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Viscous Flow in pipes

* Pipeis completely filled with water

* Main driving force is usually a pressure gradient along the pipe, though
gravity might be important as well




Laminar or turbulent flow

well defined streakline, one velocity component
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velocity along the pipe is unsteady and accompanied
by random component normal to pipe axis
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Laminar or turbulent flow

https://www.youtube.com/watch?v=XOLI2KeDiOg
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https://www.youtube.com/watch?v=XOLl2KeDiOg

Laminar or turbulent flow

* In this experiment water flows through a clear pipe
with increasing speed. Dye is injected through a smali
diameter tube at the left portion of the screen. Initially,
at low speed (Re <2100) the flow is laminar and the dye
stream is stationary. As the speed (Re) increases, the
transitional regime occurs and the dye stream becomes
wavy (unsteady, oscillatory laminar flow). At still higher
speeds (Re>4000) the flow becomes turbulent and the
dye stream is dispersed randomly throughout the flow.




Class Question

e Water at a temperature of 10°C flows through a pipe of
diameter D=1.85 cm. Determine the minimum time taken
to fill a 0.355 L glass with water if the flow in the pipe is
to be laminar. Determine the maximum time taken to fill
the glass if the flow is to be turbulent. Repeat the
calculations if the water temperature is 60°C.

3
_pYD - p=1000 KE/M™ g0

s Re
Hint : 1 1 =1.307*10"° N.s/m?

3
P = 983.2 Kg/m At 60°C
11 =4.665*10 N.s/m?




Entrance region and fully developed flow
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* fluid typically enters pipe with nearly uniform velocity

* the length of entrance region depends on the Reynolds
Ie

number o 5= 0.06 Re for laminar flow
dimensionless | e
entrance length i 4.4(Re) for turbulent flow




Entrance region and fully developed flow

* As the fluid moves through the pipe, viscous effects cause
it to stick to the pipe wall (the no-slip boundary
condition).

* The boundary layer grows in thickness to completely fill
the pipe.

* Viscous effects are of considerable importance within the
boundary layer.

* For fluid outside the boundary layer [within the inviscid
core surrounding the centerline from 1 to 2], viscous
effects are negligible.

 Calculation of velocity profile and pressure distribution
within entrance region is very complex.
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Entrance region and fully developed flow

* As soon as the flow reaches the end of entrance region

* Flow is simpler
* Velocity dependent upon radial distance r
* Velocity independent of x

* Flow between section 2 and 3 is called fully developed
flow




Pressure and shear stress

NN
A

Fully developed
flow: dp/dx = constant

P l=— Entrance flow

no acceleration,
viscous forces balanced
by pressure

Entrance
pressure I
drop

pressure balanced
by viscous forces
and acceleration




Pressure and shear stress

* The need of the pressure drop can be seen as

* Force Balance; Pressure force is needed to overcome
the viscous forces generated

* Energy Balance; Work done by pressure forces is
needed to overcome the viscous dissipation
throughout the fluid




Fully developed laminar flow

* Problems
 Most flows are turbulent
* Theoretical analysis is yet not possible

* Many pipes are not long enough to allow attainment
of fully developed flow

* Importance

* One of the very few theoretical viscous analysis that
can be carried out ‘exactly’

* Provides a foundation for further complex analysis

* There are many practical situations involving the use
of fully developed laminar pipe flow
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Fully developed laminar flow

e Equation for fully developed laminar flow in pipe can be

derived using 3 approaches:
* from 2"d Newton law directly applied

* from Navier-Stokes equation

* from dimensional analysis




Newton’s 2nd law

Fluid element at time ¢ Element at time ¢ + ot

Velocity ¢ \ /

profile ————————5 J_




Newton’s 24 Jaw

* We consider the fluid element at time t as is
shown in Fig above. It is a circular cylinder of fluid
of length and radius r centered on the axis of a

horizontal pipe of diameter D. Because the velocity

is not uniform across the pipe, the initially flat
ends of the cylinder of fluid at time t become
distorted at time when the fluid element has
moved to its new location along the pipe as shown
in the figure. If the flow is fully developed and
steady, the distortion on each end of the fluid
element is the same, and no part of the fluid
experiences any acceleration as it flows.
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Newton’s 2"d Jaw

