Open Channel Flow

Hydraulics
Prof. Mohammad Saud Afzal
Department of Civil Engineering

Open Channel Flow

- Flow of liquid in channel or conduit that is not completely filled

- Liquid (water) flow with a free surface (interface between water and air) that can distort
- relevant for
- natural channels: rivers, streams
- engineered channels: canals, sewer lines or culverts (partially full), storm drains

Notations

- Fluid depth : y
- Time : t
- Distance along channel : x

Classification: Open Channel Flow

Classification:: Open Channel Flow

Classification: Open Channel Flow

Reynolds number based

$$
\operatorname{Re}=\frac{\rho V R_{h}}{\mu}
$$

$\operatorname{Re}<500$

Transitional
$500<\operatorname{Re}<12500$

Turbulent
$R e>12500$

1) The dividing Reynolds number are approximate
2) Since water has very low viscosity and large characteristic length (hydraulic radius) it is difficult to have laminar flow
ρ : Density of water
V: Average velocity of fluid
R_{h} : Hydraulic Radius of channel
μ : Dynamic Viscosity of water
swayam
(1) Fिशिकात भारत, न्नत मारत -

Classification: Open Channel Flow

$$
F r=\frac{V}{\sqrt{g l}} \quad \begin{array}{ll}
\text { v: Average velocity of fluid } \\
\text { I: Characteristic length of flow } \\
\mathrm{g}: \text { Acceleration due to gravity }
\end{array}
$$

Surface Solitary Waves

- Open Channel flow - free surface- can distort- waves generated

Production of single wave in a channel

Surface Solitary Waves

- Water was stationary at time $t=0$
- Wall starts moving with speed δV
- Stationary observer observes single wave move down the channel with wave speed c
- He sees no motion ahead of the wave
- Notices fluid with velocity δV behind the wave
- The motion is therefore unsteady for such observer
- For an observer moving along the channel with wave speed c, flow will be steady

Surface Solitary Waves

Wave as seen by observer that moves with wave speed c

- To such observer
- Fluid velocity shall be $V=-c \hat{\imath}$ to the right of observer
- Fluid velocity shall be $V=(-c+\delta V) \hat{\imath}$ to the left of the observer

Surface Solitary Waves

- Assuming uniform 1D Flow
- Equation of continuity $-c y b=(-c+\delta V)(y+\delta y) b$

$$
c=\frac{(y+\delta y) \delta V}{\delta y}
$$

- Under assumption of small-amplitude waves with
$\delta y \ll y$

$$
c=y \frac{\delta V}{\delta y}
$$

Eq. 1

Surface Solitary Waves

- Equation of momentum
- Mass flow rate $m=\rho b c y$
- Pressure is hydrostatic within fluid
- Pressure force on channel cross section 1

$$
F 1=\Upsilon y_{c 1} A_{1}=\Upsilon(y+\delta y)^{2} b / 2
$$

- Pressure force on channel cross section 2

$$
F 2=\Upsilon_{y c} A_{2}=\Upsilon y^{2} b / 2
$$

Surface Solitary Waves

$$
\frac{1}{2} \gamma y^{2} b-\frac{1}{2} \gamma(y+\delta y)^{2} b=\rho b c y[(c-\delta V)-c]
$$

- Assumption of small-amplitude waves $(\delta y)^{2} \ll y \delta y$

$$
\frac{\delta V}{\delta y}=\frac{g}{c}
$$

Eq. 2

Surface Solitary Waves

- Substitute Eq. 2 into Eq. 1

$$
\begin{aligned}
& c=y \frac{g}{c}, c^{2}=g y \\
& c=\sqrt{g y}
\end{aligned}
$$

$$
\text { Eq. } 3
$$

- Wave speed c of a small amplitude solitary wave is
- Independent of wave amplitude δy
- Proportional to square root of fluid depth y
- Fluid density (ρ) is not an important parameter (why ?)
* Wave motion is balance between inertial effects (proportional to ρ) and hydrostatic pressure effects (proportional to $\rho \mathrm{g}$)

