Open Channel Flow

Hydraulics Prof. Mohammad Saud Afzal

Department of Civil Engineering

Open Channel Flow

• Flow of liquid in channel or conduit that is not completely filled

- Liquid (water) flow with a free surface (interface between water and air) that can distort
- relevant for
- natural channels: rivers, streams
- engineered channels: canals, sewer lines or culverts (partially full), storm drains

Notations

- Fluid depth : y
- Time : t
- Distance along channel : x

Classification: Open Channel Flow

Classification:: Open Channel Flow

Classification: Open Channel Flow

ρ: Density of water

V: Average velocity of fluid

R_h: Hydraulic Radius of channel

μ : Dynamic Viscosity of water

- 1) The dividing Reynolds number are approximate
- 2) Since water has very low viscosity and large characteristic length (hydraulic radius) it is difficult to have laminar flow

Classification: Open Channel Flow

V: Average velocity of fluid

I: Characteristic length of flow

g : Acceleration due to gravity

Open Channel flow – free surface- can distort- waves generated

Production of single wave in a channel

- Water was stationary at time t = 0
- Wall starts moving with speed δV
- Stationary observer observes single wave move down the channel with wave speed c
 - He sees no motion ahead of the wave
 - Notices fluid with velocity δV behind the wave
 - The motion is therefore unsteady for such observer
- For an observer moving along the channel with wave speed c, flow will be steady

Wave as seen by observer that moves with *wave speed c*

- To such observer
 - Fluid velocity shall be $V = -c\hat{i}$ to the right of observer
 - Fluid velocity shall be $V = (-c + \delta V)\hat{i}$ to the left of the observer

- Assuming uniform 1D Flow
 - Equation of continuity $-cyb = (-c + \delta V)(y + \delta y)b$

$$c = \frac{(y + \delta y)\delta V}{\delta y}$$

Under assumption of small-amplitude waves with

- Equation of momentum
 - Mass flow rate m=pbcy
 - Pressure is hydrostatic within fluid
 - Pressure force on channel cross section 1

 $F1=\Upsilon y_{c1}A_1=\Upsilon (y+\delta y)^2b/2$

• Pressure force on channel cross section 2

 $F2=\Upsilon y_{c2}A_2=\Upsilon y^2b/2$

$$\frac{1}{2}\gamma y^2 b - \frac{1}{2}\gamma (y + \delta y)^2 b = \rho b c y [(c - \delta V) - c]$$

Assumption of small-amplitude waves (δy)² << yδy

$$\frac{\delta V}{\delta y} = \frac{g}{c}$$
 Eq. 2

Eq. 3

• Substitute Eq. 2 into Eq. 1

$$c = y \frac{g}{c}, c^{2} = gy$$
$$c = \sqrt{gy}$$

- Wave speed c of a small amplitude solitary wave is
 - Independent of wave amplitude δy
 - Proportional to square root of fluid depth y

- Fluid density (ρ) is not an important parameter (why ?)
 - $\boldsymbol{\bigstar}$ Wave motion is balance between inertial effects (proportional to $\boldsymbol{\rho}$) and
 - hydrostatic pressure effects (proportional to pg)

Surface Waves: Energy Approach

• Eq. 3 can also be obtained using energy and continuity equations

Stationary simple wave

- The flow is steady for an observer travelling with wave speed c
- The pressure is constant at any point on free surface

Surface Waves: Energy Approach

• Bernoulli equation for the flow is

$$\frac{V^2}{2g} + y = C$$

• On differentiating above equation

$$\frac{V\delta V}{g} + \delta y = 0$$
 Eq. 4a

• Differentiating Continuity Equation Vy= constant

$$y \delta V + V \delta y = 0$$
 Eq. 4b

Surface Waves: Energy Approach

• Combine Eq. 4a and Eq. 4b to get

$$V = \sqrt{gy}$$

• Since observer moves with speed c, V = c, We obtain

$$c = \sqrt{gy}$$

Froude Number Effect: Solitary waves

$$Fr = \frac{V}{\sqrt{gy}} = \frac{V}{c}$$

- Consider Fluid flowing to left with speed V, Waves moves with speed c to the right.
 - Wave will travel to right (upstream) with speed of c-V
 - If V=c , stationary waves, If V>c, waves will be washed to left with speed V-c
 - If c > V ; waves travel upstream: Fr <1; subcritical flow
 - If c < V ; waves do not travel upstream: Fr >1; supercritical flow

Solitary Waves of finite amplitude

- Previous results are restricted to waves of small amplitude.
- For waves of finite sized amplitude δy , the wave speed is given by

$$c \approx \sqrt{gy} \left(1 + \frac{\delta y}{y}\right)^{\frac{1}{2}}$$
 Eq. 5

• This implies larger the amplitude, faster the wave travels

Sinusoidal Surface waves

Eq. 6

- Linear wave theory is used to describe waves of small amplitude
- Mathematical derivation is outside scope of the course.

$$c = \left[\frac{g\lambda}{2\pi} \tanh(\frac{2\pi y}{\lambda})\right]^{\frac{1}{2}}$$

- $\boldsymbol{\lambda}$ is the wave length of waves
- Derive shallow water ??
- Derive Deep water equation for waves ??

