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Locating the critical failure surface in a slope stability analysis
by genetic algorithm

Aniruddha Sengupta *, Anup Upadhyay

Department of Civil Engineering, Indian Institute of Technology, Kharagpur 721302, India

A R T I C L E I N F O

Article history:

Received 21 July 2005

Received in revised form 11 January 2006

Accepted 23 April 2008

Available online 15 May 2008

Keywords:

Slope stability

Critical failure surface

Evolutionary algorithm

Genetic algorithm

A B S T R A C T

The slope stability analysis is routinely performed by engineers to evaluate the stability of embankment

dams, road embankments, river training works, excavations and retaining walls. Locating the critical

failure surface of a soil slope is rendered erroneous and cumbersome due to the existence of local minima

points. In case of large soil slopes, engineers face with a search space too large to employ the trial and

error method in a computationally efficient fashion. A genetic algorithm is proposed to locate the critical

surface under general conditions with general constraints. Convergence to any prescribed degree of

precision was achieved with the algorithm. The algorithm has been demonstrated to be computationally

superior to other optimization routines, like, Monte-Carlo method and grid-points approach.
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1. Introduction

The slope stability analysis is routinely performed by engineers
to evaluate the stability of embankment dams, road embankments,
river training works, excavations and retaining walls. The slides
that occurred during the construction of the Panama Canal and
construction of railways in Sweden spurred the engineers all over
the world into a lot of research on various aspects of the stability
analysis. Determination of the potential failure surface (slip
surface) and the corresponding forces tending to cause slip and
to restore or stabilize the sliding mass, and the computation of
available margin of safety are the essential steps in a stability
analysis. The margin of safety or factor of safety for a failure surface
is computed as a ratio of the restraining force (shear strength) over
sliding force (shear stress). Thus, the determination of the critical
failure surface (a failure surface for which factor of safety is
minimum) is central to a slope stability analysis. The presence of
several local minima points in the search space proves to be the
chief problem in a slope stability analysis as demonstrated by Chen
and Shao [1]. The authors of this paper have tried different search
techniques like the ‘‘Grid’’ method and found that the existing
methods fall for local minima even for slopes with simple
geometry. Chen and Morgenstern [2] have also reported the same
findings. In the present paper, a genetic algorithm (GA) has been
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successfully employed to locate the critical failure surface in a soil
slope. Unlike other approaches, which have been demonstrated to
fall for local minima, the GA always zeroed in on the global minima
and found to be computationally efficient even for large slopes.

2. Existing methods for determining critical failure surface

The initial work on locating the critical failure surface in a slope
stability analysis was done by Fellenius [3]. In Fellenius method the
center of the initial critical circle, O, is assumed to be the
intersection of two lines set off from the base and top of the slope. A
point, P, is then fixed 2H below the top of the slope and 4.5H

horizontally from the toe of the slope, H being the height of the
slope. According to Fellenius, the center of the critical failure
surface lies along a line joining the points P and O, and is obtained
by trial and error. The procedure is valid for cohesive soils only. In
1962, Jumikis extended the procedure for general soils. The
procedure is found to be less reliable for irregular and long slopes.
Most of the existing computer programs UTEXAS3 [Edris and
Wright [43]], STABL [Siegel [50]], SLOPE/W [Geo-Slope Intl [44]]
however use a method of search popularly known as ‘Grid’ method.
In this method, the location of the center of the critical surface is
usually found by a 3 by 3, 9-point square grid. The center point of
the first grid and the spacing between the grid points used for the
initial mode of search are to be specified and it should represent a
best estimate of the center of the critical failure surface. The
location of the center point of the grid is shifted during the search
until the center of the grid corresponds to the center of a surface,
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which has a lower value for the factor of safety than any of the eight
other failure circles whose centers are located on the perimeter of
the grid. The spacing between the grid points is also reduced
simultaneously with the progress of the search. The search is
terminated when the grid spacing has been reduced to a specified
distance and the center of the grid corresponds to the lowest factor
of safety. The main problem with this method is that it is quite
rigorous and there is no guarantee that the critical failure surface
as obtained is the global minimum.

