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Abstract In today’s era of mass customization, assembly automation systems
should be designed with necessary production flexibility to cope with the growing
product varieties to adapt to diverse customer requirements, yet the production costs
should not be significantly different from those of comparable products made by
mass production. In order to cope with this product variety-cost trade-off, robotics
offers a flexible automation technology for turning assembly systems into efficient
and flexible systems. Despite their great potential for high flexibility, there is a
range of issues which must be addressed for its successful implementation. This
chapter examines some of these key issues and challenges, reviews the results of
previous research and describes our ongoing research on development of a flexible
assembly system for mechanical products, using an industrial robot with machine
vision guidance and dexterous multi-finger gripper. As part of the research work
reported in this chapter, a Sexual Genetic Algorithm (SGA)-based approach for
generation of optimal assembly sequence, a knowledge-based system for generating
the robot task-level plan, a multi-finger robot gripper for flexible assembly based on
a tendon-driven mechanism and an impedance control algorithm, and finally a
strategy for implementation of robotic assembly under machine vision guidance
have been presented.
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1 Introduction

In the past, automation of assembly operations in industries had been successfully
accomplished by employing fixed automation equipment for mass production,
resulting in lower prices of products due to economies of scale. The reasons for its
success can be attributed to primarily stable business environments, in which
customers did not demand product differentiation. However, in today’s era of mass
customization, mass-produced products do not satisfy customers, which are
designed largely to fulfil the average needs of customers. Therefore, flexibility is
needed in assembly production systems with the necessary agility and adaptability
to diverse customer requirements and capability of mass customization. Yet, the
production costs of mass customized products should be low enough so that their
prices are not significantly different from those of comparable products made by
mass production. In order to cope with this product variety-cost trade-off, robotics
offers a flexible automation technology for turning assembly systems into efficient
and flexible systems (Deb and Deb 2010). Reconfiguring the robotic assembly
system for new products involves a change in the software program (which is
accomplished by simply reprogramming the same robot) as opposed to major
hardware changes that may be required in case of hard automation. This would
permit quick changeover of the assembly system in response to customer demands.
Thus, several products can be made using a single robotic workcell, resulting in
saving costs associated with multiple installations. Despite their great potential for
high flexibility, there is a range of challenging issues which must be addressed for
successful implementation of flexible assembly systems using robots. This chapter
examines a number of these issues, reviews the results of previous research and
describes our ongoing research on development of a flexible assembly system for
mechanical products, using an industrial robot with machine vision guidance and
dexterous multi-finger gripper.

2 Review of Previous Research

2.1 Assembly Planning and Optimization

Before programming the robot motions for carrying out assembly, it is first nec-
essary to plan the order or the sequence in which the components need to be
assembled. Further, it is important to identify the optimal assembly sequence to
minimize the assembly time and cost. Various approaches have been developed as
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reported in the literature for automatic generation of optimal sequence. A few of
them include application of mathematical algorithms, graph theoretic approaches,
and more recently various evolutionary soft computing based optimization tech-
niques which include GA, memetic algorithm, ant colony optimization, artificial
immune systems, cuckoo search algorithm, flower pollination algorithm, harmony
search algorithm, particle swarm optimization, and hybrid of the above. A brief
review of these approaches is given below.