Wave speed as a function of wavelength

Questions

- 1) Determine acceleration due to gravity of a planet where small amplitude waves travel across a 2 m deep pond with speed of 4 m/s. Is the planet more dense than Earth ?
- 2) A rectangular channel 3 m wide carries 10 m³/s at depth of 2m. Is the flow sub or supercritical. What shall be critical depth.
- 3) A trout jumps producing waves on surface of a 0.8 m deep mountain stream. What is the minimum velocity of current if the waves do not travel upstream. [Hint $c = \sqrt{gy}$]

Answers: 1)
$$V = \sqrt{gy}$$
 $V^2 = gy$ $g = \frac{V^2}{y} = \frac{4^2}{2} = \frac{16}{2} = 8 m/s^2$

2)
$$Q = AV$$
 $V = \frac{Q}{A} = \frac{10}{3 \times 2} = 1.66$

$$F_r = \frac{V}{\sqrt{gy}} = \frac{1.66}{\sqrt{9.8 \times 2}} = 0.376$$

 $F_r < 1$ Flow is sub critical

For critical depth
$$F_r = \frac{V}{\sqrt{gy}} = 1$$
 $\frac{1.66}{\sqrt{9.8 \times y}} = 1$ $y = 0.281$ m

3)
$$c = \sqrt{gy} = \sqrt{9.8 \times 0.8} = 2.8 m/s$$

Energy in Open Channel Flow

Representative Open Channel Geometry

Energy in Open Channel Flow

- 1) The slope of the channel Bottom $S_0 = (z_1 z_2)/I$ is assumed constant over length I. Quite small
- 2) Fluid depths at two cross section are y₁ and y₂
- 3) Fluid velocities are V₁ and V₂ at two cross sections
- 4) Under assumption of uniform velocity profile across any cross section , 1 D energy equation for this flow is

$$\frac{p_1}{\gamma} + \frac{V_1^2}{2g} + z_1 = \frac{p_2}{\gamma} + \frac{V_2^2}{2g} + z_2 + h_L$$

Energy in Open Channel Flow

- 1) Slope of energy line can be written as $S_f = h_L/I$, referred as friction slope.
- 2) Under assumption of hydrostatic pressure at any cross section $p_1/\gamma = y_1$ and $p_2/\gamma = y_2$

$$y_1 - y_2 = \frac{(V_2^2 - V_1^2)}{2g} + (S_f - S_0)l$$
 Eq. 7

Specific Energy

1) Starting from Eq. 8, if head losses are negligible then $S_f = 0$. Then, $(S_f - S_0)l = -S_0l = z_2 - z_1$. Eq. 8 reduces to

$$E_1 + z_1 = E_2 + z_2$$

The sum of specific energy and elevation of channel bottom remains constant

Specific Energy

- For a given q and E, Eq. 10 is a cubic equation
- •3 Solutions: y_{sup}, y_{sub}, y_{neg}
- •Y_{neg} has no physical meaning
- ${}^{\bullet} Y_{sup}$ and Y_{sub} are termed alternate depths

MCQ

- •What does Y=E represent ?
- •What does y=0 represent ?

•Prove y_{sup} < y_{sub}

MCQ Answers

- y=E corresponds to very deep channel flowing very slowly as E=y+V²/2g ~ y as y goes to infinity with q=Vy.
- y=0 corresponds to a very high speed flow in a shallow channel as E=y+V²/2g ~ V²/2g as y goes to 0.
- 3) $Y_{sub} > Y_{sup}$ (see figure) implies $V_{sub} < V_{sup}$ as q=Vy is constant.