* Assumptions
* Local acceleration is zero since the flow is steady

e Convective acceleration is zero since the flow is fully
developed

* Every fluid particle flows along streamline with constant
velocity. The neighboring particle have slightly different
velocities

* Gravitational effects are neglected for now

* Pressure is constant across any vertical cross section of
the pipe

* Pressure drop Ap>0—> pressure decreases in direction of




Newton’s 24 Jaw

T2mrt
T
pLTre I _ . . I e (1 — Ap) ?rrf
€

pr® —(p, —Ap)zr? —z2zxrl =0

Ap 2t ‘ 7 =Cr,atr=D/2 stress is maximum z,, wall shear stress
T 2z, I 47, Ea. 3

T = and Ap = S < Lkq.

doesn’t depend on radius rofile
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Newton’s 24 Jaw

* Discussions
e Shear stress varies linearly with r (Why ??)

* If viscosity was zero = no shear stress and pressure
constant throughout channel

* A small shear stress can produce large Ap if pipe is
relatively long (I/D>>1) ( See Equation)

e Analysis till now is valid for both laminar and
turbulent flow ( assumptions are common)

* From here onward we assume shear stress
distribution for laminar flow




Newton’s 2nd law

A
for Newtonian liquid: r——yd—u T= (p)

dr 2l
du_ (ap
dr 2,u|
U=- Ap r+C,
(‘wl]

boundary condition:u=0atr=D/2=C, = Ap D’
164l




Newton’s 24 Jaw

(o

dA = 2mr dr

zD*Ap
128 4l

D/2
Flow rate: Q = JudA: jo u(r)2zrdr = Eq. 4

Poiseuille’s Law
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Newton’s 2"d Jaw

* if gravity is present, it can be added to the pressure:

L f par® —""%

—
Fluid cylinder
&
A
ey £
‘1':' 1"'— o+ Ap)r®

Ap — oglsin @ _ 27 Eq. 5
| r
V= (Ap — pglsin @) D? Eq. 6
32 ul
o — 7w (Ap — pglsin @) D* Eq. 7

128 441




Basic mathematics

* Del Operator: vV — o , o , o
Ox Oy’ Oz
0° 0? 0?
2 __ _
 Laplacian Operator: Vi=V-V= 92 + 0y2 + )

op Op O
* Gradient: sz( Lo p)

Ox’ Oy’ 0z




e VVector Gradient:

Vu = (Vu, Vv, Vw)

* Divergence:

ou Ov Ow

V'u:%‘F%‘F%

* Directional Derivative:

u-V—ug+v£+w2
O Oy 0z




Navier-Stokes equation applied

* General motion of an incompressible Newtonian fluid is governed by the continuity
equation conservation of mass, is written as :

V-u=20
* Momentum equation: aa—[: +V .VV=- V7p +g+v V2V Eq. 8

For steady, fully developed flow in a pipe, the velocity contains
only an axial component, which is a function of only the radial
coordinate [ V=u(r)i ] For such conditions, the left-hand side of the
momentum Eqgn. becomes zero. This is equivalent to saying that
the fluid experiences no acceleration as it flows along. The same
constraint was used in the previous section when considering




Thus, with g = -giE the Navier Stokes equations become

VvVv=0
Vp+pgl§= uv2v

The flow is governed by a balance of pressure, weight, and viscous forces
in the flow direction.

