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Abstract
Documented performances of soil-nailed system are almost nonexistent in the literature. Most 
of the literature on nailed soil structures emphasizes on the mechanism of reinforcement and the 
design of structures under static load only. An analytical method is presented here based on the 
kinematics theorem of limit analysis to study the stability of reinforced slopes under the seismic 
loading condition. A circular failure surface, is considered in this study. The proposed method 
can be viewed as an extension of the method of slices, but it provides a more accurate treatment 
of forces because they are represented in an integral form. The factor of safety and nail forces 
obtained by the proposed method have been shown to be in good agreement with the published 
results for an 8 m high vertical soil nail wall.

1 ​ ​  INTRODUCTION

Soil nailing is one of the recent techniques available 
for stabilizing in-situ soil slopes or cuts. The process 
of soil nailing includes installation of nails in exca-
vated cuts or in slopes either by driving or grouting 
in predrilled holes. Stability of the slope face be-
tween nails is ensured by providing thin layers of 
shotcrete reinforced with wire mesh. The nails are 
generally steel bars, metal tubes or other metal rods 
that can resist not only tensile force but also shear 
stress and bending moment. The nailing method 
has been used in both granular and cohesive soils 
and in relatively heterogonous deposits.

The general idea among the practicing engineers  
is that soil-nailed walls perform reasonably well  
under seismic condition. However documented per-
formances of soil-nailed system are almost nonexis-
tent in the literature. Most of the literature (Gassler 
1988, Sakaguchi 1996, Koseki et al. 1998, Matsuo  
et al. 1998 and, Sivakumar and Singh 2008) on nailed 
soil structures emphasizes on the mechanism of rein-
forcement and the design of structures under static 
load only. The failure mechanisms for slopes under 
static loading have typically been extended to stability 
analysis of slopes under seismic loading using pseudo-
static approach (Mononobe and Matsuo 1997), but 
the effect of seismic excitation on the failure pattern 
of slopes are not addressed. Limited data on the earth-
quake resistance and corresponding failure mecha-
nisms for steep nailed slopes are available to date. The 
seismic resistance and the failure mechanism of nailed 
soil slope during an earthquake event are not clearly 
understood and need to be investigated properly.

The finite element method is certainly the most 
comprehensive approach to analyze the perfor-
mance of soil-structures subjected to seismic load-
ing. However it requires accurate measurement of 
the properties of the component materials, which 
are often difficult to achieve. In addition, further 
difficulties arise from modeling failure in frictional 
materials. The majority of the existing methods of 
design and analysis of soil-nailed system are based 
on the pseudo-static approach, where the effect of 
earthquake on a potential failure soil mass is rep-
resented by horizontal force acting at the centre of 
gravity. The horizontal force is calculated as the 
product of a seismic intensity coefficient and the 
weight of the potential sliding mass. The stability of 
soil structures under this force is expressed by a fac-
tor of safety which is usually defined as the ratio of 
the resisting force to the destabilizing force. Failure 
occurs when the safety factor drops below one. 
However, pseudo-static analysis is generally consid-
ered conservative, since even when factor of safety 
drops below one, the soil structures could experi-
ence a finite displacement rather than a complete 
failure. An alternative analytical method is pre-
sented here based on the kinematics theorem of 
limit analysis to study the stability of reinforced 
slopes under the seismic loading condition. The ki-
nematic theorem (Juran et al. 1988, 1990) states that 
slopes will collapse if the rate of work done by exter-
nal loads and body forces exceed the energy dissipa-
tion rate for any assumed kinematically admissible 
failure mechanism. Soil deformation is assumed to 
be plastic and failure is associated with the 
Coulomb’s yield condition.
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In the present approach, the following assump-
tions are made:

1.	 The effect of pore pressure build-up and change 
of soil strength due to earthquake shaking are ig-
nored. In most cases, weep holes are provided in 
the walls for safe drainage of water from behind 
the wall. Also, the backfill soil is usually chosen 
as cohesionless and free draining material.

2.	 The slope made of homogeneous cohesionless 
soil. Strictly speaking, soil is not a homogeneous 
material. But it is often assumed to be one, only 
to simplify the calculations in hand.

3.	 The reinforcement layers are finite in number 
and have same length. Seldom, nails of different 
length and dimension are utilized in a wall 
construction.

4.	 The resistance to shear, bending and compres-
sion is ignored. The nails are typically not de-
signed for bending and compressional loads.

5.	 The critical failure surface is assumed to pass 
through the toe of the slopes. The shallow failure 
surfaces, palling of face wall are ignored as they 
may not necessarily represent the critical case.

6.	 The available pullout resistance is assumed to be 
either the bond strength between soil-reinforcement 
or the tensile strength of the reinforcement, which-
ever is smaller. This is a very common assumption 
in the traditional design of bond length.

Under the above assumptions, the reinforcements 
provide tensile forces acting in the horizontal direc-
tion. The rate of external work is due to soil weight 
and inertia force induced by the earthquake and the 
only contribution to energy dissipation is that pro-
vided by the reinforcement.