With the advent of fast computers, optimization based techni-
ques have become an effective mean of searching for the critical slip
surface in the slope stability analysis. Baker and Garber [4,5] used the
calculus of variations to locate the critical slip surface and to
calculate associated factor of safety. However, the existence of a
minimum in their results were found to be questionable (Luceno and
Castillo [6]). Celestino and Duncan [7], and Li and White [8] used
alternating variable methods to locate the critical slip surface. This
approach is also not practical, as it gets complicated even for a simple
slope. Baker [9] used dynamic programming to determine the
critical slip surface. Chen [10] postulated that using a random trail
search would lead to the global minimum factor of safety. Nguyen
[11] and De Natale [12] used the simplex method, and Chen and Shao
[1] used simplex, steepest descent, and Davidson–Fletcher–Powell
(DFP) methods in conjunction with grid search solution. This
approach too is inefficient if a high accuracy is required which makes
it unsuitable for real problems. Even though these methods may
work for simple problems, there are many limitations associated
with these methods, which have been addressed by Li and White
[13]. Greco [14] presented Monte-Carlo based techniques of the
random walk type to locate the critical slip surface. The trial
solutions are randomly generated and then compared with the best
solution for improvement. However, implementation of this method
in an automatic search requires too many constraints. Husein et al.
[15] also developed an approach for locating the critical slip surface
based on Monte-Carlo techniques. Monte-Carlo based methods
(random walk and random jumping) are simply structured, random
searching and optimization techniques. A large number of trial
surfaces are usually generated to ensure minimum factor of safety.
The search space is demarcated to reduce the amount of
unproductive computation, but there is no guarantee of finding
the lowest factor of safety. This can be effective when the search
space is tightly controlled, but necessitates the analysis of a large
number of solutions. The slope failure potential has been also
evaluated by fuzzy logic [Mathada et al. [16], Dodagoudar and
Venkatachalam [17], Rubio et al. [18] and Giasi et al. [45]]. But this
method is applied to very simple slopes only.

The genetic algorithm has been receiving a lot of attention now
days because of its elegance and efficiency. The genetic algorithm
is being applied to solve a large spectrum of problems numerically,
like, optimization of traffic signal control [Anderson et al. [19]],
subsonic wing design [Shigeru [20]], hydraulic actuator design
[Andersson [21]], city planning [Balling and Wilson [22]], wire-
antenna design [Caswell and Lamont [23]], control systems
[Fleming and Purshouse [24]], ground water monitoring [Reed
and Minsker [25]], water supply system design [Rouhiainen and
Tade [26]], concert hall design [Sato et al. [27]], piled raft
foundation [Ganeshwadi and Dodagoudar [28]], crack detection
in structures [Vakil-Baghmisheh et al. [29], Sahoo and Maity [30]],
etc. In this paper, a new application of the genetic algorithm has
been explored. A search technique based on genetic algorithm has
been proposed in this paper as an alternative to the traditional
methods of search for critical failure surface and minimum factor
of safety in a slope stability problem. As demonstrated in this
paper, the proposed method is computationally efficient and
always converges to the global minima.
3. Genetic algorithm

A genetic algorithm (GA) [Back [31], Dasgupta and Michalewicz
[32], Michalewicz [33], Holland [34], Coello [35], Hedberg [36],
Goldberg [37], Zoffaghari et al. [38], Yang et al. [39], Nian and
Zheng [40]] is a search technique used to find approximate
solutions to optimization and search problems. Genetic algorithms
are a particular class of evolutionary algorithms (EA) that use
techniques inspired by evolutionary biology such as inheritance,
mutation, crossover and natural selection. Genetic algorithms are
typically implemented in which a population of abstract repre-
sentations (called chromosomes) of feasible solutions (called
individuals) to an optimization problem evolves toward better
solutions. The evolution starts from a population of completely
random individuals and happens in generations. In each genera-
tion, the fitness of the whole population is evaluated, multiple
individuals are stochastically selected from the current population
based on their fitness, and modified (mutated or recombined) to
form a new population, which becomes current in the next
iteration. A solution to a problem is represented by a list of
parameters, called chromosomes which are typically represented
by simple strings of data and instructions. Initially several such
individuals are randomly generated to form the first initial
population. During each successive generation, each individual
is evaluated, and a value of fitness is returned by a fitness function.
The pool is sorted, with those having better fitness (representing
better solutions to the problem). For each individual to be
produced in the next step, a pair of parent organisms is selected
for breeding. Selection is biased towards elements of the initial
generation which have better fitness, though it is usually not so
biased that poorer elements have no chance to participate, in order
to prevent the population from converging too early to a sub-
optimal or local solution. There are several well-defined organism
selection methods, like roulette wheel selection and tournament
selection. Following selection, the crossover operation is per-
formed upon the selected chromosomes. Organisms are recom-
bined by this probability. Crossover results in two new child
chromosomes, which are added to the next generation population.
The chromosomes of the parents are mixed during crossover,
typically by simply swapping a portion of the underlying data. This
process is repeated with different parent organisms until there are
an appropriate number of candidate solutions in the next
generation population. The next step is to mutate the newly
created offspring. Typical genetic algorithms have a fixed, very
small probability of mutation on the order of 0.01 or less. Based on
this probability, the new child organism’s chromosome is
randomly mutated. These processes ultimately result in the next
generation population of chromosomes that is different from the
initial generation. Generally the average fitness will have increased
by this procedure for the population, since only the best organisms
from the first generation are selected for breeding. This generation
process is repeated until a termination condition (like, maximum
number of generation reached, minimum criteria satisfied or
successive iterations do no longer produce better results) has been
reached.