Surface Waves: Energy Approach

- Eq. 3 can also be obtained using energy and continuity equations

Stationary simple wave

- The flow is steady for an observer travelling with wave speed c
- The pressure is constant at any point on free surface

Surface Waves: Energy Approach

- Bernoulli equation for the flow is

$$
\frac{V^{2}}{2 g}+y=C
$$

- On differentiating above equation

$$
\frac{V \delta V}{g}+\delta y=0
$$

$$
\text { Eq. } 4 \mathrm{a}
$$

- Differentiating Continuity Equation $V \boldsymbol{y}=$ constant

$$
y \delta V+V \delta y=0
$$

$$
\text { Eq. } \mathbf{4 b}
$$

Surface Waves: Energy Approach

- Combine Eq. 4a and Eq. 4b to get

$$
V=\sqrt{g y}
$$

- Since observer moves with speed c, V = c, We obtain

$$
c=\sqrt{g y}
$$

Froude Number Effect: Solitary waves

$$
F r=\frac{V}{\sqrt{g y}}=\frac{V}{c}
$$

- Consider Fluid flowing to left with speed V, Waves moves with speed c to the right.
- Wave will travel to right (upstream) with speed of c-V
- If $\mathrm{V}=\mathrm{c}$, stationary waves, If $\mathrm{V}>\mathrm{c}$, waves will be washed to left with speed V - c
- If $\mathrm{c}>\mathrm{V}$; waves travel upstream: $\mathrm{Fr}<1$; subcritical flow
- If $\mathrm{c}<\mathrm{V}$; waves do not travel upstream: $\mathrm{Fr}>1$; supercritical flow

Solitary Waves of finite amplitude

- Previous results are restricted to waves of small amplitude.
- For waves of finite sized amplitude δy, the wave speed is given by

$$
c \approx \sqrt{g y}\left(1+\frac{\delta y}{y}\right)^{\frac{1}{2}}
$$

Eq. 5

- This implies larger the amplitude, faster the wave travels

Sinusoidal Surface waves

- Linear wave theory is used to describe waves of small amplitude
- Mathematical derivation is outside scope of the course.

$$
c=\left[\frac{g \lambda}{2 \pi} \tanh \left(\frac{2 \pi y}{\lambda}\right)\right]^{\frac{1}{2}}
$$

$$
\text { Eq. } 6
$$

- λ is the wave length of waves
- Derive shallow water ??
- Derive Deep water equation for waves ??

Wave speed as a function of wavelength

Questions

1) Determine acceleration due to gravity of a planet where small amplitude waves travel across a $\mathbf{2 ~ m}$ deep pond with speed of $4 \mathrm{~m} / \mathrm{s}$. Is the planet more dense than Earth ?
2) A rectangular channel 3 m wide carries $10 \mathrm{~m}^{3} / \mathrm{s}$ at depth of 2 m . Is the flow sub or supercritical. What shall be critical depth.
3) A trout jumps producing waves on surface of a 0.8 m deep mountain stream. What is the minimum velocity of current if the waves do not travel upstream. [Hint $c=\sqrt{g y}$]

Answers: 1) $V=\sqrt{g y} \quad V^{2}=g y \quad g=\frac{V^{2}}{y}=\frac{4^{2}}{2}=\frac{16}{2}=8 \mathrm{~m} / \mathrm{s}^{2}$
2) $Q=A V \quad V=\frac{Q}{A}=\frac{10}{3 \times 2}=1.66$

$$
\begin{aligned}
& F_{r}=\frac{V}{\sqrt{g y}}=\frac{1.66}{\sqrt{9.8 \times 2}}=0.376 \\
& F_{r}<1 \quad \text { Flow is sub critical }
\end{aligned}
$$

