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Viscous Flow in pipes

• Pipe is completely filled with water
• Main driving force is usually a pressure gradient along the pipe, though 

gravity might be important as well

Pipe flow open-channel flow



Laminar or turbulent flow
well defined streakline, one velocity component

uV i

u v wV i + j + k

velocity along the pipe is unsteady and accompanied
by random component normal to pipe axis

Re 2100

Re 4000



Laminar or turbulent flow

https://www.youtube.com/watch?v=XOLl2KeDiOg

https://www.youtube.com/watch?v=XOLl2KeDiOg


• In this experiment water flows through a clear pipe
with increasing speed. Dye is injected through a small
diameter tube at the left portion of the screen. Initially,
at low speed (Re <2100) the flow is laminar and the dye
stream is stationary. As the speed (Re) increases, the
transitional regime occurs and the dye stream becomes
wavy (unsteady, oscillatory laminar flow). At still higher
speeds (Re>4000) the flow becomes turbulent and the
dye stream is dispersed randomly throughout the flow.

Laminar or turbulent flow



Class Question 

• Water at a temperature of 10oC flows through a pipe of
diameter D=1.85 cm. Determine the minimum time taken
to fill a 0.355 L glass with water if the flow in the pipe is
to be laminar. Determine the maximum time taken to fill
the glass if the flow is to be turbulent. Repeat the
calculations if the water temperature is 60oC.

Hint : 
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Entrance region and fully developed flow

• fluid typically enters pipe with nearly uniform velocity

• the length of entrance region depends on the Reynolds 

number
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Entrance region and fully developed flow

• As the fluid moves through the pipe, viscous effects cause
it to stick to the pipe wall (the no-slip boundary
condition).

• The boundary layer grows in thickness to completely fill
the pipe.

• Viscous effects are of considerable importance within the
boundary layer.

• For fluid outside the boundary layer [within the inviscid
core surrounding the centerline from 1 to 2], viscous
effects are negligible.

• Calculation of velocity profile and pressure distribution 
within entrance region is very complex.



Entrance region and fully developed flow

• As soon as the flow reaches the end of entrance region

• Flow is simpler

• Velocity dependent upon radial distance r

• Velocity independent of x

• Flow between section 2 and 3 is called fully developed 
flow



Pressure and shear stress

no acceleration, 
viscous forces balanced 
by pressure

pressure balanced 
by viscous forces 
and acceleration



Pressure and shear stress

• The need of the pressure drop can be seen as 

• Force Balance;  Pressure force is needed to overcome 
the viscous forces generated

• Energy Balance; Work done by pressure forces is 
needed to overcome the viscous dissipation 
throughout the fluid



Fully developed laminar flow
• Problems 

• Most flows are turbulent
• Theoretical analysis is yet not possible

• Many pipes are not long enough to allow attainment 
of fully developed flow

• Importance
• One of the very few theoretical viscous analysis that 

can be carried out ‘exactly’
• Provides a foundation for further complex analysis
• There are many practical situations involving the use 

of fully developed laminar pipe flow



Fully developed laminar flow

• Equation for fully developed laminar flow in pipe can be 

derived using 3 approaches:

• from 2nd Newton law directly applied

• from Navier-Stokes equation

• from dimensional analysis



Newton’s 2nd law

fluid element at time t 



Newton’s 2nd law

• We consider the fluid element at time t as is
shown in Fig above. It is a circular cylinder of fluid
of length and radius r centered on the axis of a
horizontal pipe of diameter D. Because the velocity
is not uniform across the pipe, the initially flat
ends of the cylinder of fluid at time t become
distorted at time when the fluid element has
moved to its new location along the pipe as shown
in the figure. If the flow is fully developed and
steady, the distortion on each end of the fluid
element is the same, and no part of the fluid
experiences any acceleration as it flows.



Newton’s 2nd law

• Assumptions

• Local acceleration is zero since the flow is steady

• Convective acceleration is zero since the flow is fully 
developed

• Every fluid particle flows along streamline with constant 
velocity. The neighboring particle have slightly different 
velocities

• Gravitational effects are neglected for now

• Pressure is constant across any vertical cross section of 
the pipe

• Pressure drop Δp>0 pressure decreases in direction of 
flow



Newton’s 2nd law
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Newton’s 2nd law
• Discussions

• Shear stress varies linearly with r (Why ??)

