )  = )__., ~. 7J-z (50) 
r = l  

If it is assumed that the effect of the deviatoric plastic work rate is 

distributed uniformly among all the hydrostatic mechanisms (Valanis and Peters, 

1988) then, 

b~, (') = b~l (St) 

and I ' (Zu)  = b~l ~(ZH) (52) 

Equations (46) and (47), which represent the constitutive relations of the 

new thermodynamic theory, may or may not show a yield surface. Whether they 

will show any particular yield shape or not depends very much on the choice of 

the internal variables. A yield surface is a mathematical consequence of 

representing at least one of the exponential terms of the kernel function with 

a Dirac-delta function. 

It may be shown that the above two integral equations (eqns. (46) and (47) 

may be alternatively expressed as 

and 

where, 

and 

deV (53) 

d¢p d~ v 1 da 
(a-r')=¢°'j~-HH+r°~'" dZ So dZH 

(54) 

fo ZO O~v . _  ( 5 5 )  
= pI(ZD - Z)~-Zaz 

- O ~ v  dZ FI ( ZH - Z)  s . ~-~ ( 5 6 )  ~o Z" OE v /o z" r' = ~ , ( Z .  - Z)  - ~  dZ + 

40, P0, ro are material parameters defined later and 41, Pt and F I are functions 

like 4, P and F respectively. Thus the equation for the yield surface can be 

written as 

: '°:° d'- " (5:> 
I1~- ~11 ~ + ~,~} (~' - "')- po:o J polo = o 

Above equation describes a yield behavior that includes both kinematic and 

isotropic hardening. If f0 and fH are constant, the behavior is purely 

kinematic. For incompressible material, like metals, where @ofH ~ =, the 

devlatoric projection of the yield surface is circular with radius 9ofD showing 

Von Mises type of yield surface. While for compressible materials like soils 

and concrete, where r~o, the projection in the deviatoric plane is non-circular. 
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The Mohr-Coulomb type of behavior may be accomplished by assuming that the 

hydrostatic response may he represented by the summation of a series containing 

only a single exponential term, thus 

¢(Ztt) = ¢ , , ~ ( Z H )  ( 5 S )  

and  

where,  

r(zn) = r o f g * ( Z n )  (59) 

= D i r a c - D e h a  funct ion 
N 

r = |  

For this  par t icu la r  case, the  hydros ta t ic  s t ress  may  be expressed as : 

(60) 

ak.k k dsv o '= ~ = ¢ o f t I  ' - K  + ro~. 

For purely hydrost~rtic condi t ions  ( 3 = 0, 3v = 0 ) 

d~ v 1 da 

dZ ¢o dzH 
(61) 

ao = a funct ion o[ E v (62) 

for all ao. 

To achieve a Mohr-Coulomb type of behavior 

parameter should be expressed in the following form 

f o  = ~o + 'IC 

the deviatoric hardening 

(63) 

where 6 o and ~ are material parameters and o is the mean stress. 

It has been shown (Valanis and Peters, 1988 [31]) that under constant 

hydrostatic stress condition, deviatoric and hydrostatic plastic strains may be 

related by the following equation 

d~V 1 - ro 2 S "= 
k - -  = - -  ( 6 4 )  

dep 
fHFoS" + ~ / f ~  + F~S "2 - 1 

with 

a n d  

ftl = (I - ~1)e ae" + ~:t (65) 

8 
s "  = - -  ( 6 6 )  

Go 
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In the above equation F o is a coupling term which relates the shear-induced 

volume change to the deviatoric plastic work. ~ and 41 are material parameters 

and 40 is any suitable large number needed for the closure of hysteresis loops 

under hydrostatic loading cycles. 

DETEEM~N~T~ON OF MATERIAL PARAMETERS 

Material parameters for constitutive models derived from principles other 

than traditional elasticity and plasticity theories are often criticized for not 

having any physical meaning to go with them. Based on the above theory, 

material parameters have been derived for an ordinary sand and a cemented sand 

to illustrate the fact that the material parameters for the thermodynamic theory 

do possess physical meaning and they can he related to prevailing elastic and 

plastic material parameters. It has been shown here that all the parameters can 

be obtained from a series of consolidated drained triaxial test results. There 

are more than one way to determine material parameters, as will be sho%~ below, 

depending on the material behaviors to be modelled and availability of data. 

In this paper only the material parameters have been derived for the above two 

materials. The actual predictions of the model along different stress paths 

will be discussed in a different place. 