3.1. Molding the slope stability problem

To employ the genetic algorithm, the factor of safety is defined
as the fitness function which, must be expressed in terms of (a) the
coordinates of the center of the circular failure surface (X, Y) and (b)
the radius of the circular failure surface (R) (Table 1).

The Method of Slice (Bishop [41], Fellenius [3]) is the most
commonly used soil slope stability method, where the soil mass
above an assumed slip surface is divided into vertical slices (refer



Table 1
Range of control variables

Control variable Range

X {h*cot (B), h*cot (B) � 10}

Y {h, h + 10}

R {0, 30 m}

Fig. 1. Failure circle (in the Method of Slice). (X, Y): center of the failure circle; R:

radius of the failure circle; B: angle of inclination of the slope; h: height of the slope;

B: width of a slice; Wi: weight of ith slice; Ni: normal component of forces in ith slice

along failure circle; Ti: tangential component of forces in ith slice along failure

circle; Qi: direction of tangent in ith slice.
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to Fig. 1). The forces (Wi, Ti and Ni) on a typical slice are shown in
Fig. 1. The Factor of safety (F) in the Method of Slice is expressed as:

F ¼ ½c
0 � Lþ tanðF0Þ �SðN � UÞ�

ðSTÞ (1)

where L is the length of the failure arc. The c0(effective cohesion),
and F0(effective angle of internal friction) are known constants.
The variables which depend on the coordinates of the center (X, Y)
and radius (R) of the failure surface are:
1. N
 (normal force at each slice)

2. U
 (force due to pore-pressure at each slice) and

3. T
Fig. 2. Ith slice.
(tangential force at each slice)

3.2. Derivation of (N, U, T) in terms of (X, Y, and R)

First, we determine the points of intersection of the failure
circle with the boundaries of the slope.

Let the x coordinate of the point of intersection at the foot of the
slope be XL and the x coordinate of the point of intersection at the
top of the slope be XU.

The equation of the failure circle is:

ðx� XÞ2 þ ðy� YÞ2 ¼ R2 (2)
The equation for the foot of the slope is: y = 0 and the equation
for the top of the slope is:

Y ¼ h (3)

From (2) and (3) we get:

XL þ X þpðR2 � Y2Þ (4)

XU ¼ X þp½R2 � ðh� YÞ2� (5)

The width of each slice is

XU �
XL

n

� �
¼ b (6)

where n = number of slices.

3.2.1. Deriving Qi

Qi is the angle between the tangent to the circle at the point of
intersection of the circle with the centerline of each slice (Fig. 2).

The equation of the centerline of a slice is given by

x ¼ ðxi þ xiþ1Þ
2

¼ X þpðR2 � Y2Þ þ b � iþ 1

2

� � (7)

Solving (7) with the equation of the failure circle, the
coordinates of the point of intersection of the circle with the
centerline of each slice are obtained.

XMi ¼ X þpðR2 � Y2Þ þ i � b (8)

YMi ¼ Y þp½R2 � pðR2 � Y2Þ þ b � iþ 1

2

� �� �
(9)

The slope of the tangent of a circle at a point (x1, y1) is given by

Xx1 þ yy1 þ gðxþ x1Þ þ f ðyþ y1Þ þ c ¼ 0 (10)

where, the equation of the circle is

x2 þ y2 þ 2gxþ 2 fyþ c ¼ 0

The equation of the failure circle is:

x2 þ y2 � 2X � x� 2Y � y� R2 ¼ 0 (11)



Fig. 3. Error (%) vs. mutation probability.

Fig. 4. Error (%) vs. crossover probability.

Table 2
Parameters of the GA

Mutation probability 2/1000

Crossover probability 75/100

Population size 200

Chromosome length 24

Crossover Two point
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Thus, the equation of the tangent is

y ¼ x � ðX � XMiÞ
ðY � YMiÞ

þ ðX � XMi þ Y � YMi þ R2Þ
ðY � YMiÞ

(12)

Thus,

Qi ¼ tan�1 ðX � XMiÞ
ðYMi � YÞ

� �
(13)

Now W can be resolved into T and N as

T ¼W � sinðQiÞ ¼ g � h � b � sinðQiÞ (14)

N ¼W � cosðQiÞ ¼ g � h � b � cosðQiÞ (15)

where, W ¼ g � h � b

In case of slopes with multiple layers having different index
properties, the same formulation holds true. Since one slice is
considered at a time, the index properties can be varied from slice
to slice.