• If viscosity was zero  no shear stress and pressure 
constant throughout channel

• A small shear stress can produce large Δp if pipe is 
relatively long (l/D>>1) ( See Equation)

• Analysis till now is valid for both laminar and 
turbulent flow ( assumptions are common)

• From here onward we assume shear stress 
distribution for laminar flow



Newton’s 2nd law

for Newtonian liquid: 
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Flow rate: 
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Newton’s 2nd law

• if gravity is present, it can be added to the pressure:
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• Del Operator:

• Laplacian Operator:

• Gradient:

Basic mathematics 



• Vector Gradient:  

• Divergence:

• Directional Derivative:



Navier-Stokes equation applied

• General motion of an incompressible Newtonian fluid is governed by the continuity 
equation conservation of mass,  is written as :

• Momentum equation: 
𝜕𝑽

𝜕𝒕
+ V .𝛁V=-

𝛁p
𝝆

+ g + ν 𝛁𝟐V

For steady, fully developed flow in a pipe, the velocity contains
only an axial component, which is a function of only the radial
coordinate [ V=u(r)Î ] For such conditions, the left-hand side of the
momentum Eqn. becomes zero. This is equivalent to saying that
the fluid experiences no acceleration as it flows along. The same
constraint was used in the previous section when considering
F = ma for the fluid cylinder.

Eq. 8



Thus, with g = -g෡𝒌 the Navier Stokes equations become

𝛁 V= 0

𝛁 p + 𝝆 g෠𝑘 = μ𝛁𝟐V

The flow is governed by a balance of pressure, weight, and viscous forces
in the flow direction.

In cylindrical coordinates:

𝝏𝒑

𝝏𝒙
+ 𝝆𝒈𝐬𝐢𝐧𝜽 = 𝝁

𝟏

𝒓

𝝏

𝝏𝒓
𝒓
𝝏𝒖

𝝏𝒓

The assumptions and the result are exactly the same as 
Navier-Stokes equation is drawn from 2nd Newton law



Dimensional analysis
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Darcy friction factor (f )

• Rewriting Poiseuille's law
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Darcy friction factor (f )

• Often written as

Where f is called Darcy friction factor. 

f for laminar fully developed pipe flow is given by 
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In terms of wall shear 
stress Using Eq. 3
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Energy in fully developed Laminar flow

• Consider energy flow between two locations

• For uniform velocity profile α=1 (α>1 for non-uniform 
profile)
• For fully developed flow α1= α2 =1 

• hL accounts for energy loss associated with the flow
• Viscous dissipation here. For inviscid flow hL = ?
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Energy in fully developed Laminar flow

• Rewriting Eq. 13
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Energy in fully developed Laminar flow

• The above equation is valid for both laminar and turbulent 
fluid flow 
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l
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 Eq. 16



Turbulent flow

• In turbulent flow the axial component of velocity
fluctuates randomly, components perpendicular to
the flow axis appear

• heat and mass transfer are enhanced in turbulent 
flow

• In many cases reasonable results on turbulent flow 
can be obtained using Bernoulli equation (Re=inf). 



Fluctuation in turbulent flow
• All parameters fluctuate in turbulent flow (velocity, pressure, shear 

stress, temperature etc.) behave chaotically

• flow parameters can be described as an average value + 
fluctuations (random vortices)

• can be characterized by turbulence intensity and time scale of 
fluctuation 
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Shear stress in turbulent flow

• Turbulent flow can often be thought of as a series of random,
3-dimensional eddy motions (swirls) ranging from large eddies down
through very small eddies

• Vortices transfer momentum, so the shear force is higher compared 
with laminar flow: 

lam turb
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Shear stress in turbulent flow

• Shear stress is a sum of laminar portion and a turbulent portion 

,lam turb
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shear stress is larger in turbulent flow
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• Alternatively:

η = eddy viscosity

Prandtl suggested that turbulent flow is characterized 
by random transfer over certain distance lm: 
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Turbulent velocity profile