A detailed description of the sand which has been used here for 

verification purposes may be obtained from the proceedings of the International 

Workshop on Constitutive Equations for Granular Non-Cohesive Soils (1987). The 

information contains results of hydrostatic tests and triaxial compression and 

extension tests performed at different initial spherical stresses. Out of the 

two type of sands utilized in the conference, data on the sand referred to as 

Hostun sand have been utilized for the present investigation. The data 

presented in the workshop may be divided into two large categories: one obtained 

from a hollow cylinder device (like Tests HHI, PHHI, PHH3, etc.) and the other 

obtained from a cubical (true triaxial) device (like Tests CHI, CH2, CHC, etc.) 

For the material parameter determination, the data of the hollow cylinder 

test (labelled as }{HI in this paper) performed under an initial spherical stress 

of 203 KPa has been utilized. Material parameters for Hostun sand are 

determined according to the guideline provided by Peters (1987). Figures I and 

2 show the triaxial and the hydrostatic test results (HHI and HH6) as obtained 

from the proceedings. From the test results, Young's modulus and bulk modulus 

are estimated as 260,000 KPa and 225,000 KPa, respectively. Under purely 

hydrostatic conditions like in Test HH6, the hydrostatic response is given by 

equation (62). The plastic volumetric strains may be calculated using the 

relation 
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a~ (67) 

One suitable form for 4o(¢ p) in equation (62) which fits the experimental 

data may be expressed as 

C~ e ~ (68) 

In the above equation, 4o(¢ p) may be viewed as a strain dependent limiting 

pressure for hydrostatic loading. The constants CI, ~i, C2 and ~2 may be readily 

obtained by a curve fitting the results of the hydrostatic test. A typical 

virgin hydrostatic compression curve for soils is initially convex in shape and 

quickly turn concave in shape as cP becomes greater than zero. In equation 

(68), C 2 and flz control the initial hydrostatic behavior of a material during 

which ~P ~0 and the curve is convex. Once ~P becomes positive and the 

hydrostatic curve becomes concave, the denominator of the above equation becomes 

unity and the other two parameters, C I and ~i, control the behavior of the 

material along the concave portion of the hydrostatic curve. Direct fit of 4o 

to the hydrostatic loading data in the present case poses some difficulties. 

The difficulties arise from the fact that for Hostun sand the hydrostatic test 

is conducted at low pressures while it needs very high pressure for the sand to 

yield. Thus, the hydrostatic data does not represent the virgin consolidation 

curve. Based on past knowledge of behavior of sand and using the fact that the 

predictions do not require an accurate response to changes to a, it has been 

assumed that 4o is a constant. In which case ~i " ~2 " C2 " 0 and C1>a in the 

equation (68). Thus 4o may be considered as an additional constant to be 

determined from equation (64). Equation (64) gives the stress-dilatancy 

relationship which may be conveniently expressed as 

dep a s - r ~  s ~ (69) 

where ,  

f t t =  (1 - ~ l )  ~o + ~1 a (70) 

The above equations allow one to determine material parameters k, F o, 41 and ~o 

from a single triaxial test result. Figure 3 shows the shear-volume 

relationship for the Hostun sand. Plots of (s/a) versus (d¢~/de p) for different 

test (loading part only) results performed at different confining pressure have 

been shown for comparison purposes. It may be seen from the figure that the 

test data of HHI (a 3 - 203 KPa) is quite scattered and needs some kind of 

judgement in fitting procedure. Data for the tests performed at higher 
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confining pressure (HH2 (a 3 - 500 KPa)) show a more or less linear stress- 

dilatancy relationship which is to be expected for a dense sand. In the present 

study, however, the test results of HHI has been used for the calibration 

purposes. It is to be noted from Figure 3 that the test results from the 

cubical device (CHI) is appreciably different from that obtained from the hollow 

device (HHI). This difference will get magnified further while predicting the 

test results for the cubical device, as will be seen in the next section. The 

coupling coefficient, r2o, is defined as the ratio of a/s at which d~-0 and 

thus may be determined directly from Figure 3. The parameter Fo physically 

represents a stress level where the material starts to dilate. The other 

parameters k,w I and ~o may be obtained by solving the equation (69) for other 

sets of points lying on the stress-dilatancy curve. 