Chen et al. (2004) used various graph-based methods such as above graph,
Assembly Precedent Diagram (APD), and relational model graph to model the
relative positions, precedence constraints and relationships between different parts
of an assembly. For the generation and evaluation of a feasible assembly sequence,
two methods namely a mathematical model based on penalty index and Revised
Minimum Spanning Table (RMST) methods were used. To solve the assembly
sequence optimization problem, Bonneville et al. (1995) developed a Genetic
Algorithm (GA)-based approach, starting from feasible assembly sequences pro-
vided by experienced assembly planners. To generate the offspring from the parent
population, crossover and mutation operators were used followed by evaluation and
selection of resulting offspring. The feasibility of operations was checked by the
Liaisons and geometric constraints. Chen and Liu (2001) developed an adaptive GA
(where rules were used to vary the genetic-operator probabilities accordingly) for
obtaining the global best or near best assembly sequences efficiently. Marian et al.
(2006) also used GA for assembly sequence planning optimization where guided
search was used to generate the solutions taking both extrinsic and intrinsic
precedence relations into consideration. Stochastic sampling selection, guided
search with supplementary conditions type crossover and modified guided search
mutation operators were used. Choi et al. (2009) solved the assembly sequence
optimization problem by an approach based on GA in which precedence preser-
vative type crossover and swap mutation had been used. Mishra and Deb (2016a)
proposed a GA-based assembly sequence optimization approach in which a par-
tially matched crossover and a swap mutation were used. Wang et al. (2005)
proposed an Ant Colony Optimization (ACO) approach for optimization of
assembly sequences based on minimizing the reorientations during the assembly
processes. The concept of assembly by disassembly was adopted by the authors,
and disassembly matrix was used to ensure the feasibility of sequences. However,
the ACO algorithm has a lot of parameters which needs to be varied in order to
obtain the best convergence rate of the algorithm. A binary-coded GA was pro-
posed by Mishra and Deb (2016b) to optimize the parameters of the ACO algo-
rithm. Cao and Xiao (2007) developed the Immune Optimization Algorithm
(IOA) for generation of optimal assembly plan. It worked on the bionic principles of
artificial immune systems. Attributes such as degree of feasibility, base component
location in the sequence, and number of tool changes and reorientations required
were used to evaluate the assembly sequences. Lv and Lu (2010) showed an
application of discrete Particle Swarm Optimization (PSO) in assembly sequence
optimization. Number of tool changes, number of reorientation required, number of
changes in operation type and number of interferences during the product assembly
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were considered as optimization criteria. The particle positions and velocities in
PSO were updated using subtraction, addition and multiplication operators. Gao
et al. (2010) proposed a memetic algorithm based assembly sequence optimization
approach on where assembly sequences are treated as chromosomes that consist of
genes containing the component number and its assembly direction. Number of
reorientation required during assembly and assembly sequence feasibility as the
objective function were considered. Generation of new offspring was done using
PMX-type crossover and swap mutation along with the local search operator. Li
et al. (2016) proposed an Improved Harmony Search (IHS) for assembly sequence
optimization. The paper demonstrated novel features like an initial Harmony
Memory (HM) using the Opposition-Based Learning (OBL) method, a way to
improvise a new harmony and a strategy for local search. Number of reorientations
required during assembly, number of tool changes, and stability criteria in the
objective function were considered. Mishra and Deb (2016c) developed a discrete
Flower Pollination Algorithm (FPA)-based assembly sequence optimization
approach for generating not only the global best assembly sequence but as many
unique optimum solutions as possible. Mishra and Deb (2017) proposed a discrete
cuckoo search algorithm to generate global best assembly sequences considering
minimization of orientation changes, tool/gripper changes, assembly stability and
base component location. It was integrated with an upstream assembly product
database to extract information on assembly directions, contact details, assembly
precedence constraints and tool/grippers. Zhou et al. (2011) used a hybrid bacterial
chemotaxis and GA-based approach for assembly sequence optimization. The
chromosomes were the assembly sequences, wherein gene of the chromosome was
the bacterium. Length of longest sub-sequence, number of reorientations required
and number of tool changes were considered in fitness function. Xing and Wang
(2012) developed a combination of PSO and GA approach based on graph theory
for compliant assembly sequence optimization. Liaison graph and adjacency matrix
were employed to evaluate the geometry of the compliant assemblies. The string of
components represented the assembly sequences, whose length is equal to number
of assembly components. Evaluation of assembly sequences was based on assembly
variation due to dimensional tolerance. Karthik and Deb (2017) proposed and
implemented a methodology for assembly sequence optimization using a hybrid
Cuckoo Search Genetic Algorithm (CSGA).

2.2 Robot Task-level Planning

After assembly sequence planning, a robot task-level plan containing a sequence of
intermediate steps to achieve the robot task-level goals has to be drawn up from the
assembly sequence. Different approaches have been discussed in the literature for
automating this task. A few of them include use of agent-based techniques,
object-oriented approaches, knowledge-based systems, etc. A brief review of these
approaches is given below.
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Ramos (1992) presented an intelligent robotic assembly system, incorporating a
link with computer vision and an efficient task-level planning methodology based on
a cooperative agent-based approach and the implementation of the intended task
using a robot manipulator. The various agents are MODELS (representing the
models of objects), VISION, world descriptor that converts numerical data given by
VISION in symbolic relationships and constraints, task-level planner, task executor
which is responsible for the execution and monitoring of the tasks. Osuna et al.
(2003) developed an intelligent task planning system that was built upon a cooper-
ative web-based environment to integrate the product and assembly system design
processes. For intelligent task planning, object-oriented and machine learning
techniques were integrated. Cambon et al. (2004) developed a planner, aSyMov.
They considered symbolic and geometric constraints at each step of the planning
process. The representations used by a symbolic task planner and the representations
used by a realistic motion and manipulation planning library had been shown to be
effectively linked. Cho et al. (2010) proposed the implementation methods of robotic
task planning and execution based on the description logic knowledge base. Their
implementation used a description logic knowledge base which had been expanded
to encompass the description of task’s goal and behaviours. A representation scheme
for knowledge had been investigated and a simple algorithm was realized.
A complete process chain was presented in Thomas and Wahl (2010) that starts with
initial specification of assembly tasks using assembly sequence planning and finishes
with task planning and execution. Their system demonstrated how to generate robot
programs automatically from CAD data. Backhaus (2013) introduced and discussed
an approach to simplify the use of task-oriented programming for assembly systems.
The system in the output provided the device-specific code based on the input as
description of assembly systems and devices (namely robot, gripper, conveyor belt,
etc.). Recently, Alatartsev et al. (2015) surveyed several papers and presented their
findings detailing robotic task sequencing problem considering collision-free path
planning, production scheduling, multi-robot task planning, task-level planning,
combination of task-level planning and path planning, online control-based planning,
and manipulation planning.