For critical depth $F_{r}=\frac{V}{\sqrt{g y}}=1 \quad \frac{1.66}{\sqrt{9.8 \times y}}=1 \quad y=0.281 \mathrm{~m}$

$$
c=\sqrt{g y}=\sqrt{9.8 \times 0.8}=2.8 \mathrm{~m} / \mathrm{s}
$$

Energy in Open Channel Flow

Representative Open Channel Geometry

Energy in Open Channel Flow

1) The slope of the channel Bottom $S_{0}=\left(z_{1}-z_{2}\right) / I$ is assumed constant over length I. Quite small
2) Fluid depths at two cross section are y_{1} and y_{2}
3) Fluid velocities are V_{1} and V_{2} at two cross sections
4) Under assumption of uniform velocity profile across any cross section, 1 D energy equation for this flow is

$$
\frac{p_{1}}{\gamma}+\frac{V_{1}^{2}}{2 g}+z_{1}=\frac{p_{2}}{\gamma}+\frac{V_{2}^{2}}{2 g}+z_{2}+h_{L}
$$

Energy in Open Channel Flow

1) Slope of energy line can be written as $S_{f}=h_{L} / I$, referred as friction slope.
2) Under assumption of hydrostatic pressure at any cross section $p_{1} / \gamma=y_{1}$ and $p_{2} / \gamma=y_{2}$

$$
\begin{equation*}
y_{1}-y_{2}=\frac{\left(V_{2}^{2}-V_{1}^{2}\right)}{2 g}+\left(S_{f}-S_{0}\right) l \tag{Eq. 7}
\end{equation*}
$$

or

$$
\begin{equation*}
E_{1}=E_{2}+\left(S_{f}-S_{0}\right) l \tag{Eq. 8}
\end{equation*}
$$

where
Specific Energy

$$
\begin{equation*}
E=y+\frac{V^{2}}{2 g} \tag{Eq. 9}
\end{equation*}
$$

Specific Energy

1) Starting from Eq. 8, if head losses are negligible then $\mathrm{S}_{\mathrm{f}}=0$. Then, $\left(S_{f}-S_{0}\right) l=-S_{0} l=z_{2}-$ z_{1}. Eq. 8 reduces to

$$
E_{1}+z_{1}=E_{2}+z_{2}
$$

The sum of specific energy and elevation of channel bottom remains constant

Specific Energy

1) Consider a rectangular channel with constant width b

- Eq. 9 can be written as

$$
E=y+\frac{q^{2}}{2 g y^{2}}
$$

Eq. 10

Specific Energy

- For a given q and E , Eq. 10 is a cubic equation
-3 Solutions: $\mathbf{y}_{\text {sup }}, \mathbf{y}_{\text {sub }}, \mathbf{y}_{\text {neg }}$
$\cdot Y_{\text {neg }}$ has no physical meaning
- $Y_{\text {sup }}$ and $Y_{\text {sub }}$ are termed alternate depths MCQ
-What does $\mathrm{Y}=\mathrm{E}$ represent ?
-What does $\mathbf{y}=0$ represent ?
-Prove $y_{\text {sup }}<\mathrm{y}_{\text {sub }}$

MCQ Answers

1) $y=E$ corresponds to very deep channel flowing very slowly as $E=y+V^{\mathbf{2}} / \mathbf{2 g} \sim y$ as y goes to infinity with $\mathrm{q}=\mathrm{V} \mathrm{y}$.
2) $y=0$ corresponds to a very high speed flow in a shallow channel as $E=y+V^{2} / 2 g \sim V^{2} / 2 g$ as y goes to 0 .
3) $Y_{\text {sub }}>Y_{\text {sup }}$ (see figure) implies $V_{\text {sub }}<V_{\text {sup }}$ as $q=V y$ is constant.

Class Question

$>$ In Specific Energy diagram

- Determine \mathbf{y}_{c} in terms of \mathbf{q}
- Determine $E_{\text {min }}$ in terms of $\mathbf{y}_{\mathbf{c}}$
- Determine V_{c}
- Determine Fr_{c}
* Note: subscript c denotes critical condition (at $\mathrm{E}_{\text {min }}$)

Answer

$$
E=y+\frac{q^{2}}{2 g y^{2}}
$$

- To obtain $\mathrm{E}_{\text {min }}$, set $\mathrm{dE} / \mathrm{dy}=0$

$$
\begin{align*}
& \frac{d E}{d y}=1-\frac{q^{2}}{g y^{3}}=0 \\
& y_{c}=\left(\frac{q^{2}}{g}\right)^{\frac{1}{3}}
\end{align*}
$$