In cylindrical coordinates:

ap+ ) 10 ( du
ax ' PISME =R G\" or

The assumptions and the result are exactly the same as
Navier-Stokes equation is drawn from 2" Newton law




Dimensional analysis
Ap=F(V,1,D, u)

DAp (|
757—¢(Dj

assuming pressure drop proportional to the length:

DAp CI Ap CuV
= — =

uv D | D?

(1 4C)ApD*

ul

Q=AV =




Darcy friction factor (f)

* Rewriting Poiseuille's law

D/2 DA
szudA:j u(r)2ﬂrdr:ﬂ P
0 128 vl
3244V
AP = [’)uz
Dividing both sides by dynamic pressure
32V
A 2 I 64 |
£ P Gl e ey

v VDD’ Re 'D




Darcy friction factor (f)

e Often written as

pV i

Ap—f( >) Eq. 10

Where f is called Darcy friction factor.

f for laminar fully developed pipe flow is given by

f— ﬁ Eq. 11
Re

In terms of wall shear £ 87,

. 5 Eg. 12
stress Using Eq. 3 ,OV




Energy in fully developed Laminar flow

* Consider energy flow between two locations

A A
—1+a1 +2,=—%+ az +2,+h,  Eq.13
y 29 y 29
*  For uniform velocity profile a=1 (a>1 for non-uniform

profile)
*  For fully developed flow a,= a, =1

* h accounts for energy loss associated with the flow
Viscous dissipation here. For inviscid flow h = ?




Energy in fully developed Laminar flow

* Rewriting Eq. 13

Pz)- (p2+22) h,  Eq.14
p2: / _
Ap Isme_Ap—ﬂsmH:hL
Z,—1 —Ism@ 4
UseEq5

2l
4ITW 2l 7 .

h = ki 5
L 7/D Use Eq. 2 - hL I - hL
Eqg. 16
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Energy in fully developed Laminar flow

4z,
/D

h, Eq. 16

* The above equation is valid for both laminar and turbulent
fluid flow




Turbulent flow

Random,

turbulent fluctuations Turbulent

Turbulent 24000
bursts

Transitional

Re=VDl

' 2000
1 T

o]

* In turbulent flow the axial component of velocity
fluctuates randomly, components perpendicular to
the flow axis appear

 heat and mass transfer are enhanced in turbulent
flow

* In many cases reasonable results on turbulent flow
can be obtained using Bernoulli equation (Re=inf).




Fluctuation in turbulent flow

 All parameters fluctuate in turbulent flow (velocity, pressure, shear
stress, temperature etc.) behave chaotically

* flow parameters can be described as an average value +
fluctuations (random vortices)

* can be characterized by turbulence intensity and time scale of

fluctuation 1o
( I (u) dtJ

turbulence intensity _ _ (@)

u

|




Shear stress in turbulent flow

Average velocity profile,

Velocity profile, i
\. =) }/ w = uly) C Oy // 7=y
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* Turbulent flow can often be thought of as a series of random,
3-dimensional eddy motions (swirls) ranging from large eddies down
through very small eddies

Turbulent
eddies

1
4l

* Vortices transfer momentum, so the shear force is higher comparg
with laminar flow: i
T =Tiam + Tourp = /ud_ _pulvl




Shear stress in turbulent flow

* Shear stress is a sum of laminar portion and a turbulent portion

— dU a7 r .
T—,Ud_y—IOUV _Tlam +Tturb1 U =u-u
\ positive
shear stress is larger in turbulent flow
e Alternatively: _
Toro =17 (;—u 1) = eddy viscosity
y

Prandtl suggested that turbulent flow is characterized
by random transfer over certain distance /




Viscous

Turbulent velocity profile

; l

T [ Overlap
v layer
~

(5H)

7., =100-10007,

* Viscous sub layer: Viscous shear stress dominates, viscosity is
dominant and density unimportant