2.3 Design of Robotic Grippers and Their Controller Design

In a flexible assembly system, dexterous robot grippers in the form of multi-finger
anthropomorphic hands have a crucial role to play to support the grasping and
manipulation of objects of diverse geometric shapes. A number of multi-finger robot
gripper designs can be found in the literature. These grippers can be classified
according to the nature of actuation mechanism employed, i.e. either fully actuated
grippers (i.e. same number of actuators as the number of DOFs) or under-actuated
grippers (i.e. lesser number of actuators than the number of DOFs). A growing trend
in gripper designs is the use of under-actuated mechanisms based on linkages and
gear trains (LiCheng et al. 2009; Tlegenov et al. 2014). However, the limitations of
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these mechanisms, especially the increase in overall size and weight, and also their
lack of compliance, have prompted researchers to think of other alternative options
including use of Tendon-Driven Mechanisms (TDMs), which have the potential to
overcome the above drawbacks. Tendons, or more generally speaking, cables, had
been widely used earlier in many mechanical devices since the nineteenth century.
The use of tendons for robotic applications to develop grippers is a more recent
development and has been studied since the early 1980s. Several tendon-actuated
robot grippers have been developed all over the world, worth mentioning among
them are the Stanford/JPL hand by Salisbury and Roth (1983) and Loucks et al.
(1987), the Utah/MIT hand by Jacobsen et al. (1984, 1986), the multi-jointed finger
hand by Okada (1986), the Barrett gripper by Townsend (2000), the Belgrade/USC
hand by Bekey et al. (1990), DLR hand developments by Butterfass et al. (1998,
2001), Gao et al. (2003) and Liu et al. (2008), the LMS hand by Gazeau et al. (2001),
the NASA Robonaut hand by Lovchik and Diftler (1999) and Ambrose et al. (2000)
and JU hand by Pal et al. (2008). Despite the aforementioned developments, it has
been generally found that the industrial applications of tendon-driven robot grippers
are more limited as compared to other types of mechanical robotic grippers. This is so
because there are some challenges in its implementation particularly when it comes to
control of the system as it cannot be directly controlled by conventional control
techniques. Ozawa et al. (2014) developed a tendon-driven robotic hand and
implemented different types of controller. Compliant behaviour was incorporated by
adding springs to the passive tendons in the fingers. Abdallah et al. (2012) developed
two-tier architecture of position and force control in two feedback loops which
improves the overall performances of using only position or force controller.
Impedance control approach is preferred while system interacting with the envi-
ronment, as it gives great flexibility by allowing regulation of both motion and
contact force. Diftler et al. (2011) designed dual-priority based impedance controller
for Robonaut hand.

2.4 Vision-Guided Robotic Assembly

Once the task-level plan for the required assembly is generated, a robot manipulator
guided by a machine vision system can be deployed to automatically assemble the
constituent parts. A few investigations in this regard are discussed below.
Pena-Cabera (2005) proposed a method of object recognition and their localization
for assembly components. Using a Fuzzy ARTMAP neural network model,
assembly components were accurately recognized. Golnabi and Asdapour (2007)
described the role and importance of the machine vision systems in industrial
applications. System design methodology and a generic machine vision model were
discussed. The justification for utilizing machine vision had been considered on the
basis of economic and logistic considerations. Zhang et al. (2011) introduced a
vision-guided alignment method that utilized a camera space manipulation control
process and relied on the components’ CAD model. To achieve the high accuracy
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alignment for the final assembly, a local calibration method was used. Kobari et al.
(2013) presented an error resilient vision-based motion control method for parts
assembly. They considered those assembly parts which get deformed during
assembly. Visual information obtained from a camera reading the deformation of
the parts is used to determine the force applied. Chen et al. (2015) reviewed papers
on vision system working in combination with force control integrated assembly
and demonstrated a system using a high accuracy assembly process. In a
semi-structured environment, industrial robot can perform assembly more accu-
rately by taking both vision and force control data. The vision system was not
calibrated carefully as it provided only rough position data of parts. In addition to
vision, to deal with errors, a local searching method was used which was based on
force–torque control.

3 Proposed Methodology

The following sections discuss the methodologies that have been proposed in this
work for (1) assembly sequence planning and optimization, (2) robot task-level plan
generation, (3) design of a multi-finger robot gripper for flexible assembly, and
finally (4) implementation of the robotic assembly system under the guidance of
machine vision.

3.1 Assembly Sequence Planning and Optimization

In the following sections, the key issues and challenges in assembly sequence
planning and optimization, a brief problem description and the methodology pro-
posed in this work and the results and discussions will be presented.

3.1.1 Key Issues and Challenges

Before the robot is programmed for performing assembly of a product, it is nec-
essary to decide the order or sequence in which the components need to be inserted,
such that no component interferes with others, thereby implying that they must
comply with certain precedence constraints. A significant amount of human
expertise and experiential knowledge is needed to accomplish the above. Moreover,
an assembly product may be assembled by following number of distinct sequences,
out of which the optimal sequence must be identified. Further, as the part count (i.e.
the number of components in the assembly) increases, the number of feasible
assembly sequences also growths exponentially, which makes assembly sequence
optimization arduous and time consuming, if it is done manually. Keeping the
above in mind, in this work, a Sexual Genetic Algorithm (SGA)-based approach is
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proposed for automating the generation of optimum assembly sequence. First, a
brief problem description is given below.