For a frictional material (material following Mohr-Coulomb law), the 

functional for of the deviatoric hardening parameter is given by equation (63), 

which physically represents the failure envelope during shearing under constant 

hydrostatic stress, a. The parameters 60 and ~ may be physically interpreted 

as cohesion and tangent of friction angle as in Mohr-Coulomb theory. For pure 

sand 6 o - O and ~ is chosen in such a way that fD = i at some convenient mean 

stress level. Thus as mentioned before fD plays the role of a scaling factor 

that accounts for the mean stress level. Table 1.0 shows the value of the 

parameters k, r o, n, 60 , wl and w o determined for Hostun sand. To have a yield 

surface type of theory ~o (or B) in the equation (61) should be given a suitable 

large value so that 

Oo = B = E B ~  = ~ (71) 

Determination of the parameters A= and ~ ( for r number of mechanisms) requires 

determination of the incremental time scale dZ and the hardening parameter fD' 

Knowing de p, dc p and k it is possible to calculate dZ for every data point of 

a conventional triaxial test. Once dZ and fD are known, it is possible to 

calculate dep/dZD at each point using the relation 

where, 

de ~' JD . . . . .  G(~)  
dZo . / 1  + it. dcP'l ~ 

V I,,. deP ! 

aJ = Z D - Z°D 

(72) 

Thus, the expression for the deviatoric stresses may be specialized for the 
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s(~') = P(~ - J )  G ( J )  d.J'  (73) 

At each ~ n the integral in the above equation can be approximated as a summation 

over n terms; which leads to a system of linear simultaneous equations which may 

be easily solved by successive substitution to produce the following algorithm: 

,lM{~,, ) 
P(~'~ ) = d~ (74) 

where, 
n - I  

M ( ~ . )  = AG1 (75) 

and A G .  = G(a;,,) - G(w.- i  ) (76) 

Both s(w) and G(w) are computed from the test data at equally spaced interval 

and then smoothened prior to determining the incremental values needed for 

equation (74) by fitting each with an exponential series. Figures 4 and 5 show 

the values of s(o~) and (w) with increasing Z v as calculated from the test 

results and the exponential series which are used to smooth the curves. 

Determination of Ar and e: amounts to fitting p(o~) with an exponential 

series subjected to the following constraints 

N 

A = ~Ar = ~ (77) 
r = l  

and 

~ A r  

r = l  ~ r  

= a r  (7S) 

A Fortran program has been developed (Sengupta, 1989), based on equation (69) 

through (76), to compute p(ZD) at equal intervals of Z D. A graphical procedure 

developed by Peters (1987) has been utilized to fit an exponential series to the 

computed values of p(Zn). The procedure is based on the observation that when 

the terms in the series are ordered such that ~1<~z<...<a~, the contribution of 

terms having the larger values of a~ to the summation becomes small as Z D 

becomes a straight line having an intercept at ~ - 0 equal to A I and slope equal 

to a I. By defining a new function p' such that 

p'  = p - A I e  - ~ '  z~ (79) 
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Table 1 Material Parameters for Sand 

FD= 5o+1] % 

F H = ( 1 - ( I )  1) % +  (Pl(~m 

K == 225000.0 KPA 

G = 100000.0 KPA 

k = 0.741 "( = 108 Pcf 

Fo,,, 1.026 

1] = 0.002 

8 == 0.0000001 ~) = 39 Deg. 
o 

~1 = 0 .817  

q)o = 1018.9 

B = 1750000.0 

A 1 = 16480.0 o~ 1 = 83.794 

A 2 =  52000.0 °~2= 403.2 

A 3 = 250000.0 o~ 3 = 773.55 
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The same procedure may be used to determine A 2 and aa, etc. The process is 

repeated until the remainder P'N can be approximated as a straight line or as 

a Dirac delta function. The exponential fitting procedure for p(ZD) has been 

illustrated in Figure 6. It has been found that three terms in the exponential 

series are sufficient to describe p(ZD) for the Hostun sand. Values of A r and 

ar are shown in Table i. It may be necessary to adjust the values of A 3 and ~3 

which represent the response of the initial part of p(ZD), to satisfy the 

constraints given by equations (77) and (78) and the volume change behavior of 

the material. The above discussion exemplifies the determination of material 

parameters from hollow triaxial tests. The parameters can also be determined 

from other tests as well, as shown in other cases. 

The test results used in this study to show the determination of material 

parameters and calibration of the model for a cemented sand are taken directly 

from Avramidis (1985). Out of different types of cemented sands reported in 

that work, a cemented sand with 2% cement content; curing period of 15 days and 

with 80% relative density has been chosen specifically for the present study. 