- subscript \mathbf{c} denotes conditions at $\mathrm{E}_{\text {min }}$

Answer
 - Substituting $\mathbf{y}_{\mathrm{c}}(\mathrm{Eq}$ P2) into Eq P1

$$
E_{\min }=\frac{3 y_{c}}{2}
$$

- Since $\mathrm{q}=\mathrm{Vy}$ is constant

$$
V_{c}=\frac{q}{y_{c}}=\frac{\left(y^{\frac{3}{2}}{ }^{\frac{1}{\frac{1}{2}}}\right)}{y_{c}}=\sqrt{g y_{c}}
$$

- Froude Number Fr_{c}

$$
F r_{c}=\frac{V_{c}}{\sqrt{g y_{c}}}=1
$$

Class Question

A rectangular channel has a width of 2 m and carries a discharge of $6 \mathrm{~m}^{3} / \mathrm{s}$ at a depth of 0.20 m. Calculate critical depth and Specific energy at critical depth

Solution:
At critical depth,
For a rectangular channel
Top Width
$\boldsymbol{T}_{\boldsymbol{c}}=\boldsymbol{B}$

Hence
$\frac{Q^{2}}{g}=\frac{y_{c}^{3} B^{3}}{B}$
$\frac{\frac{Q^{2}}{B^{2}}}{g}=\frac{q^{2}}{g}=y_{c}^{3}$

Where $q=$ discharge intensity $=$ discharge per unit width

$$
y_{c}=\left(q^{2} / g\right)^{1 / 3} \quad \text { Here } q=6 / 2=3 \mathrm{~m}^{3} / \mathrm{s} / \mathrm{m}
$$

$$
\begin{aligned}
y_{c} & =\left(\frac{3^{2}}{9.8}\right)^{1 / 3}=0.972 \mathrm{~m} \\
V_{c} & =\frac{Q}{B y_{c}}=\frac{6.0}{2 \times 0.972}=3.087 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$E_{c}=$ Specific energy at critial depth $=y_{c}+\frac{V_{c}{ }^{2}}{2 g}=0.972+\frac{(3.087)^{2}}{2 \times 9.81}=1.458 \mathrm{~m}$

Homework Question

Water flows up a 0.5 ft tall ramp in a constant width rectangular channel at a rate $\mathrm{q}=5.75$ $\mathrm{ft}^{2} / \mathrm{s}$. If the upstream depth is $\mathbf{2 . 3 \mathrm { ft } \text { , determine the elevation of the water surface }}$ downstream of the ramp $y_{2}+z_{2}$, Neglect viscous effects.

Channel Depth variation

- Assumptions: Gradually varying flow ($\mathrm{dy} / \mathrm{dx} \ll 1$)
- The total head H is given by

$$
H=\frac{V^{2}}{2 g}+y+z
$$

Eq. 11

- The energy equation becomes

$$
H_{1}=H_{2}+h_{L}
$$

- h_{L} is the head loss between sections 1 and 2
- The slope of energy line is

$$
\frac{d H}{d x}=\frac{d h_{L}}{d x}=S_{f}
$$

- Slope of channel bottom is

$$
\frac{d z}{d x}=S_{0}
$$

Channel Depth variation

- Differentiating Eq. 11 w.r.t x

$$
\frac{d H}{d x}=\frac{d}{d x}\left(\frac{V^{2}}{2 g}+y+z\right)=\frac{V}{g} \frac{d V}{d x}+\frac{d y}{d x}+\frac{d z}{d x}
$$

- Using slope of energy line and bottom slope we obtain

$$
\begin{align*}
& \frac{d h_{\mathrm{L}}}{d x}=\frac{V}{g} \frac{d V}{d x}+\frac{d y}{d x}+S_{\mathrm{o}} \\
& \frac{V}{g} \frac{d V}{d x}+\frac{d y}{d x}=S_{f}-S_{\mathrm{o}} \tag{Eq. 12}
\end{align*}
$$

Channel Depth variation

- The velocity of flow in rectangular channel of constant width b is given by $V=q / y$
- Differentiating it wrt x we obtain

$$
\frac{d V}{d x}=-\frac{q}{y^{2}} \frac{d y}{d x}=-\frac{V}{y} \frac{d y}{d x}
$$