3.1.2 Brief Problem Description

The problem of assembly sequence optimization involves determining the best
feasible assembly sequence based on one or more criteria such as minimization of
number of direction changes and tool changes, maximizing the stability of the
components/sub-assemblies while performing the assembly, etc. It is obvious that
changing the direction of assembly of the consecutive components increases the
handling time resulting in increase in overall cost of the assembly. Equation (1)
shows how to compute the total number of direction changes (nd).

nd ¼
Xn�1

i¼1

ðdir changei;iþ 1Þ ð1Þ

where

dir changei;iþ 1 ¼ 0; if assembly diri ¼ assembly diriþ 1

1; otherwise

�
ð2Þ

dir changei;iþ 1 represents the change in direction of assembly for two succes-
sive assembly operations and n represents the number of components in the
assembly, assembly diri is the direction of assembly for component number i (the
direction of assembly for components may be one of the following namely, ±x or
±y or ±z).

At times, several tools and grippers (in case of robotic assembly) are required for
performing the assembly or manipulation. The change in tool/gripper is also a
non-productive task as it consumes handling time leading to increase in overall
assembly cost. Hence, minimizing the tool changes is also one of the important
criteria to reduce the overall assembly time and cost. Equation (3) shows how to
compute the number of tool changes (nt).

nt ¼
Xn�1

i¼1

ðtool changei;iþ 1Þ ð3Þ

where

tool changei;iþ 1 ¼ 0; if tool numberi ¼ tool numberiþ 1

1; otherwise

�
ð4Þ
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tool changei;iþ 1 represents the change in assembly tool/gripper for two suc-
cessive assembly operations and n represents the number of components in the
assembly; tool numberi represents the tool number required for handling/insertion
of component number i (a unique tool number is given to each tool in the tool
database).

The base component in an assembly sequence should be the first component in
assembly order. This base component information is provided by the user. The
location of the base component in the sequence is represented by B, whose value is
calculated as follows.

Location of base component;B ¼ 1; if the base component is in first position in the sequence

0; otherwise

�

ð5Þ

The connections between the components can be categorized into stable con-
nection (SC), conditional stable connection (CSC) and unstable connection (USC).
As the name suggests, SC signifies inseparable contact between components.
Sometimes between components, there is CSC, which signifies that the connections
are not autonomously stable, but components may separate from each other
spontaneously. For unstable connections, fixtures are necessary to hold the com-
ponents in place and maintain contact. This classification scheme and its details can
be found in the paper by Li et al. (2016). To calculate the stability index of an
assembly sequence, a stability (connection) matrix is used, which is a square matrix,
having rows and columns equal to number of assembly components. The value of
each element of the stability matrix can be 0, 1 or 2 depending on whether the
connection type is unstable, conditionally stable or stable, respectively. The sta-
bility index (SI) can be found out as follows.

SI ¼
Xn
i¼2

Si 0� SI� 2n� 2j ð6Þ

where Si is the stability of the component “i” and n is the number of components in
the assembly.

The feasibility violations (FV) are the number of precedence violations because
of certain component number violating the precedence. This can be understood
from the example explained below, say, an assembly has four components and one
of the infeasible sequences for this assembly is [4, 1, 2, 3]. Suppose that the
Precedence Matrix (PM) of the assembly is as follows.

Component
Number

1 2 3 4

1 0 0 0 0 
2 1 0 0 0 
3 1 1 0 0 
4 1 1 1 0 

PM =

ð7Þ
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This PM conveys the information as to which component has precedence with
which component. The dimension of this matrix is equal to the number of assembly
components. Here, 0 implies that no precedence constraint exists between the
components and 1 implies that a precedence constraint exists. Now, for calculating
the number of feasibility violations, from an infeasible solution, the first component
is selected and checked to determine with which components it has precedence, and
whether it is following the precedence or not. In this example, component ‘4’ has
precedence with components ‘1’, ‘2’ and ‘3’, since the value in the PM is 1 here for
each of PM(4,1), PM(4,2) and PM(4,3). So because of location of component ‘4’ in
the assembly sequence, it has a total of three feasibility violations. Next, the
precedence is checked for the second component of the assembly sequence, i.e.
component ‘1’. It reveals that it does not require any other component to be
assembled before it, and hence it has no feasibility violation. In a similar manner,
each component of the assembly sequence is checked to see if it satisfies the
precedence criterion or not. For the solution [4, 1, 2, 3], components 2 and 3 also do
not have any feasibility violations. Hence, it can be concluded that the number of
feasibility violations for the infeasible solution [4, 1, 2, 3] is 3. It is obvious that for
a feasible assembly sequence, the number of feasibility violations would be zero.

3.1.3 Proposed Approach Based on Sexual Genetic Algorithm

The Genetic Algorithm (GA) tries to mimic the various processes of natural selection
involved in the intricate process of biological evolution. One such process is mate
choice, or sexual selection that counteracts as well as enhances natural selection.
Nowadays, much of the biological diversity and complexity is ascribed to this force.
The Sexual Genetic algorithm (SGA) can successfully counter to a large extent the
general tendency of a GA of slow convergence and getting stuck in a suboptimal
solution. Hence, a SGA-based strategy has been adopted in this work. The entire
population in SGA is divided into male and female chromosomes. Reproduction is
done sexually to emulate male vigour and female choice; hence, in crossover, any
female chromosome will mate only with a male chromosome having better average
fitness (Goh et al. 2003). The rest of the process is similar to that of a GA.