* Quter Layer: Reynolds stress in dominant viscosity is

unimportant and density dominant




Turbulent velocity profile
* In the viscous sublayer Law of the wall

U_yu*/

u* v

where, y=R-r, u — time averaged x component,
*=(t/p)” friction velocity

valid near smooth wall: 0<yu*/v<5

Sv : :
Y =Ogpiayer = —= | Thickness of viscous sublayer
u

e |In the overlap layer: Log law

i —25 |n( ) +50 Coefficients have been obtained
U experimentally




Turbulent velocity profile

e |n the turbulent layer: function of Reynolds number

(V. -T)/u*=25In(R/y)  or \%:(1-%

N

Velocity Defect Law in outer layer

Velocity defect or retardation of
the flow due to wall effects.




Dimensional analysis of pipe flow

* major loss in pipes: due to viscous flow in the straight elements
* minor loss: due to other pipe components (junctions etc.)

Ny =, — P

Major loss: (2>

Ap=F(V,Dl ¢, u p) ?I ¥ 8

roughness

e those 7 variables represent complete set of
parameters for the problem

Ap i oD | ¢
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Dimensional analysis of pipe flow

Ap _5 ,OVD I E
1pV?2 @ DD

as pressure drop is proportional to length of the tube:

///;—*_\\\ * //i""""":_:\\

(e \ Ap | .
vy o] D= g[Re,
€ \\ ! § \\_____,..y--m.._...-—‘/i %pv D D
T \\ // L \/\"\_/-\_-—'-7/::

Smooth wall




Dimensional analysis of pipe flow

A | ApD
1 : 2~ ¢(Re’£j f= : > +— friction factor
V- D D llpV
2
f = ¢(Re, ij and Ap = L 'OV Valid for horizontal pipes
D D 2

* for fully developed laminar flow

f =64/Re

o for fully developed steady incompressible flow
(from Bernoulli eq.):

Darcy-Weisbach equation




Class Problem

 Water flows through a pipeline whose diameter varies from 20 cm
to 10 cm in a length of 10m. If Darcy-Weisbach friction factor is
assumed to be constant at 0.02 for the whole pipe, determine the
head loss in friction when the pipe is flowing full with a discharge of
50 L/s.

‘f'/— ax

Y
110 cm
v

10 cm —>

®




Equivalent roughness for pipes

Equivalent Roughness for New Pipes [From Moody

(Ref. 7) and Colebrook (Ref. 8)]

Equivalent Roughness, £

Millimeters

Pipe Feet
Riveted steel 0.003—-0.03
Concrete 0.001—-0.01
Wood stave 0.0006—-0.003
Cast iron 0.00085
Galvanized iron 0.0005
Commercial steel

or wrought iron 0.00015
Drawn tubing 0.000005

Plastic, glass 0.0 (smooth)

0.9—-9.0
0.3-3.0
0.18—-0.9
0.26
0.15

0.045
0.0015
0.0 (smooth)



Class Problem

* A badly corroded concrete pipe of diameter 1.5 m has an equivalent
sand roughness of €, = 15mm . A 10 mm thick lining is proposed to
reduce the roughness value to €, = 0.2 mm .For a discharge of 4.0
m?3 /s in the pipe calculate the power saved per kilometer of pipe.

Take v = 1x 10~ %m?/s




Moody chart

Friction factor as a function of Reynolds number and relative roughness for
round pipes

Colebrook formula; implicit Haaland equation: explicit

1 s/ID 251 1 glD,,,; 6.9
——=-1.8lo R B
gl 3.7 ) Re]

M g( 37 +ReﬁJ J




Class Problem

 Air under standard conditions flows through a 4.0 mm diameter
drawn tubing with an average velocity V=50 m/s. of For such
conditions the flow would normally be turbulent. However, if
precautions are taken to eliminate disturbances to the flow (the
entrance to the tube is very smooth, the air is dust free, the tube
does not vibrate, etc.), it may be possible to maintain laminar flow.

 Determine the pressure drop in a 0.1 m section of the tube if the
flow is laminar.