Class Question

- > In Specific Energy diagram
 - Determine y_c in terms of q
 - Determine E_{min} in terms of y_c
 - Determine V_c
 - Determine Fr_c
- * Note: subscript c denotes critical condition (at E_{min})

Answer

$$E = y + \frac{q^2}{2gy^2}$$

• To obtain E_{min}, set dE/dy=0

Eq. P1

subscript c denotes conditions at E_{min}

Answer • Substituting y_c (Eq P2) into Eq P1

$$E_{\min} = \frac{3y_c}{2}$$

• Since q=Vy is constant

$$V_{c} = \frac{q}{y_{c}} = \frac{(y^{\frac{3}{2}} g^{\frac{1}{2}})}{y_{c}} = \sqrt{gy_{c}}$$

• Froude Number Fr_c

$$Fr_c = \frac{V_c}{\sqrt{gy_c}} = 1$$

Class Question

A rectangular channel has a width of 2 m and carries a discharge of 6 m^3/s at a depth of 0.20 m. Calculate critical depth and Specific energy at critical depth

 $\frac{Q^2}{g} = \frac{A_c^3}{T_c}$ $A_c = B y_c$ **Solution:** At critical depth, For a rectangular channel $T_c = B$ **Top Width** $\frac{Q^2}{c} = \frac{y_c^3 B^3}{c}$ Hence $\frac{\frac{Q^2}{B^2}}{a} = \frac{q^2}{a} = y_c^3$ Or, FREE ONLINE EDUCATIO

Where q = discharge intensity = discharge per unit width $y_c = (q^2/g)^{1/3}$ Here q = 6/2 = 3 $m^3/s/m$

$$y_c = \left(\frac{3^2}{9.8}\right)^{1/3} = 0.972 m$$

$$V_c = \frac{Q}{By_c} = \frac{6.0}{2 \times 0.972} = 3.087 \ m/s$$

 $E_c = Specific \ energy \ at \ critical \ depth = y_c + \frac{{V_c}^2}{2g} = 0.972 + \frac{(3.087)^2}{2 \times 9.81} = 1.458 \ m$

Homework Question

Water flows up a 0.5 ft tall ramp in a constant width rectangular channel at a rate q= 5.75

ft²/s. If the upstream depth is 2.3 ft, determine the elevation of the water surface

downstream of the ramp y_2+z_2 , Neglect viscous effects.

- Assumptions: Gradually varying flow (dy/dx <<1)
- The total head H is given by $H = \frac{V^2}{2g} + y + z$
- The energy equation becomes $H_1 = H_2 + h_L$
 - h_L is the head loss between sections 1 and 2
- The slope of energy line is
- Slope of channel bottom is

$$\frac{dH}{dx} = \frac{dh_L}{dx} = S_1$$
$$\frac{dz}{dx} = S_0$$

• Differentiating Eq. 11 w.r.t x

$$\frac{dH}{dx} = \frac{d}{dx}\left(\frac{V^2}{2g} + y + z\right) = \frac{V}{g}\frac{dV}{dx} + \frac{dy}{dx} + \frac{dz}{dx}$$

• Using slope of energy line and bottom slope we obtain

$$\frac{dh_L}{dx} = \frac{V}{g}\frac{dV}{dx} + \frac{dy}{dx} + S_0$$

$$\frac{V}{g}\frac{dV}{dx} + \frac{dy}{dx} = S_f - S_0$$
 Eq. 12

- The velocity of flow in rectangular channel of constant width b is given by V=q/y
- Differentiating it wrt x we obtain

$$\frac{dV}{dx} = -\frac{q}{y^2}\frac{dy}{dx} = -\frac{V}{y}\frac{dy}{dx}$$

Eq. 13

• Multiplying above equation with V/g we obtain

$$\frac{V}{g}\frac{dV}{dx} = -\frac{V^2}{gy}\frac{dy}{dx} = -F_r^2\frac{dy}{dx}$$

• Here F_r is the local Froude number of the flow

Substituting Eq 13 into Eq 12 we obtain

$$\frac{dy}{dx} = \frac{(S_f - S_0)}{(1 - F_r^2)}$$

Eq. 14

- Rate of change of fluid depth (dy/dx) depends
 - Local slope of channel bottom S₀
 - Slope of energy line S_f
 - Froude number F_r
- The equation is also valid for channels with any constant cross sectional shape

- Several channels are designed to carry fluid at uniform depth along all their length
 - Irrigation Canals ?
 - Rivers ?
 - Creeks ?
- Uniform depth flow means dy/dx =0. Can be made by adjusting bottom slope such that it equals the slope of energy line.
- y corresponding to uniform depth flow is called 'normal depth' denoted by y₀

Control Volume for uniform flow in an open channel

• Applying the x component of momentum equation on the control volume

$$\sum F_x = \rho Q(V_2 - V_1) = 0 \qquad \text{since } V_1 = V_2$$

- There is no acceleration of fluid and momentum flux across section 1 is equal to that across section 2.
 - Implies horizontal force balance

$$F_1 - F_2 - \tau_w Pl + W \sin \theta = 0$$
 Eq. 15

 $F_1 - F_2 - \tau_w Pl + W \sin \theta = 0$ Eq. 15

 $W\sin\theta$

Pl

 $\tau_w = 0$

• Here

- F₁ and F₂ are hydrostatic pressure forces
- WsinO is component of fluid weight acting down the slope
- τ_wPl is the shear force on fluid. This acts up the slope trying to slow down the flow (viscous force)
- Since $y_1 = y_2$ i.e. flow is at uniform depth $F_1 = F_2$

