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ABSTRACT 
Locating the critical failure surface of a soil slope is rendered 
erroneous and cumbersome due to the existence of local minima 
points. In case of large soil slopes, engineers face with a search 
space too large to employ the trial and error method in a 
computationally efficient fashion. An evolutionary algorithm is 
proposed to locate the critical surface under general conditions 
with general constraints. Convergence to any prescribed degree 
of precision was achieved with the algorithm. The algorithm has 
been demonstrated to be computationally superior to other 
optimization routines, Monte-Carlo method and grid-points 
approach. 
Keywords: slope stability, critical failure surface, evolutionary 
algorithm. 

 

INTRODUCTION 
Determination of the critical failure surface is central to slope stability analysis. The presence of 

several local minima points in the search space proves to be the chief problem in a slope stability 

analysis as demonstrated by Chen and Shao (1983). The authors have tried different search 

techniques like the “Grid” method and found that the methods fall for local minima even for 

slopes with simple geometry. Chen and Morgenstern (1983) too has zeroed in on the same 

problem.  

Baker and Garber (1978) have derived the Euler’s differential equation using calculus of 

variation. This approach is not practical as it gets complicated even for a simple slope. The 
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internal stress distribution generated from the analysis may not be reasonable. Revilla and 

Castillo (1977) have applied similar approach using Janbu’s simplified method. The random 

generation approach was tried by Boutrup and Lovell (1980) and also by Chen and Shao (1983). 

This approach too is inefficient if a high accuracy is required which makes it unsuitable for real 

problems. Even though these methods may work for simple problems, there are many limitations 

associated with these methods, which have been addressed by Li and White (1986). 

The most critical limitation to all these methods is that there is no guarantee that the critical 

failure surface as obtained is the global minimum. In the grid-points method a grid of circle 

centers is defined (circular failure surfaces are widely used in slope stability analysis) with the 

radii being defined in different ways as the search is complete only if the radius is varied too. In 

practice, this must be done in a systematic way, usually by starting with a coarse grid, then 

progressively finer grids as the region in which the critical case lies is identified. Another method 

is the ‘Monte Carlo’ approach [Husein, Hassen and Sarma (2002)], which is a randomized search 

within the specified search space. The search space is demarcated to reduce the amount of 

unproductive computation, but there is no guarantee of finding the lowest factor of safety. This 

can be effective when the search space is tightly controlled, as in the reference cited, but 

necessitates the analysis of a large number of solutions. 

MOLDING THE SLOPE STABILITY PROBLEM  
To employ the evolutionary algorithm we define the factor of safety as the fitness function which, 

must be expressed in terms of  

1. The coordinates of the center of the circular failure surface (X, Y)  

2. The radius of the circular failure surface (R). 
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Figure 1. Failure circle (in the Method of Slices) 

(X, Y): Center of the failure circle, R: Radius of the failure circle, B: Angle of inclination of the 

slope, h: Height of the slope, B: Width of a slice, Wi: Weight of ith slice, Ni: Normal component of 

forces in ith slice along failure circle, Ti: Tangential component of forces in ith slice along failure 

circle, Θi : direction of tangent in ith slice. 

 

Table 1. Range of Control variables. 
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The Method of Slice is the most commonly used soil slope stability analysis method, where the 

soil mass above an assumed slip surface is divided into vertical slices (refer to Figure 1). The 

forces (Wi, Ti and Ni) on a typical slice are shown in Figure 1. The Factor of safety (F) in the 

Method of Slice is expressed as: 

F = [c’*L + tan (Φ’)* Σ (N – U)] / (ΣT)         (1) 

where, L is the length of the failure arc. The c’(effective cohesion), and Φ’(effective angle of 

internal friction) are known constants. The variables which depend on the coordinates of the 

center (X, Y) and radius (R) of the failure surface are:  

1. N (normal force at each slice)  

2. U (force due to pore-pressure at each slice) and  

3. T (tangential force at each slice) 

Derivation of (N, U, T) in terms of (X, Y, and R) 
First, we determine the points of intersection of the failure circle with the boundaries of the slope.  

Let the x coordinate of the point of intersection at the foot of the slope be XL and the x coordinate 

of the point of intersection at the top of the slope be XU. 