2 ​ ​  METHODS OF ANALYSIS

An analytical method based on the kinematics limit 
equilibrium (Juran et al. 1988, 1990) is presented for 
the stability analysis of nailed soil slopes. It is as-
sumed in kinematic approach of limit analysis that 
the soil and the reinforcements are perfectly plastic 
and their deformation is governed by associated 
flow rule.
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Where, pl
ij�  is the plastic strain rate tensor in a kine-

matically admissible velocity field, sij is the stress 
tensor associated with strain rate tensor, l is a non-
negative scalar multiplier and ij( ) 0f 5s  is the yield 
criteria. Mohr-coulomb failure criteria are assumed 
and the discontinuity vector (velocity jump) is  

assumed to be inclined to the rupture surface at the 
angle of internal friction, f.

The kinematics theorem of limit analysis (Juran 
et al. 1988, 1990) states that when the rate of work 
done by the external forces and the body forces ex-
ceeds the rate of internal dissipation energy, the struc-
ture will collapse. Micholowski (1998) represented 
mathematically this theorem as:
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The left hand side of the equation represents the 
rate of energy dissipation (D) during an incipient 
failure of a structure and the right hand side includes 
the rate of work done by all the external forces. In 
the above equation, Ti is the stress vector on the 
boundary S, vi is the velocity vector in the kinemati-
cally admissible mechanism. gi is the specific weight 
and V is the volume of the mechanism. (Refer to 
Fig. 4). The mathematical form of the theorem states 
that the rate of energy dissipation is not less than 
the rate of work done by external forces in any kine-
matically admissible failure mechanism. The total 
force on the boundary, S, can be calculated only if 
velocity, vi, on this boundary is constant. If the ge-
ometry of the structure is given and all loads and 
material parameters are known, the safety  
factor can be calculated. Earthquake effects are con-
sidered in terms of seismic coefficient-dependent 
horizontal forces. Two kinds of failure surfaces are 
considered in this study, a planar failure surface and 
a circular failure surface. The proposed method is 
an extension of the method of slices (Duncan & 
Wright 2005), but it provides a more accurate treat-
ment of forces because they are represented in an 
integral form.

2.1 ​ ​  Circular Failure Surface
Figure 1 shows a potential circular failure surface AB 
with centers (a, b) and radius r. Earthquake effect is 
approximated by a horizontal force equal to KhG act-
ing through the centre of gravity of the soil wedge.

A number of vertical slices are assumed. The free 
body diagram of a typical vertical slice defg is shown 
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Figure 1    Circular failure mechanism.
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in Figure 1. The self weight of the slice is given by 
dG 5 ghdx, where dx is the elemental width of slice. 
The inter-slice forces  and  acting on de and fg respec-
tively are equal and opposite and parallel to the  
base of slice ef. l r( )X X∑  is zero for the whole fail-
ure mass.

Resolving the forces acting on the base of slice ef,

hcos sindN hdx K hdx5 g u g u � (3)

hsin cosdS hdx K hdx5 1g u g u � (4)

Where 1 2 2sin  and x a r a b
r

 
5 5 1u � (5)

The force dN can produce a maximum shearing 
resistance dR given by:

hsec (cos sin )tandR cdx hdx K5 1 u g u u f � (6)

where, c is the cohesion of the soil.
The equation of line, AB, in Figure 1, is

1 tany x5 b � (7a)

The equation of line BC is

2y H5 � (7b)

The equation of the circular failure surface AC is

2 2
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Then the total rate of work done can be equal to the 
sum of work done by dS and is given by
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The rate of dissipation of internal energy is due to 
shear resistance and is given by
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For a given slope angle and internal angle of fric-
tion, the toe failure is fully described by two para-
meters q0 and qf as shown in Figure 1. Rapture of 
the reinforcement is interpreted as a plastic flow 
process consistent with the flow rule. The energy 
dissipation rate in a single reinforcement intersect-
ing a velocity discontinuity can be derived assuming 
that the discontinuity is of finite-thickness, t, with a 
high velocity gradient as shown in Figure 2.

The reinforcement contributes to the stability of 
the structures only through its tensile strength (re-
inforcement resistance to shear, torsion and bend-
ing is neglected). The kinematics requires that the 
velocity jump vector [v] be inclined to the velocity 
discontinuity at an angle of internal friction f. The 
reinforcement is inclined to the velocity discontinu-
ity at an angle j as shown in Figure 2. No reinforce-
ment is assumed to be pulled out and sector PQ with 
length 

sin
t

j
 (where t being the thickness of rupture 

layer) is subjected to plastic flow. The rate of energy 
dissipation in a single reinforcement intersecting a 
velocity discontinuity per unit horizontal spacing of 
reinforcement may be calculated as:
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Where, Ti is the limit tensile force in the reinforce-
ment per unit horizontal spacing and �  is the strain 
rate in the direction of reinforcement.