- Here
 - Θ is very small. Bottom slope is very small.
 - Therefore sin Θ ~ tan Θ ~ S₀ $\tau_w = \frac{WS_0}{Pl}$
 - Putting W=YAI and Hydraulic Radius R_h=A/P

$$\tau_{w} = \frac{\gamma A l S_{0}}{P l} = \gamma R_{h} S_{0}$$

Eq. 16

- Open channels flows are mostly Turbulent
 - Reynolds number lies fully in turbulent regime
- Here, we draw analogy from Pipe flow for turbulent flow
 - For very large R_e, friction factor *f* for pipe flows is independent of R_e and dependent only upon relative roughness, ε/D
 - The wall shear stress is proportional to dynamic pressure ρV²/2 and independent of the viscosity.

$$\tau_{w} = K\rho \frac{V^{2}}{2}$$

K is a constant Depends upon pipe roughness

• Assuming similar dependence for high R_e open-channel flows, Eq. 16 can be written as

$$K\rho \frac{V^{2}}{2} = \gamma R_{h} S_{0}$$
$$V = C_{N} \sqrt{R_{h} S_{0}}$$
Eq. 1

 $L^{\overline{2}}$

T

- Constant C is Chezy Coefficient and Eq. 17 is called Chezy Equation
 - Developed by French Engineer while designing canal
 - C is determined from experiments
 - Find the dimension ??

Manning Equation

- From series of experiments it was found by R. Manning that dependence on hydraulic radius R_h is not proportional to $R_h^{0.5}$ but V~ $R_h^{2/3}$
 - He proposed a modified equation for open channel flow

$$V = \frac{R_h^{2/3} S_0^{1/2}}{n}$$
 Eq. 18

- Eq. 18 is called Manning Equation and parameter *n* is called Manning resistance parameter
 - *n* is obtained from Tables. Precise values are difficult to obtain
 - Rougher the perimeter, larger the value of n

Manning's n Table

Values of the Manning Coefficient, n (Ref. 6)			
Wetted Perimeter	n	Wetted Perimeter	n
A. Natural channels		D. Artificially lined channels	
Clean and straight	0.030	Glass	0.010
Sluggish with deep pools	0.040	Brass	0.011
Major rivers	0.035	Steel, smooth	0.012
B Floodplains		Steel, painted	0.014
B. Floodplains	0.025	Steel, riveted	0.015
Pasture, farmland	0.035	Cast iron	0.013
Light brush	0.050	Concrete, finished	0.012
Heavy brush	0.075	Concrete, unfinished	0.014
Trees	0.15	Planed wood	0.012
C. Excavated earth channels		Clay tile	0.014
Clean	0.022	Brickwork	0.015
	0.022	Asphalt	0.016
Gravelly Weedy	0.023	Corrugated metal	0.022
Stony, cobbles	0.030	Rubble masonry	0.025

Class Question

- Water flows in the canal of trapezoidal cross section shown in Fig. below. The bottom drops 0.42 m per 304 m of length. The canal is lined with new smooth concrete. Find
 - Area A
 - Wetted Perimeter P
 - Flow rate Q
 - Reynolds number Re
 - Froude Number Fr

Take 5ft = 1.5 m and 12 ft= 3.6 m

$$A = 3.6*1.5+1.5*(\frac{1.5}{\tan 40^{\circ}}) = 8.08 \text{ m}^2$$

$$P = 3.6 + 2*(1.5/\sin 40^\circ) = 8.26$$
 m

$$R = \frac{A}{P} = 0.99 \text{ m}$$

$$S_o = \frac{0.42}{304} = 0.0014$$

$$Q = \frac{AR_h^{2/3}S_0^{1/2}}{n} = \frac{1}{n}(8.08)(0.99)^{\frac{2}{3}}(0.0014)^{\frac{1}{2}} = \frac{0.30}{n} \text{ m}^3/\text{s}$$

n = 0.012 For finished concrete, See Table

$$Q = \frac{0.30}{0.012} = 25 \text{ m}^{3/s}$$

$$R_e = \frac{R_h V}{V} \qquad R_e = \frac{0.99 * (25/8.08)}{0.13 * 10^{-5}} = 2.36 * 10^{6}$$

$$F_r = \frac{V}{\sqrt{gy}}$$
 $F_r = \frac{3.1}{\sqrt{9.8*1.5}} = 0.808$

Homework Question

A triangular duct resting on a side carries water with free surface as shown in the fig. Obtain the condition for maximum discharge in this channel when (a) m=0.5 and (m) = 1.0.