Repeat the calculations if the flow is turbulent.




Minor losses

It is due to the change of the velocity of the
flowing fluid in the magnitude or in direction
[turbulence within bulk flow as it moves
through and fitting]

The minor losses occurs due to

eValves

* Tees Flow pattern through a valve
e Bends
e Reducers

e And other appurtenances

[ FREE ONLINE EDUCATION é
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Minor losses

e It has the common form
2 2
hm — kL V_ — kL ? 2
20 20A

“minor” compared to friction losses in long pipelines but,

can be the dominant cause of head loss in shorter
pipelines




L.osses due to contraction

A sudden contraction in a pipe usually causes a marked drop in pressure
in the pipe due to both the increase in velocity and the loss of energy to
turbulence.

Along wall

L
T
w

2g_/

.

Alopg centerline




Head Loss Due to a Sudden Contraction




Head losses due to pipe contraction may be greatly reduced by introducing a
gradual pipe transition known as a confusor




Head Loss Due to Gradual Contraction
(reducer or nozzle)

: i 2 \;2
L. };—:_’Vt hL:KL(Vz —V )

o= 29




Head Loss Due to Gradual Contraction
(reducer or nozzle)

A different set of data is :

Table Loss Coefficients (K) fc_>r Gradual Contractions.

Included Angle, 6, Degrees
AyA, 10 1540 50-60 90 120 150 180

Ay 0.50 0.05 005 0.06 0.12 0.18 0.24 0.26
—4 .3 025 005 0.04 007 017 027 035 04l
\ : 0.10 0.05 0.05 008 0.19 0.29




Losses due to Enlargement

A sudden Enlargement in a pipe




Head Loss Due to a Sudden Enlargement

V12
29
1.0 Af[ 2
0.8 VA?‘%%“KV_? KL_ 1-—
™ SR A
K, 0.6 ; |
0.4 or
0.2
2
0 (Vl _VZ)
0 0.2 0.4 0.6 0.8 1.0 hL =
A/Az 2g
=
SANTA
AN §




* Note that the drop in the energy line is much larger than in the case of
a contraction

! At wall
=S S S o

gradual expansion

Smaller head loss than in the case
of an abrupt expansion




* Head losses due to pipe enlargement may be greatly reduced by
introducing a gradual pipe transition known as a diffusor

2 2
1 e =k Ve
~L_ 29

a 10° 2° 30° 40° 30° 60° 15°
Kg 078 I 49 .60 67 ¥ 12
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Head Loss Due to Gradual Enlargement
(conical diffuser)




Loss due to pipe entrance

General formula for head loss at the entrance of a pipe is also expressed in term of
velocity head of the pipe

V 2
hent = Ken 29
e -
_Lg _Lé = i ”
h 1% 7 K = 0.04 0.3 cos ax + '
K05 ——— Ke=10_—" """ S 0.2 cos® a
. A
, Z %
i [ 5
S Z .
{a) b} {c}

[ FREE ONLINE EDUCATION %
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Head Loss at the Entrance of a Pipe
(flow leaving a tank)

Reentrant <:::ji,,——\, \\\\\\______» Sharp
(embeded) > > edge
K, =0.8 (:::\‘—’ ////’___’ ) K, = 0.5

Slightly \\\\_* \\\\‘* Well
rounded i rounded

K =02 ' K, =0.04




Different pipe inlets

. ! v ! INV v

- " R ;.t. P

R

ushj

(a) k, = 0.04 (b)k,=05

>
>

increasing loss coefficient




Another Typical values for various
amount of rounding of the lip




Head Loss at the Exit of a Pipe
(flow entering a tank)

K =1.0

K, =1.0
=
e
2
. V
K, =1.0 K, =1.0 L —

(€=2)

The entire kinetic energy of the exiting fluid (velocity V1) is
dissipated through viscous effects as the stream of fluid mixes
with the fluid in the tank and eventually comes to rest (V, = 0).