The equation of the failure circle is: 

(x- X) 2 + (y- Y) 2 = R2                               (2) 

The equation for the foot of the slope is : y = 0 and  

the equation for the top of the slope is :  Y = h    (3) 

From (2) and (3) we get: 

XL = X + √ (R2 – Y2)          (4) 
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MIDDLE 
LINE

Ith SLICE  

XU = X + √ [R2 – (h-Y) 2]  (5) 

The width of each slice is    

(XU - XL/n) = b         (6) 

where, n = number of slices. 

Deriving Θi: 

Θi is the angle between the tangent to the circle at the point of intersection of the circle with the 

centerline of each slice. 

 

 

 

Figure  2.  Ith Slice. 

The equation of the centerline of a slice is given by 

x = (xi + xi+1)/2 

        = X + √ (R2 – Y2) + b*(i+1/2)          (7) 

Solving (7) with the equation of the failure circle, we get the coordinates of the point of 

intersection of the circle with the centerline of each slice. 

XMi = X + √ (R2 – Y2) + i*b      (8) 
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YMi = Y + √ [R2 –{√(R2 – Y2) + b*(i+1/2)}]   (9) 

The slope of the tangent of a circle at a point (x1,y1) is given by 

Xx1 +yy1 +g (x +x1) +f(y +y1) +c = 0  (10) 

Where, the equation of the circle is  

  x² +y² +2 g x +2 f y +c = 0 

The equation of the failure circle is: 

x2 + y2 – 2X*x – 2Y*y – R2 = 0     (11) 

Thus the equation of the tangent is  

y = x*(X-XMi)/(Y- YMi) + (X* XMi +Y* YMi + R2)/ )/(Y- YMi)   (12) 

Thus 

Θi = tan-1[(X – XMi)/( YMi –Y)]    (13) 

Now we can resolve W into T and N as 

T = W*sin (Θi) = γ*h*b*sin (Θi)   (14) 

N = W*cos (Θi) = γ*h*b*cos (Θi)  (15) 

where,    W = γ*h*b 

In case of slopes with multiple layers having different index properties, the same formulation 

holds true. We are considering one slice at a time, so the index properties can be varied from slice 

to slice. 

Total angle (TA): 

The total angle is the angle between the two lines joining the points of intersection of the failure 

circle with the base and top of the slope. 

TA = tan-1[(M1 – M2)/(1+M1*M2)]   ( 16) 
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 and the length of each slice is given by 

Lslice = (TA/10)*R    ( 17) 

 where, 

M1 = Y / (X – XL) 

M2 = (Y – h) / ( X – XU) 

Thus, we have expressed all the terms that come into play in the factor of safety equation in terms 

of (X, Y, and R). 

Working of the Evolutionary Algorithm (EA) 
The proposed evolutionary algorithm is 3-stepped: 

1. Choosing and minimizing the fitness function. 

2. Fine-tuning the parameters of the algorithm: 

i. Cross-over probability 

ii. Mutation probability 

iii. Chromosome length 

iv. Population size 

v. Choice between single point cross-over and two-point cross-over. 

We have chosen the fitness function to be the factor of safety reduced by the factor of safety of 

the worst chromosome.  

 F = F – FWORST   (18) 

This is referred as the technique of windowing. Windowing eliminates the weakest chromosome - 

the probability comes to zero - and stimulates the strongest ones 
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Generating a population 

Each of the three variables, i .e. (X, Y, and R) is converted to its corresponding binary 

representation. For example, if the value of R is 25 meters it will be represented as 00110001. 

The binary strings corresponding to each of the three control variables is concatenated. The catch 

is to allocate the same number of bits for each of the three strings. We have employed 8 bits for 

each of the three variables. A typical chromosome looks like 00111001|00010001|00011000. If 

the population size is 50, 50 such strings are generated randomly. 

Reproduction 

Reproduction is a process in which individual chromosomes are copied according to their fitness 

values. The fitness function corresponding to each chromosome is calculated. The chromosomes 

having lower fitness function values are assigned a higher probability of being copied to the next 

generation. The biased roulette wheel approach has been employed. 