100 1000turb lam  

• Viscous sub layer: Viscous shear stress dominates, viscosity is 
dominant and density unimportant

• Outer Layer: Reynolds stress in dominant viscosity is 
unimportant and density dominant



Turbulent velocity profile
• In the viscous sublayer

*
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where, y=R-r, u – time averaged x component, 
u*=(τ/ρ)½ friction velocity

valid near smooth wall: 0 */ 5yu v 

• In the overlap layer: Log law

Law of the wall
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Turbulent velocity profile

• In the turbulent layer:
1/
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function of Reynolds number

Velocity Defect Law in outer layer Power law velocity profile

Velocity defect or retardation of 
the flow due to wall effects. 



Dimensional analysis of pipe flow

• major loss in pipes: due to viscous flow in the straight elements

• minor loss: due to other pipe components (junctions etc.)

Major loss:

( , , , , , )p F V D l    

roughness

• those 7 variables represent complete set of 
parameters for the problem
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Dimensional analysis of pipe flow

as pressure drop is proportional to length of the tube:
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Dimensional analysis of pipe flow

• for fully developed laminar flow
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• for fully developed steady incompressible flow 
(from Bernoulli eq.):
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  Darcy-Weisbach equation 

Valid for horizontal pipes



Class Problem

• Water flows through a pipeline whose diameter varies from 20 cm
to 10 cm in a length of 10m. If Darcy-Weisbach friction factor is
assumed to be constant at 0.02 for the whole pipe, determine the
head loss in friction when the pipe is flowing full with a discharge of
50 L/s.



Equivalent roughness for pipes



Class Problem

• A badly corroded concrete pipe of diameter 1.5 m has an equivalent 
sand roughness of 𝝐𝒔 = 𝟏𝟓𝒎𝒎 . A 10 mm thick lining is proposed to 
reduce the roughness value to 𝝐𝒔 = 𝟎. 𝟐 𝒎𝒎 .For a discharge of 4.0 
𝒎𝟑/𝒔 in the pipe calculate the power saved per kilometer of pipe.

Take 𝒗 = 𝟏𝒙 𝟏𝟎−𝟔𝒎𝟐/𝒔



Moody chart
Friction factor as a function of Reynolds number and relative roughness for 
round pipes
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Class Problem 

• Air under standard conditions flows through a 4.0 mm diameter
drawn tubing with an average velocity V=50 m/s. of For such
conditions the flow would normally be turbulent. However, if
precautions are taken to eliminate disturbances to the flow (the
entrance to the tube is very smooth, the air is dust free, the tube
does not vibrate, etc.), it may be possible to maintain laminar flow.

• Determine the pressure drop in a 0.1 m section of the tube if the 
flow is laminar. 

• Repeat the calculations if the flow is turbulent.



Minor losses

It is due to the change of the velocity of the
flowing fluid in the magnitude or in direction
[turbulence within bulk flow as it moves
through and fitting]

Flow pattern through a valve  

The minor losses occurs due to

•Valves 
• Tees
• Bends
• Reducers
• And other appurtenances



• It has the common form
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can be the dominant cause of head loss in shorter 
pipelines

“minor” compared to friction losses in long pipelines but,

Minor losses



Losses due to contraction
A sudden contraction in a pipe usually causes a marked drop in pressure
in the pipe due to both the increase in velocity and the loss of energy to
turbulence.
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Head Loss Due to a Sudden Contraction 
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Head losses due to pipe contraction may be greatly reduced by introducing a 
gradual pipe transition known as a confusor
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Head Loss Due to Gradual Contraction 
(reducer or nozzle) 
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KL 0.2 0.28 0.32 0.35



Head Loss Due to Gradual Contraction   
(reducer or nozzle) 

A different set of data is :



Losses due to Enlargement
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A sudden Enlargement in a pipe



Head Loss Due to a Sudden Enlargement 
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• Note that the drop in the energy line is much larger than in the case of 
a contraction  

abrupt expansion

gradual expansion

Smaller head loss than in the case 
of an abrupt expansion



• Head losses due to pipe enlargement may be greatly reduced by 
introducing a gradual pipe transition known as a diffusor
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Head Loss Due to Gradual Enlargement 
(conical diffuser) 
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Loss due to pipe entrance