Outer wall
(high pressure)

- p

Separation

Outer wall (high pressure)

Inner wall (low pressure) /

Inner wall
(low pressure)

(a) (b)

Figure Head loss at a bend: (a) flow separation in a bend; (b) secondary flow
at a bend.

Head Loss Due to Bends in Pipes

FREE ONLINE EDUCATION %
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Miter bends

For situations in which space is limited,

Guide vanes
\\
S
S
B FIGURE |
Character of the flow
in a 90° miter bend
and the associated loss
K,=0.2 coefficient: (a) without
. guide vanes. (b) with
(a) (b) guide vanes.
FREE ONLINE EDUCATION - $ N { .
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Head Loss Due to Pipe Fittings
(valves, elbows, bends, and tees)

TABLE ¢ Values of K, for Certain Common Hydraulic Valves

A. Gate valves

%
H
1 F
~~~-. D
j 3

Closed

K, = 0.15 (fully open)

Ky = 10.0 (fully open)




C. Check valves:
Closed

Hinge (Swing type)

2.5 (fully open)
70.0 (fully open)
12.0 (fully open)

Swing type K,
Ball type Ky
Lift type Ky

Open

Closed

Ky = 10.0 (fully open)




The loss coefficient for elbows,
bends, and tees

Loss Coefficients for Pipe Components (hL = K; —

2g
T s r £ = o e B 51|
Component K,
a. Elbows
Regular 90°, flanged 0.3 vV —
Regular 90°, threaded 1.5
Long radius 90°, flanged 0.2
Long radius 90°, threaded 0.7 l
Long radius 45°, flanged 0.2
Regular 45°, threaded 0.4 —-\
V —s
b. 180° return bends
180° return bend, flanged 0.2 v
180° return bend, threaded 1.5

———

Line flow, threaded
Branch flow, flanged
Branch flow, threaded

N=00O
CQOoOUvN
<

c. Tees
Line flow, flanged . ‘{




Loss coefficients for pipe components

(Table)

E-l:l-rnp-u-rl-enl:

hh.

b=

Femular SH0% . flan el
Foemgular WY chrcockedd

I oo reudiws D07, flanged
I o revdiwvs D07, chreew]edd
Ionmg revdiwus 457, flamgced
Foegula <57 chrcacksd

AHO retomrmn bemnsds=s
1207 remarm bBEemnd, Alanged
1 =07 rermarm bBenmd, thressdaed

Tees

Laree Flosw, flamged
ILares flow, threasded
Branch flow,. flanged
Branch flows, threesudedd

Wi, e resecied

= B
Calobe=,. fuall w op=—n

Swving cheoclk forseand flose
Swering check, backwand £l ores
Ball valwe. fully open

Ball valwve, o+ closad

eEpeeo
NN

=
¥

+
L Piee= N 1 ‘l F
L B ——
1. T
i, E
1
v — -
LS !
L ——
| ——
1
>
o 1S
o2
.1
17
2
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inor loss coefficients (Table)

Description Skeickh Data F. e Source
. o Fol (23
Pipe entrance M o.0 0.50
= - -
S e 0.1 0.12
frg, = K. V2722 A I B =02 0.03
K~ F
Contracticn o P & 8 = 60" @ = 1807 2
i 0.0 .08 0.50
—+—‘?\%2 0.20 0.08 049
Dy a .40 0.07 0.4
—_ 0.60 0.06 0.27
0.80 0.06 0.20
h, = Ko V3. 2g 090 0.06 0.10
K K
Expansion .o s > PN e = 20< g = 180° {2
0.0 1.00
020 0.30 .87
O LG 025 O 7O
O.60 0.15 O 41
B, = K. Vi~ 2g 0.80 0.10 0.15
VWithouat K, 1.1 (39
vanes
90" miter bend
WWith K, 0.2 (39
vanes
rod L&
and
i K, = 0.35 €15)
a0* smooth bend i 8 ;2
[s3 .21
= .28
10 032
Globe valve—wide open K, = 10.0 (39)
Angsle valve—wide open K, = 5.0
Gate valve—aide open K, — 0.2
Tt Grate valve—hall open K, = 5.6
- readed Return bend K, = 2.2
pip= Tee
fAuings straight-through flows K, = 04
side-outlet Flow K, = 1.8
90 elbow K, = 0.9
45° elbow = 0.4




Minor loss calculation using
equivalent pipe length

k, D
L=
L, Equivalent pipe length
D Diameter of pipe

Loss coefticient for any fitting, valve. ..
Darcy-Weisbach coefficient



Energy and hydraulic grade lines

h; due to
entrance