A detailed description of the cemented sand and the testing procedure followed 

may be obtained from Avramidis (1985). 

Figures 7 and 8 show the conventional triaxial test results at three 

different constant confining pressures. No independent hydrostatic tests were 

performed. So, in absence of any hydrostatic test results, the volumetric 

strains reported in the hydrostatic part at the very beginning of the triaxlal 

tests are utilized to construct Figures 9 and 10. Bulk modulus for the cemented 

san, thus obtained, is shown in Figure 9. Young's modulus and shear modulus for 

the cemented sand at confining pressures of 49 KPa, 245 KPa and 490 KPa are 

shown in Figures 7 and 8. It was found that the bulk modulus obtained from 

Figure 9 does not represent the volumetric response of the material properly, 

since these hydrostatic results were representative of material behavior at very 

small magnitude of confining pressures. So it was decided to use the triaxlal 

test data instead to obtain the bulk modulus at different confining pressures. 

For a conventional triaxial test in which the deviatoric stress (a I - a3) 

increases from zero while the confining pressure is held constant, bulk modulus 

may be defined as 

I f -  (# '  - #3) (84) 
3 ~ 

where e v is the volumetric strain corresponding to the deviatoric stress (o I- 

a3). 
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The value of bulk modulus calculated from the above equation may be found 

to vary somewhat throughout the stress-strain curve. Study of the volume change 

behavior of a wide variety of soils has led to the following criteria for 

selecting which point to be used in calculating bulk modulus: 

I. If the volume change curve does not reach a horizontal tangent 

prior to the stage at which 70% of the strength is mobilized, then 

the point on the stress-straln and volume change curves 

corresponding to a stress level of 70% will be used to calculate 

the bulk modulus. 

2. If the volume change does reach a horizontal tangent prior to the 

stage at which 70% of the strength is mobilized, then the point on 

the volume change curve where the curve becomes horizontal and the 

corresponding point on the stress-strain curve should be used to 

calculate bulk modulus. 

The bulk modull obtained employing the above methodology are shown in 

Figure 7. For the given cemented sand it has been found that the following 

functional forms of Young's modulus and bulk modulus adequately represent the 

constitutive behavior of the material: 

E= 62978.617 + 199.071 ~3 

K = 44660.0 x 10 ° ' ° °°6r~G~ 

In the above relations a a is the confining pressure. 

(s5) 

(s6) 

Knowing E and K, the shear 

modulus, G, may be calculated from the elastic theory. The values of shear 

moduli thus obtained are checked against those obtained directly from the 

triaxial test results and found to be close. 

In the absence of any reliable hydrostatic test results, the 4o will be 

assumed to be a constant for a given confining pressure and thus may be 

obtained, as before, from equation (64). For the given cemented sand, 4o has 

been found to be a function of the confining pressure, a 3 and well represented 

by the following equation: 

. . . . . . .  (87) 

where 4'o, 4''o and ~ are material constants. 

Figure 13 shows the variation of 4o with confining pressure and the assumed 

numerical values for the constants in the above equation. 

Figure ll shows the shear-volume relationship for the cemented sand at 

different confining pressure. The shear-volume relationship depicted by Figure 

ii is significantly different from that obtained for Hostun sand. Unlike Hostun 
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sand, in cemented sand the shear-volume relationship is dependent on the initial 

confining pressure at which the test are conducted. As before a linear 

relationship is assumed for each individual case and the curves are fitted to 

each set of data in such a way that they are parallel to each other. Physically 

this means that the coupling of shear and volumetric parts remains indifferent 

to the confining pressure (k - constant), only the parameter F o will vary 

depending on the confining pressure. Thus the stress level at which the 

material starts to dilate will be shifting depending on the confining pressure. 

The following functional form for F o has been found to work well in the present 

case: 

ro r~ " - 
= - F o e  ~ ( 8 8 )  

where r'o, F'' o and 0 are material constants. 

The variation of F o with the confining pressure and the values of the constants 

in the above equation are shown in Figure 12. Keeping with the prevailing ideas 

in the soll mechanics, the constant volume llne (F o - line) can be alternatively 

expressed by the following hyperbolic equation: 

= q_o+b (89) 
P P 

w h e r e  qo a n d  b a r e  c o n s t a n t s  a n d  c a n  be  d e t e r m i n e d  f rom t h e  q - p  p l o t  ( F i g u r e  14) 

a s  t h e  i n t e r c e p t  on  t h e  q a x i s  and  t h e  s l o p e  o f  t h e  ro l i n e ,  r e s p e c t i v e l y .  For  

t h e  c e m e n t e d  s a n d  t h e  v a l u e s  o f  qo and  b a r e  f o u n d  t o  be  0 . 0 2 2 3  KPa and  0 . 4 9 3 ,  

respectively. 