- Multiplying above equation with V / g we obtain

$$
\begin{equation*}
\frac{V}{g} \frac{d V}{d x}=-\frac{V^{2}}{g y} \frac{d y}{d x}=-F_{r}{ }^{2} \frac{d y}{d x} \tag{Eq. 13}
\end{equation*}
$$

- Here F_{r} is the local Froude number of the flow

Channel Depth variation

- Substituting Eq 13 into Eq 12 we obtain

$$
\frac{d y}{d x}=\frac{\left(S_{f}-S_{0}\right)}{\left(1-F_{r}^{2}\right)}
$$

- Rate of change of fluid depth ($\mathrm{dy} / \mathrm{dx}$) depends
- Local slope of channel bottom S_{0}
- Slope of energy line S_{f}
- Froude number F_{r}
- The equation is also valid for channels with any constant cross sectional shape

Uniform Depth Flow

- Several channels are designed to carry fluid at uniform depth along all their length
- Irrigation Canals ?
- Rivers ?
- Creeks ?
- Uniform depth flow means $\mathrm{dy} / \mathrm{dx}=\mathbf{0}$. Can be made by adjusting bottom slope such that it equals the slope of energy line.
- y corresponding to uniform depth flow is called 'normal depth' denoted by y_{0}

Uniform Depth Flow

Control Volume for uniform flow in an open channel

Uniform Depth Flow

- Applying the x component of momentum equation on the control volume

$$
\sum F_{x}=\rho Q\left(V_{2}-V_{1}\right)=0 \quad \text { since } \mathrm{V}_{1}=\mathrm{V}_{2}
$$

- There is no acceleration of fluid and momentum flux across section 1 is equal to that across section 2.
- Implies horizontal force balance

$$
\begin{equation*}
F_{1}-F_{2}-\tau_{w} P l+W \sin \theta=0 \tag{Eq. 15}
\end{equation*}
$$

Uniform Depth Flow

$$
F_{1}-F_{2}-\tau_{w} P l+W \sin \theta=0
$$

Eq. 15

- F_{1} and F_{2} are hydrostatic pressure forces
- Wsin Θ is component of fluid weight acting down the slope
- $\tau_{w} \mathrm{Pl}$ is the shear force on fluid. This acts up the slope trying to slow

Equal pressure distributions down the flow (viscous force)

- Since $y_{1}=y_{2}$ i.e. flow is at uniform depth $F_{1}=F_{2}$

$$
\tau_{w}=\frac{W \sin \theta}{P l}
$$

Uniform Depth Flow

- Here
- θ is very small. Bottom slope is very small.
- Therefore $\sin \boldsymbol{\theta} \boldsymbol{\sim} \tan \boldsymbol{\theta} \sim \mathrm{S}_{0}$

$$
\tau_{w}=\frac{W S_{0}}{P l}
$$

- Putting $\mathbf{W}=\mathrm{YA}$ and Hydraulic Radius $\mathrm{R}_{\mathrm{h}}=\mathrm{A} / \mathrm{P}$

$$
\begin{equation*}
\tau_{w}=\frac{\gamma A l S_{0}}{P l}=\gamma R_{h} S_{0} \tag{Eq. 16}
\end{equation*}
$$

Uniform Depth Flow

- Open channels flows are mostly Turbulent
- Reynolds number lies fully in turbulent regime
- Here, we draw analogy from Pipe flow for turbulent flow
- For very large \mathbf{R}_{e}, friction factor f for pipe flows is independent of \mathbf{R}_{e} and dependent only upon relative roughness, ϵ / D
- The wall shear stress is proportional to dynamic pressure $\rho \mathrm{V}^{2} / 2$ and independent of the viscosity.

$$
\tau_{w}=K \rho \frac{V^{2}}{2}
$$

K is a constant Depends upon pipe roughness

Uniform Depth Flow

- Assuming similar dependence for high R_{e} open-channel flows, Eq. 16 can be written as

$$
\begin{align*}
& K \rho \frac{V^{2}}{2}=\gamma R_{h} S_{0} \\
& V=C \sqrt{R_{h} S_{0}} \tag{Eq. 17}
\end{align*}
$$

- Constant C is Chezy Coefficient and Eq. 17 is called Chezy Equation
- Developed by French Engineer while designing canal
- C is determined from experiments
- Find the dimension ??