- f; due to partially
closed valve

Unless local effects are of particular interests, the changes in the
EGL and HGL are often shown as abrupt changes (even though the
loss occurs over some distance)




Pipe network

 Serial connection | . 1
Q—»é)”i L B-)—Q>
J v
1 f

Q1:Q2:Q3 !

h,. =h, +h_+h_
D, B
' A =
* Parallel connection e
Q = Ql + Qz + Q3 ?2 | - _: o

h,=h_=h_




Pipe Network

A water distribution system consists of complex interconnected
pipes, service reservoirs and/or pumps, which deliver water from
the treatment plant to the consumer.

e Water demand is highly variable, whereas supply is normally
constant. Thus, the distribution system must include storage
elements, and must be capable of flexible operation.

* Pipe network analysis involves the determination of the
pipe flow rates and pressure heads at the outflows points
of the network. The flow rate and pressure heads must
satisfy the continuity and energy equations.




Pipe Network

* The earliest systematic method of network analysis (Hardy-Cross
Method) is known as the head balance or closed loop method.

* This method is applicable to system in which pipes form closed
loops. The outflows from the system are generally assumed to occur
at the nodes junction.

* For a given pipe system with known outflows, the Hardy-Cross
method is an iterative procedure based on initially iterated flows in
the pipes.




Pipe Network

* At each junction these flows must satisfy the continuity
criterion, i.e. the algebraic sum of the flow rates in the pipe
meeting at a junction, together with any external flows is zero.

e Algebraic sum of head losses round each loop must be zero

FREE ONLINE EDUCATION % |
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Class Question

* A pipe 6-cm in diameter, 1000 m long and with A = 0.018 is connected
in parallel between two points M and N with another pipe 8-cm in
diameter, 800-m long and having A = 0.020. A total discharge of 20 L/s
enters the parallel pipe through division at A and rejoins at B. Estimate
the discharge in each of the pipe.

_.—_hq
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Hardy Cross Method

T Llow Sut flow -

e

-«

Owrf! ow//l

* Assigning clockwise flows and their associated head losses are
positive, the procedure is as follows:

* Assume values of Q to satisfy 2.Q = 0.
* Calculate H, from Q using H, = K'Q?
 If 2H, =0, then the solution is correct.

 If 2 H, #0, then apply a correction factor, AQ, to all Q and
repeat from step (2).
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Hardy Cross Method contd.

* For practical purposes, the calculation is usually terminated
when 2> H, <0.01 mor AQ<1L/s.

* Areasonably efficient value of AQ for rapid convergence is given
by;

Y H;
zzHL/Q

AQ = —




Class Problem (Hardy Cross)

For the square loop shown, find the discharge in all the pipes. All pipes
are 1 km long and 300 mm in diameter, with a friction factor of 0.0163.
Assume that minor losses can be neglected.

.—_ .
!ao% : /:lo /s
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Class problem

* For the network shown in the figure the head loss is given by . The
values of r for each pipe, and the discharge into or out of various
nodes are shown in the sketch. The discharges are in an arbitrary
unit. Obtain the distribution of discharge in the network.

A r=7 D
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