The steps involved in the SGA are stated in Fig. 1. The genetic operators
modified to suit the particularities of the assembly sequence planning problem are
described here as well. A flowchart of the SGA is given in Fig. 1.

Selection
A selection operator called roulette wheel selection has been used that selects the
assembly solutions to form the mating pool. All the solutions are evaluated using
the fitness function, and the ranges for the solutions are created according to their
fitnesses. Random numbers are generated multiple times, which equals the size of
the population. Depending on the ranges within which these random numbers fall
in, corresponding solutions are selected. The selected solutions are then put into the
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Fig. 1 The SGA flowchart for finding the optimal assembly sequence
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mating pool on which special crossover operation is carried out. The size of the
mating pool is equal to population size of the GA.

Sexual Crossover
Sexual crossover is the main genetic operator that differentiates SGA from a generic
GA. In the process, a female chromosome is selected to mate with a male partner of
a better general fitness (best among 4–5 male chromosomes). It is ensured that the
off-springs are of different genders so that the sex ratio balance is maintained. The
constrained nature of assembly sequence planning and necessity to maintain fea-
sibility at every step calls for a modified crossover technique. The steps involved
are described as below:

(a) The population of chromosomes is first randomly divided into two: male
population and female population, each containing equal number of
chromosomes.

(b) Select each female chromosome in a consecutive order (without replacement),
i.e. each female will only get to be selected to mate once.

(c) Select a male chromosome of a better general fitness (best among 4–5 male
chromosomes).

(d) Apply the Partially Matched Crossover (PMX) operator as follows. Generate an
offspring by selecting a part of a solution (i.e. number of successive genes)
from one parent and conserving the order and the positions of as many genes as
possible from the other parent. A two-point crossover is applied where the part
of a solution serves as boundaries for the swapping operations. This crossover
operator takes care of the problem of repetitions of part numbers in the
assembly sequence.

Swap Mutation
The mutation operator called swap mutation is used in this work. The genes are
swapped arbitrarily inside a solution in case of swap mutation.

Fitness Evaluation of the Population
For the given problem of assembly sequence optimization, a random population of
individuals (i.e. chromosomes representing assembly sequences) is generated which
can be feasible or infeasible. This population is evaluated using a fitness function
(FF) given in Eq. 8, consisting of number of tool changes (nt) direction changes
(nd), base component location in assembly sequence (B) and stability index (SI). To
ensure feasibility of final individuals, a feasibility criterion is incorporated that is
measured in terms of number of feasibility violations (FV) due to components’
locations in the sequence.

FF ¼ w1
n� 1� ndð Þ

n� 1ð Þ þw2
n� 1� ntð Þ
n� 1ð Þ þw3 � Bþw4 � SI

2n� 2ð Þ þ
1

FV
n þ 1

� �
ð8Þ
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where n represents number of assembly components and w1, w2, w3 and w4 are
weight coefficients for direction changes, tool changes, base component location
and stability index, respectively, with their corresponding values as 0.25, 0.25, 0.1
and 0.4.

3.1.4 Results and Discussions

To demonstrate the working of the proposed system, a 14-component product
assembly shown in Fig. 2 has been used. Figure 3a, b shows an extract of the
Precedence Matrix (PM) and Stability Matrix (SM) of the above assembly,
respectively. Table 1 gives the information on the assembly directions and tools/
grippers required for the assembly.

Z 

X
Y

P14

P10

P9

P8

P7

P6

P5

P1

P4P11

P3
P2

P12

P13

Fig. 2 14-component assembly
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The proposed SGA has been used to generate the best assembly sequence for the
above 14-component product assembly. The main parameters affecting the per-
formance of SGA algorithm are population size, crossover probability (pc) and
mutation probability (pm) used in generating new eggs and number of iterations. To
study their effects on performance of the SGA, a sensitivity analysis has been
carried out and the optimum set of parameters found to be able to provide the
optimal/near optimal assembly sequence in reasonable time is population size of 20,
crossover probability of 0.90 and mutation probability of 0.05. After the SGA is run

Fig. 3 a Precedence matrix and b stability matrix for the assembly shown in Fig. 2

Table 1 Information on assembly directions and tools/grippers required for the assembly shown
in Fig. 2

Component number Assembly direction Tool/gripper number

1 Z− 1

2 Y− 2

3 Y− 2

4 Y+ 2

5 Z− 3

6 Z− 3

7 Z− 4

8 Z− 5

9 Z− 5

10 Z− 6

11 X+ 5

12 X+ 5

13 X+ 5

14 X+ 6
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using the above-mentioned parameters, the optimal assembly sequence obtained is
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] with fitness value of 1.5269, requiring
seven tool changes, four reorientation changes and stability index of nine, having
the base component at the first location of the assembly sequence, and most
importantly the sequence was found to have no feasibility (precedence) violations.
The efficiency of the proposed SGA is evaluated by comparing it with previously
developed GA (Mishra and Deb 2016). The best sequence generated by the GA
algorithm is also found to be [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] with fitness
value of 1.5269, requiring seven tool changes, four reorientation changes and
stability index of nine, having base component at the first location of the assembly
sequence and no feasibility violations. Figure 4 shows comparison between the

Fig. 4 Comparison between the convergence graphs of the proposed GA algorithm and SGA
algorithm
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convergence graphs of the GA and SGA algorithms from which it can be concluded
that the proposed SGA clearly outperforms GA in terms of convergence speed as it
is able to reach the global best fitness value in lesser number of iterations. The SGA
reached the global best solution in 19 iterations, while the GA took 669 iterations to
reach the global best solution. Table 2 gives a summary of the results of compar-
ison between the GA and the SGA algorithms. It is found that in 6 times out of 10
runs, the SGA could find the optimal solution of 1.5269, which gives a 60%
probability of finding the best solution or assembly sequence. In contrast, the
probability of finding the best solution by GA is only 30%.