The other two parameters, k and 41 are obtained in the usual manner from 

equation 41 for two sets of data points lying on the shear-dilatancy curve for 

the case of a 3 - 245 KPa. 

Figure 14 shows the q-p plot and the failure envelope for the given 

cemented sand. The hardening parameters, 60 and ~ are determined from the 

normalized equation of the failure envelope such that f9 - i at a 3 - 245 KPa, 

where the kernel functions are evaluated. 

It may be noted that for the determination of all the material parameters 

including the kernel functions, the result of the conventional triaxial tes~ 

performed at a constant confining pressure of 245 KPa has been utilized. 

Figure 15 shows the variation of s(~) and G(~) with endochronic time 

evaluated from the test results and the smoothened curves used in the 

determination of the kernel functions. It may be noted that in both cases the 

smoothened curves do not fit the initial part of the test results very well and 
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are a potential source of errors. Procedure followed for the determination of 

the kernel functions is described in Figure 16. It may be noted that in 

determining the third set of internal variables, A 3 and ~3, values obtained from 

the best fit are not used. Instead, they are obtained by trial and error such 

that the constraints given in equations (77) and (78) are satisfied and the 

volume change response of the material is well represented. The parameters, A 3 

and ~3 represent the kernel function for the early part of the test. Thus, the 

above measures taken in the determination of both of them may be viewed as an 

attempt to rectify the errors that may have been incurred due to the misfit of 

the smoothening functions of s(~) and G(~) at the initial points of the test 

result. 

CONCLUSIONS 

The c o n s t i t u t i v e  t h e o r y  d e s c r i b e d  above can  model a l m o s t  any m a t e r i a l  

provided the parameters are chosen properly. This model, unlike the previously 

reported endochronic theory (Valanis, 1985), shows closure of hysteresis loop 

and follows Drucker's postulate when the model is simulating the classical 

plastic behavior. The present theory does predict the dilatant behavior of 

frictional materials, like sandy soil, very accurately. Being pseudo-static in 

nature, the theory is also capable of duplicating behavior of materials under 

dynamic conditions. 

The material parameters for the model can be determined from ordinary 

consolidated drained triaxial test results. A number of ways are available, 

based on the type of data available and type of material behavior needs to 

model, for the determination of material parameters. The material parameters 

do possess some physical meaning and they can be explained from traditional soil 

mechanics theories. 
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NOTATIONS 

Deviatoric Internal Variable Constants. 

Material Constant. 

Material Constant. 

Hydrostatic Internal Variable Constants. 

Material Constant Function. 

Material Constant. 

Material Constant. 

Unit Weight of a Material. 

Octahedral Strain Invariant. 
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Plastic Octahedral Strain Invariant. 

Dirac-Delta Function. 

Material Constant. 

Total Strains. 

Elastic Strain. 

Hydrostatic Plastic Strain. 

Plastic Strains. 

Incremental Plastic Strains. 

Total Volumetric Strain. 

Plastic Volumetric Strain. 

Entropy Density. 

Material Constant. 

Poisson's Ratio. 

Intrinsic Time Measure. 

z~= ( -A ) 

Hydrostatic Stress (-a~/3). 

Total Stresses. 

Volumetric Stress. 

Volumetric Stress (--akk). 

Yield Stress of a Material. 

Shear Stress. 

Frictional Angle of a Material. 

ZrBr(-B). 

Material Constant. 

Material Constant. 

A Porosity Dependent Function. 

Material Constant. 

Material Constant. 

Helmholtz Free Energy Density Function. 

Z~A~(-A). 

Deviatorlc Internal Variable Constants. 

ErBr 

Hydrostatic Internal Variable Constants. 

Resistance Coefficient for Shear Part. 

Resistance Coefficient for Hydrostatic Part. 

Resistance Tensors. 

Cohesion of a Material. 

Young's Modulus. 

Devlatoric Elastic Strains. 
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Deviatorie Plastic Strain Invariant. 

Deviatoric Plastic Strains. 

Deviatoric Hardening Function. 

Hydrostatic Hardening Function. 

Shear Modulus. 

Second Invarlant of Stress. 

Bulk Modulus. 
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