Manning Equation

- From series of experiments it was found by R. Manning that dependence on hydraulic radius \boldsymbol{R}_{h} is not proportional to $R_{h}{ }^{0.5}$ but $V^{\sim} R_{h}{ }^{2 / 3}$
- He proposed a modified equation for open channel flow

$$
\begin{equation*}
V=\frac{R_{h}{ }^{2 / 3} S_{0}{ }^{1 / 2}}{n} \tag{Eq. 18}
\end{equation*}
$$

- Eq. 18 is called Manning Equation and parameter \boldsymbol{n} is called Manning resistance parameter
- n is obtained from Tables. Precise values are difficult to obtain
- Rougher the perimeter, larger the value of \boldsymbol{n}

Manning's n Table

Values of the Manning Coefficient, \boldsymbol{n} (Ref. 6)

Wetted Perimeter	\boldsymbol{n}	Wetted Perimeter	\boldsymbol{n}
A. Natural channels		D. Artificially lined channels	
Clean and straight	0.030	Glass	
Sluggish with deep pools	0.040	Brass	0.010
Major rivers	0.035	Steel, smooth	0.011
B. Floodplains		Steel, painted	0.012
Pasture, farmland	0.035	Steel, riveted	0.014
Light brush	0.050	Cast iron	0.015
Heavy brush	0.075	Concrete, finished	0.013
Trees	0.15	Planed wood	0.012
C. Excavated earth channels		Clay tile	0.014
Clean	0.022	Brickwork	0.012
Gravelly	0.025	Asphalt	0.014
Weedy	0.030	Corrugated metal	0.015
Stony, cobbles	0.035	Rubble masonry	0.016
			0.022

Class Question

- Water flows in the canal of trapezoidal cross section shown in Fig. below. The bottom drops 0.42 m per 304 m of length. The canal is lined with new smooth concrete. Find
- Area A
- Wetted Perimeter P
- Flow rate Q
- Reynolds number Re

Take $5 \mathrm{ft}=1.5 \mathrm{~m}$ and $12 \mathrm{ft}=3.6 \mathrm{~m}$

- Froude Number Fr

Class Question solution

$$
\begin{gathered}
A=3.6 * 1.5+1.5 *\left(\frac{1.5}{\tan 40^{\circ}}\right)=8.08 \mathrm{~m}^{2} \\
P=3.6+2 *\left(1.5 / \sin 40^{\circ}\right)=8.26 \mathrm{~m} \\
R=\frac{A}{P}=0.99 \mathrm{~m}
\end{gathered}
$$

Class Question solution

$$
S_{o}=\frac{0.42}{304}=0.0014
$$

$$
Q=\frac{A R_{h}^{2 / 3} S_{0}^{1 / 2}}{n}=\frac{1}{n}(8.08)(0.99)^{\frac{2}{3}}(0.0014)^{\frac{1}{2}}=\frac{0.30}{n} \mathrm{~m}^{3} / \mathrm{s}
$$

Class Question solution

$$
n=0.012
$$

For finished concrete, See Table

$$
Q=\frac{0.30}{0.012}=25 \mathrm{~m}^{3} / \mathrm{s}
$$

Class Question solution

$$
\begin{array}{cc}
R_{e}=\frac{R_{h} V}{v} & R_{e}=\frac{0.99 *(25 / 8.08)}{0.13 * 10^{-5}}=2.36 * 10^{6} \\
F_{r}=\frac{V}{\sqrt{g y}} & F_{r}=\frac{3.1}{\sqrt{9.8 * 1.5}}=0.808
\end{array}
$$

Homework Question

A triangular duct resting on a side carries water with free surface as shown in the fig. Obtain the condition for maximum discharge in this channel when (a) $\mathrm{m}=0.5$ and $(\mathrm{m})=1.0$.