From the above, it is evident that the proposed SGA-based approach is able to
generate the optimum solution. Furthermore, the algorithm is also more consistent
than the previously developed GA-based approach. It should be noted that the
optimal assembly sequence provided by the SGA requires the least number of
orientation changes and tool/gripper changes, it is the most stable and most
importantly it does not have any feasibility violations.

3.2 Knowledge-Based System for the Generation
of Task-level Assembly Plan

The following sections present the key issues and challenges in generation of
task-level assembly plan, architecture of the proposed knowledge-based system and
the results and discussions.

3.2.1 Key Issues and Challenges

After assembly sequence planning, a robot task-level plan has to be drawn up from
the assembly sequence. The task-level plan contains a sequence of intermediate
steps to achieve the robot task-level goals such as, for example, for performing
assembly of two parts A and B, obtain first the initial location coordinates of part
A using a suitable sensor like an overhead vision camera, move the robot over part
A, perform grasping of part A by closing the gripper, obtain the location coordinates
of its destination on part B in the assembly jig by vision camera, move the part

Table 2 Comparison between the results of the GA and SGA

GA SGA

Best fitness value 1.5269 1.5269

Mean of the best fitness values for 10 runs 1.5015 1.5138

Number of runs out of 10 independent runs in which convergence to
global best fitness was achieved

3 6

% of obtaining the optimal assembly sequence 30 60
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A over part B, open gripper to insert part A inside part B, etc. For a product requiring
large number of components to be assembled, the traditional method of manually
generating the aforementioned task-level plan is very tedious and time consuming.
Although this task is usually performed by experts, any inadvertent mistake can be
very costly and result in loss of productivity. Hence, it will be beneficial if this task
is automated, for which a knowledge-based expert system approach has been
proposed in this work.

A knowledge-based system has been developed to generate the task-level plan
for robotic assembly from a given feasible and optimum assembly sequence that is
generated by the assembly sequence planner described in the previous section. The
above knowledge-based system has been implemented using the expert system
shell, CLIPS.

3.2.2 Architecture of the Proposed Knowledge-Based System

The ‘C Language Integrated Production System’, abbreviated as ‘CLIPS’, is an
expert system shell that was first developed at NASA (Giarratano and Riley 2002).
It basically consists of a set of knowledge-based rules, supported by facts in order to
fire or activate a rule that are stored in a database. An executable CLIPS rule
basically consists of two parts with an ‘IF’ and a ‘THEN’ statement. In order for the
rule to fire successfully to give a desired output, the syntax of its ‘IF’ part must
match with the syntax of the facts provided in the database. If this condition is
satisfied, the ‘THEN’ part of the rule comes into action. Both the facts and the
IF-THEN rules must be defined first, before being used. The CLIPS system consists
of mainly three components namely, a database, a knowledge base and an inference
engine. In addition, the CLIPS system also has a user interactive interface. The
architecture of the developed knowledge-based system using CLIPS has been
shown in Fig. 5.

User

User Interactive Interface

Inference Engine

Generated task level plan

Working Memory

Part Description Data

Assembly Sequence 

Rules for generating task level plan

Fig. 5 Architecture of the developed knowledge-based system
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Database
The database consists of a list of facts about the problem being solved, which forms
the input to the expert system and must be entered by the user. The facts are
represented in the CLIPS expert system shell using the concept of template.
A template is an organized structure of input data that is used to define and store
values for a fact description in a field called, the ‘slot’. For the given problem which
is to generate a task plan for the robot, the input data required are detailed infor-
mation about the assembly components, such as component number, its name, type
(i.e. functional part or fastener), part count, components with which it has contact,
assembly direction, any special assembly requirement, etc., which are to be pro-
vided by the user. All these data are stored in the database. An operational template
in CLIPS format is presented in Fig. 6a, along with a sample of input database facts
given in Fig. 6b.

Knowledge Base
The knowledge base contains domain knowledge encoded in the form of rules, to
be used by the expert system. Sample rules for the knowledge base are presented

; DEFTEMPLATE 1
(deftemplate MAIN::component
(slot number (type INTEGER)(default ?NONE))
(slot name (type SYMBOL))

 (slot component_type(type SYMBOL)(allowed-symbols functional_part fastener))
(slot part_count(type NUMBER)(default 1))
(multislot contact_with(type NUMBER)(default 0))
(slot thread_present(type SYMBOL)(allowed-symbols yes no)(default no))

 (slot tool_required(type SYMBOL)(allowed-symbols screwing_machine …….))
(slot assembly_direction (type SYMBOL)(allowed-symbols x+ y+ z+ x- y- z-))
(slot assembly_requirement (type SYMBOL)(allowed-symbols pre_requirement  ……))) 