Crossover 

Pairs of chromosomes are picked up randomly. In single point crossover any position in the 

chromosome, say kth is decided at random and the parts of the chromosome from (k+1) to 24 are 

swapped. In 2-point crossover any 2 positions, say kth and lth are decided randomly and the parts 

of the chromosome from 1 to (k-1) and (l+1) to 24 are swapped. We have employed the 2-point 

crossover to increase the variation in the population. 

 

 

 

 

Figure  3.  Crossover 

SWAPPED 
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Mutation 

Mutation is a genetic operator that alters one ore more gene values in a chromosome from its 

initial state. This can result in entirely new gene values being added to the gene pool. With these 

new gene values, the genetic algorithm may be able to arrive at better solution than was 

previously possible. We have employed flip-bit mutation. In this mutation we simply invert the 

value of the chosen bit (0 becomes 1 and 1 becomes 0). The position at which this inversion takes 

place is chosen randomly. 

Fine-Tuning the Parameters 
To fine-tune the parameters the grid method was implemented and for a data set of 100 slopes 

average error was calculated.  

The following parameters were found out to be the best for the present problem. 

Table 2. Parameters of the EA. 

Mutation Probability 2/1000 

Crossover probability 75/100 

Population Size 200 

Chromosome Length 24 

Crossover Two point  
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Figure  4. Error (%) vs. Mutation Probability. 
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Figure  5. Error (%) vs. Crossover Probability. 
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Results 
Comparison of results in terms of minimum factor of safety from EA, Monte-Carlo and grid 

approach is summarized below: 
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Figure  6. Factor of Safety vs. Number of Generations 

As can be seen from above figure, the factor of safety stabilizes at 1.2 at first. This represents the 

local minima. The grid method or the Monte-Carlo technique would have erroneously assumed 

1.2 to be the lowest factor of safety. But in EA, upon increasing the number of generations, the 

factor of safety stabilizes finally at around 1.16 (at 300 generations) which represents the global 

minima. This ability of the evolutionary algorithm to zero in on the global minima is its central 

strength. 
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Figure  7. Comparison of Factor of Safety by EA, Monte-Carlo & Grid Methods. 

In Figure 7, the data points represented by triangles show the variation of the factor of safety with 

the number of generations as determined by EA. The data points represented by dashed lines 

correspond to the grid method and Monte-Carlo methods.  

The grid approach falls for the local minima of 1.2 but the EA zeroes in on the global minima of 

1.16 after 300 generations. 

Comparison of CPU Memory Usage 
The above three methods (EA, Monte-Carlo (MC) and Grid methods) were tested for CPU 

memory usage on a Pentium4 processor, 384 Mb RAM.  
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Figure  8. Comparison of CPU memory usage for EA, Monte-Carlo and Grid Method. 

The dimensions of the search space were varied in each of the four search spaces. The 

evolutionary algorithm consumed less memory than Monte-Carlo method for each of the four 

slopes. The grid method exhibited irregular memory consumption because it is prone to fall for 

local minima. If the local minimum is achieved early in the search process, the CPU memory 

consumption is lowest for Grid method. 

CONCLUSIONS 
The results show that an evolutionary algorithm (EA) can be successfully employed to locate the 

critical failure surface in a soil slope. Unlike the grid approach, which has been demonstrated to 

fall for local minima, the EA zeroed in on the global minima. The Monte-Carlo approach being a 

randomized hunt cannot be relied upon in the case of large soil slopes. It also turns out to be 

computationally inefficient. The distinguishing advantage of EA is its ability to combine the 

advantages of a randomized approach such as the Monte Carlo technique (the ability to find 
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unexpected solutions and to find the region of true minimum) with those of a systematic approach 

(to hunt for a local minimum). The evolutionary algorithm consumed less memory than Monte-

Carlo method for each of the four slopes. In some of the cases the grid method consumed less 

CPU memory because it is prone to fall for local minima. If the local minima is achieved early, 

the CPU memory consumption is lowest for the Grid method. 

The EA should be tried for reinforced soil slopes as well. If an objective function is derived for 

non-linear slope failure and non-circular failure cases, it stands high chances of being successful 

in these cases also.  
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