General formula for head loss at the entrance of a pipe is also expressed in term of 
velocity head of the pipe
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Head Loss at the Entrance of a Pipe 
(flow leaving a tank)

Reentrant

(embeded)

KL = 0.8

Sharp

edge

KL = 0.5

Well

rounded

KL = 0.04

Slightly

rounded

KL = 0.2
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Different pipe inlets

increasing loss coefficient



Another Typical values for various 
amount of rounding of the lip 



Head Loss at the Exit of a Pipe 
(flow entering a tank)

h
V

g
L 

2

2

The entire kinetic energy of the exiting fluid (velocity V1) is
dissipated through viscous effects as the stream of fluid mixes
with the fluid in the tank and eventually comes to rest (V2 = 0).

KL = 1.0 KL = 1.0

KL = 1.0 KL = 1.0



Head Loss Due to Bends in Pipes 

R/D 1 2 4 6 10 16 20

Kb 0.35 0.19 0.17 0.22 0.32 0.38 0.42
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Miter bends

For situations in which space is limited, 



Head Loss Due to Pipe Fittings 
(valves, elbows, bends, and tees) 
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The loss coefficient for elbows, 
bends, and tees



Loss coefficients for pipe components 
(Table)



Minor loss coefficients (Table)



Minor loss calculation using 
equivalent pipe length
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Energy and hydraulic grade lines

Unless local effects are of particular interests, the changes in the
EGL and HGL are often shown as abrupt changes (even though the
loss occurs over some distance)



Pipe network

• Serial connection
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Pipe Network 

• A water distribution system consists of complex interconnected
pipes, service reservoirs and/or pumps, which deliver water from
the treatment plant to the consumer.

• Water demand is highly variable, whereas supply is normally
constant. Thus, the distribution system must include storage
elements, and must be capable of flexible operation.

• Pipe network analysis involves the determination of the 
pipe flow rates and pressure heads at the outflows points 
of the network.  The flow rate and pressure heads must 
satisfy the continuity and energy equations.



Pipe Network 

• The earliest systematic method of network analysis (Hardy-Cross 
Method) is known as the head balance or closed loop method. 

• This method is applicable to system in which pipes form closed 
loops.  The outflows from the system are generally assumed to occur 
at the nodes junction.

• For a given pipe system with known outflows, the Hardy-Cross 
method is an iterative procedure based on initially iterated flows in 
the pipes. 



• At each junction these flows must satisfy the continuity 
criterion, i.e. the algebraic sum of the flow rates in the pipe 
meeting at a junction, together with any external flows is zero.

• Algebraic sum of head losses round each loop must be zero

Pipe Network 



Class Question

• A pipe 6-cm in diameter, 1000 m long and with  = 0.018 is connected
in parallel between two points M and N with another pipe 8-cm in
diameter, 800-m long and having  = 0.020. A total discharge of 20 L/s
enters the parallel pipe through division at A and rejoins at B. Estimate
the discharge in each of the pipe.



• Assigning clockwise flows and their associated head losses are 
positive, the procedure is as follows:

• Assume values of Q to satisfy Q = 0.

• Calculate HL from Q using HL = K1Q2

• If  HL = 0, then the solution is correct.

• If  HL  0, then apply a correction factor, Q, to all Q and 
repeat from step (2).  

Hardy Cross Method



Hardy Cross Method contd.

• For practical purposes, the calculation is usually terminated 
when HL < 0.01 m or Q < 1 L/s. 

• A reasonably efficient value of Q for rapid convergence is given 
by;

𝜟𝑸 = −
σ𝑯𝑳

𝟐σ ൗ
𝑯𝑳

𝑸



Class Problem (Hardy Cross)

For the square loop shown, find the discharge in all the pipes. All pipes
are 1 km long and 300 mm in diameter, with a friction factor of 0.0163.
Assume that minor losses can be neglected.



Class problem

• For the network shown in the figure the head loss is given by . The
values of r for each pipe, and the discharge into or out of various
nodes are shown in the sketch. The discharges are in an arbitrary
unit. Obtain the distribution of discharge in the network.