; DEFTEMPLATE 2
 (deftemplate MAIN::assembly_method

(slot assembly_method (type SYMBOL)(allowed-symbols manual robotic hybrid)))

;DEFTEMPLATE 3
(deftemplate MAIN::sequence
(multislot in_order_of (type INTEGER)))

(deffacts MAIN::components_data
(component(number 1)(name base)(component_type functional_part)(part_count 1)(contact_with 2 3 4 5 7 9 
10 11 13 14)(thread_present no)(assembly_direction z-)) 
………………………))

(deffacts MAIN:assembly_method
(assembly_method (assembly_method robotic)))

(deffacts MAIN::seqeunce_data
(sequence (in_order_of 1 2 3 4 5 6 7 8 9 10 11 12 13 14)))

(a)

(b)

Fig. 6 a Templates for entering the assembly information in databases, b assembly information
facts stored in the database, c a rule for generating task-level plan
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later in this section for illustration. For the given problem of generating the
task-level plan, a set of production rules have been developed using domain
knowledge for task-level planning to efficiently program a robotic assembly system.
These rules are stored in the knowledge base of the expert system. An extract from
knowledge base rules and database facts in CLIPS format are shown in Fig. 6b, c,
respectively.

Inference Engine
The inference engine in CLIPS serves as the brain of the knowledge-based system.
It is a computer program, used for making inferences from the given data facts

; DEFRULE 1a
(defrule MAIN::rule_1a
(component(number ?nu1)(name ?na1)(component_type functional_part)(part_count 1))
(sequence (in_order_of ?nu1 $?))
(assembly_method (assembly_method robotic))
=>
(open "assembly_plan.txt" assembly_plan "w")
(format assembly_plan "obtain coordinates of %s(%d) by vision%n" ?na1 ?nu1)
(format assembly_plan "MOVE robot in joint mode above %s(%d)%n" ?na1 ?nu1)
(printout assembly_plan "open gripper" crlf)

 (format assembly_plan "MOVE robot in linear mode to %s(%d)%n" ?na1 ?nu1)
(printout assembly_plan "close gripper" crlf)
(printout assembly_plan "obtain coordinates  of assembly fixture" crlf)

 ……………………….
 ……………………….

(close)) 

; DEFRULE 3a
(defrule MAIN::rule_3a
(sequence (in_order_of $? ?nu1 ?nu2 $?))
(component (number ?nu1)(name ?na1)(component_type functional_part)(assembly_direction ?ad1))
(component (number ?nu2)(name ?na2)(component_type functional_part)(part_count ?pc2)
……………………….))
(test (eq ?ad1 ?ad2))
=>
(open "assembly_plan.txt" assembly_plan "a")
(printout assembly_plan "------------------------------" crlf)
(format assembly_plan "obtain coordinates of %s(%d) by vision%n" ?na2 ?nu2)
(format assembly_plan "MOVE robot in joint mode above %s(%d)%n" ?na2 ?nu2)
(format assembly_plan "MOVE robot in linear mode to component %s(%d)%n" ?na2 ?nu2)
(printout assembly_plan "close gripper" crlf)
(printout assembly_plan "obtain coordinates  of assembly fixture" crlf)
(printout assembly_plan "MOVE robot in joint mode above fixture" crlf)
(printout assembly_plan "MOVE robot in linear mode to fixture" crlf)
(format assembly_plan "open gripper and insert the component %s(%d)%n" ?na2 ?nu2)
(printout assembly_plan "MOVE robot in linear mode above fixture" crlf)
(printout assembly_plan "MOVE robot in joint mode to safe point" crlf)
(format assembly_plan "REPEAT steps of block %d times%n" ?pc2)

 (close)) 

(c)

Fig. 6 (continued)
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about a problem, through a process of reasoning. In CLIPS, the knowledge being
stored in the form of rules, the inference engine makes inference by deciding, as to
which of the rules from the knowledge base are satisfied by the database facts, and
then it prioritizes the order of firing the satisfied rules.

User Interface
The user interactive interface in CLIPS consists of a display mechanism, to monitor
each and every processing step during the execution of a program. It can be cus-
tomized, by selecting or deselecting the options for viewing the status of database,
rule activations, etc. during execution of the program in real time, which is
sometimes useful for debugging purpose.

3.2.3 Results and Discussions

Example of an eight-component assembly as shown in Fig. 7 is given to demon-
strate the results of the proposed knowledge-based system for generation of the
task-level plans. Figure 8 shows the corresponding task-level plan generated by the
knowledge-based system.