The strain rate in the reinforcement is given by:
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The average strength Kt of reinforcement is given by:

t i
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Where, n is the number of reinforcement layers.
The energy dissipation rate per unit area of the 

discontinuity surface becomes
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For a circular failure surface, the energy dissipation 
rate per infinitesimal length (rdq) increment (refer 
to Figure 2) is given by:

2
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where, v�  is the rate of rotation.
Integrating from q0 to qf and assuming Kt to be 

constant,
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The total rate of internal energy dissipation is the 
sum of cohesive and tensile reinforcement forces and 
is given by
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The factor of safety, Fs, is calculated by taking ratio 
of equations (21) and (8), and is given by
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It may be observed from the Equation (22) that the 
factor of safety for a given slope is a function of pa-
rameters like coordinate of failure circle (a, b), angle  
and q0, and qf angle a. Thus minimum value of Fs 
can be found using the minimization technique.

3  �  VERIFICATION OF THE PROPOSED METHOD

The published results reported by Sivakumar and 
Singh (2008) for a soil-nailed wall supporting a ver-
tical cut of 8 m high under seismic condition are uti-
lized here to verify the present method of analysis. 
The geometry of the soil nailed wall supporting the 
vertical cut is shown in Figure 3. The 8 m high wall 
was designed in conventional manner by using the 
allowable stress design procedure. The soil nails 
were 4.7 m long and placed in 100 mm diameter drill 
holes. They were grouted in place at 1m apart at an 
angle of 15o with the horizontal axis. The wall was 
analyzed numerically by using finite element method. 
The seismic record from Bhuj (Iyengar and Raghu 
Kanth 1991) and Uttarkashi (Chandrasekaran and 
Das 1992) earthquakes was utilized in the reported 
pseudo-static and dynamic analyses of the wall. The 
external failure mode of the nailed soil wall in terms 
of global stability and sliding stability were studied 
under static, pseudo-static as well as dynamic condi-
tions. In this study, the published pseudo-static re-
sults reported in the paper are compared with the 
results of the present analysis. The horizontal seismic 
coefficient, kh for the pseudo-static analysis corre-
sponding to the Bhuj and Uttarkashi earthquake are 
adopted from the paper and given by 0.106 and 0.241, 
respectively. All other material parameters adopted 
from the literature (Sivakumar and Singh 2008) and 
utilized in the present analysis are given in Table 1.

Since the critical failure surface in the backfill is 
not given in the referred paper, it is found out by 
minimization technique and shown in Figure 3.

The factor of safety corresponding to the failure 
surface is first calculated from Equation 22. The to-
tal rate of internal energy dissipated is reduced from 
the corresponding factor of safety value. From the 
total energy dissipated value, the rate of internal  
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energy dissipated due to tensile reinforcement force 
is obtained. From Equation 16, the tensile force in 
the reinforcements is calculated. In the above calcu-
lations, the velocity jump vector [v] is kept constant, 
as factor of safety value is independent of velocity 
jump. Table 2 shows the comparison between the 
published results and the results from the present 
theory.

The factor of safety against global stability of the 
nailed wall for the Bhuj and Uttarkashi earthquakes 
is found to be 0.91 and 0.78, respectively. These val-
ues are comparable with the corresponding pub-
lished results (0.95 and 0.81). The maximum axial 
force in the nails as predicted by the present method 
is found to be 32.4 kN and 37.98 kN, respectively for 
the Bhuj and Uttarkashi earthquakes. These values 
are also comparable with the corresponding published 
results.

Table 1    Material parameters for the soil nailed wall

Parameter	 Value

Cohesion, c(kPa) of the backfill soil	 1.0
Friction angle, f(degree) of the backfill soil	 30.0
Unit weight, g(kN/m3) of the back-fill soil	 16.0
Slope angle, b(degree)	 0.0
Angle of inclination of nails, a (degrees)	 15.0
Nail length (m)	 4.7
Maxm. axial tensile capacity of nails, Ti (kN)	 83.44

4 ​ ​  CONCLUSIONS

An analytical method based on kinematic limit ap-
proach is developed for stability analysis of soil 
nailed slopes. Two kinds of failure surfaces, a planar 
and a circular failure surface, are considered in the 
formulation. The proposed method can be viewed as 
an extension of the method of slices, but it provides 
a more accurate treatment of forces because they are 
represented in an integral form. The published re-
sult of a soil nail wall supporting a vertical cut of 
8 m high is utilized to verify the performance of the 
new methodology. The maximum axial force in the 
nails and the factor of safety predicted by the pro-
posed method are found to be in good agreement 
with the corresponding published results for the  
8  m high soil nailed vertical cut under seismic 
conditions.
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Figure 3    Geometry of the soil-nailed wall supporting an 
8 m vertical cut.

Table 2    Comparison of present method of analysis with 
published results

Parameters

Published results 
from Sivakumar & 

Singh (2008)

Results from the 
present method of 

analysis

Bhuj  
eq.

Uttarkashi 
eq.

Bhuj  
eq.

Uttarkashi 
eq.

Maximum axial  
  force in nail,  
Tmax, (kN) 34.5 40.7 32.4 37.98
Factor of safety  
  against stability 0.95 0.81 0.91 0.78