3.2.2. Total angle (TA)

The total angle is the angle between the two lines joining the
points of intersection of the failure circle with the base and top of
the slope.

TA ¼ tan�1 ðM1 �M2Þ
ð1þM1 �M2Þ

� �
(16)

and the length of each slice is given by

Lslice ¼
TA

10

� �
� R (17)

where,

M1 ¼
Y

ðX � XLÞ

M2 ¼
ðY � hÞ
ðX � XUÞ

Thus, all the terms that come into play in the factor of safety
equation are expressed in terms of (X, Y, and R).

4. Working of the genetic algorithm (GA)

The proposed genetic algorithm has 2 steps: (1) choosing and
minimizing the fitness function and (2) fine-tuning the parameters
of the algorithm.

The fitness function is chosen to be the factor of safety reduced
by the factor of safety of the worst chromosome, that is,

F ¼ F � FWORST (18)

This is often referred to as the technique of windowing. It
eliminates the weakest chromosome and stimulates the strongest
ones.

Each of the three variables (X, Y, and R) in the Eqs. (11) and (12),
is converted to its corresponding binary representation. The binary
strings corresponding to each of the three control variables is then
concatenated. Eight bits have been employed for each of the three
variables. The fitness function corresponding to each chromosome
is calculated. The chromosomes having lower fitness function
values are assigned a higher probability of being copied to the next
generation. The biased roulette wheel approach has been
employed for this purpose.

Pairs of chromosomes are picked up randomly and the 2-point
crossover has been employed to increase the variation in the
population. In 2-point crossover any two positions, say kth and lth
are decided randomly and the parts of the chromosome from 1 to
(k � 1) and (l + 1) to 24 are swapped. The flip-bit mutation has been
employed in this algorithm. In this mutation, the value of the
chosen bit is simply inverted (0 becomes 1 and 1 becomes 0). The
position at which this inversion takes place is chosen randomly.

To fine-tune the parameters, the Grid method was implemen-
ted and for a data set of 100 slopes, the average error was
calculated. The Fig. 3 shows the error versus mutation probability
and Fig. 4 shows the error versus the crossover probability.

The following parameters were found out to be the best for the
present problem (Table 2).

5. Results

Comparison of results in terms of minimum factor of safety
from the genetic algorithm, Monte-Carlo and grid approach is
summarized below:

As can be seen from the above figure (Fig. 5), the factor of safety
stabilizes at 1.2 at first. This represents the local minima. The Grid
method or the Monte-Carlo technique would have erroneously
assumed 1.2 to be the lowest factor of safety. But in GA, upon
increasing the number of generations, the factor of safety stabilizes
finally at around 1.16 (at 300 generations) which represents the



Fig. 5. Factor of safety vs. number of generations.

Fig. 6. Comparison of factor of safety by GA, Monte-Carlo and Grid methods.
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global minima. This ability of the genetic algorithm to zero in on
the global minima is its central strength.

In Fig. 6, the data points represented by triangles show the
variation of the factor of safety with the number of generations as
determined by GA. The data points represented by dashed lines
correspond to the Grid method and Monte-Carlo methods.

The grid approach falls for the local minima of 1.2 but the GA
zeroes in on the global minima of 1.16 after 300 generations.

6. Comparison of CPU memory usage

The above three methods (GA, Monte-Carlo (MC) and Grid
methods) were tested for CPU memory usage on a Pentium-4
processor, 384 Mb RAM (Fig. 7).
Fig. 7. Comparison of CPU memory usage for GA, Monte-Carlo and Grid method.
The dimensions of the search space were varied in each of the
four search spaces. The genetic algorithm consumed less memory
than Monte-Carlo method for each of the four slopes. The Grid
method exhibited irregular memory consumption because it is
prone to fall for local minima. If the local minimum is achieved
early in the search process, the CPU memory consumption is
lowest for Grid method.

7. Conclusions

The results show that a genetic algorithm (GA) can be
successfully employed to locate the critical failure surface in a
soil slope. Unlike the grid approach, which has been demonstrated
to fall for local minima, the GA zeroed in on the global minima. The
Monte-Carlo approach being a randomized hunt cannot be relied
upon in the case of large soil slopes. It also turns out to be
computationally inefficient. The distinguishing advantage of GA is
its ability to combine the advantages of a randomized approach
such as the Monte Carlo technique (the ability to find unexpected
solutions and to find the region of true minimum) with those of a
systematic approach (to hunt for a local minimum). The genetic
algorithm consumed less memory than Monte-Carlo method for
each of the four slopes. In some of the cases the Grid method
consumed less CPU memory because it is prone to fall for local
minima. If the local minimum is achieved early, the CPU memory
consumption is lowest for the Grid method.
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