Prismatic part with 
rectangular pocket

Prismatic part with 
rectangular slot

Prismatic part with 
one hole

Stepped 
prismatic part 

Stepped prismatic 
part with two holes

Cube with pocket

Cylindrical part 

Cylindrical 
pin

Fig. 7 An eight-component assembly
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3.3 Proposed Multi-finger Robot Gripper for Flexible
Assembly

In the following sections, the key issues and challenges in design of multi-finger
robot gripper for flexible assembly, the proposed gripper design and the results and
discussions will be presented.

obtain coordinates of prismatic_part_with_one_hole(1) by vision
MOVE robot in joint mode above prismatic_part_with_one_hole (1)
open gripper
MOVE robot in linear mode to prismatic_part_with_one_hole (1)
close gripper
check if assembly jig is empty
obtain coordinates  on assembly jig where prismatic_part_with_one_hole is to be placed
MOVE robot in joint mode above jig
MOVE robot in linear mode to jig
open gripper
MOVE robot in linear mode above jig

obtain coordinates of stepped_prismatic_part_with_two_holes(2) by vision
MOVE robot in joint mode above stepped_prismatic_part_with_two_holes (2)
MOVE robot in linear mode to component stepped_prismatic_part_with_two_holes (2)
close gripper
obtain the coordinates on assembly jig where stepped_prismatic_part_with_two_holes is to be placed
MOVE robot in joint mode above jig
MOVE robot in linear mode to jig
open gripper and insert the component stepped_prismatic_part_with_two_holes (2)
MOVE robot in linear mode above jig
MOVE robot in joint mode to safe point
REPEAT steps of block 1 times

obtain coordinates of prismatic_part_with_rectangular_slot(3) by vision
MOVE robot in joint mode above prismatic_part_with_rectangular_slot (3)
MOVE robot in linear mode to component prismatic_part_with_rectangular_slot(3)
close gripper
obtain the coordinates on assembly jig where prismatic_part_with_rectangular_slot is to be placed
MOVE robot in joint mode above jig
MOVE robot in linear mode to jig
open gripper and insert the component prismatic_part_with_rectangular_slot (3)
MOVE robot in linear mode above jig
MOVE robot in joint mode to safe point
REPEAT steps of block 1 times
…………………………..
…………………………..

Fig. 8 Extract of the task-level plan for the eight-component assembly
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3.3.1 Key Issues and Challenges

As manufacturing is increasingly shifting away from high-volume, low-mix pro-
duction to high-mix, low-volume production, flexible assembly cells are steadily
gaining importance. Such assembly cells commonly require parts of diverse geo-
metric shapes and sizes to be handled to perform various tasks like picking, fixing,
placing, mating, etc. The mechanical grippers routinely used in industrial robots to
perform above assembly tasks are simple two-finger grippers or parallel jaw-type
grippers, employing actuation mechanisms based on various types of linkages.
They must be, however, custom engineered according to specific application
requirements of grasping. For example, to hold objects whose basic shape is
cuboidal having flat faces, a gripper design with flat fingertips is preferred. On the
other hand, in case of objects whose basic shape is cylindrical or spherical, a
different gripper design with fingertips having V-grooves must be employed to
provide a larger area of contact with the curved surfaces of the object. Thus, these
two-finger or parallel jaw-type grippers are very effective for handling operations in
fixed assembly cells, where part shapes are either only cuboidal or only cylindrical.
But they lack the grasping flexibility like human hands to adapt to objects of diverse
geometric shapes and therefore if such type of two-finger grippers were to be
employed for flexible assembly, multiple grippers will be needed. Additionally,
frequent gripper changes in the robot will be necessary, resulting in loss of pro-
ductivity. An alternative solution could be to design a single multi-finger robot
gripper, inspired by a human being’s hand that will be capable of performing
grasping and manipulation of variety of different object shapes without the need for
changing the gripper. However, such type of gripper design may be too complex to
engineer in practice and not economically viable for industrial applications. Thus, it
is necessary to develop simple multi-finger robotic gripper designs that will be able
to overcome the limitations of existing two-finger gripper designs and will have
necessary flexibility like that of a human hand to adapt to different geometric shapes
of objects.

Further, the grippers actuated using linkages lack the compliance required for
parts mating and insertion operations during assembly. This drawback can be
handled by introducing a compliant behaviour into the gripper. There are two ways
of ensuring compliant behaviour: either by a passive compliance or by an active
compliance. Passive compliant behaviour can be achieved using a tendon-driven
mechanism. The active compliance of the gripper can be ensured by a purposely
designed control system, e.g. impedance control, which is an indirect method of
force control via motion control without explicit force feedback.

Keeping the above in mind, a tendon-driven, multi-finger gripper is being pro-
posed in this work that will have necessary flexibility like that of a human hand to
adapt to different geometric shapes of objects and a control algorithm with nec-
essary compliance to perform parts mating and insertion.

52 A. Mishra et al.



3.3.2 Proposed Multi-finger Gripper

Figure 9 shows the proposed model of a three-finger gripper. Ulrich et al. (1988)
presented a more detailed description of the gripper mechanism. Sainul et al. (2016)
discussed finger actuation mechanism for a three-fingered hand. The gripper con-
sists of three identical fingers with each finger having three links namely knuckle,
middle and distal links. Base of the thumb finger is fixed on the palm of the gripper.
The other two opposing fingers have revolute joints at the base which helps fingers
to spread sideways. Further, knuckle-middle and middle-distal links are connected
using two more revolute joints. These two revolute joints help finger to accomplish
closing and opening motion during grasping.

Proposed Actuation Mechanism for the Gripper

The articulated fingers of the gripper are actuated by a tendon-driven mechanism
where remotely placed actuators at the palm generate grasping force to the gripper.
Pulleys are used to join the knuckle-middle links and the middle-distal links.
Non-stretchable tendons run over the pulleys and routing points which are used to
guide the tendons as shown in Fig. 10. Spring-loaded tendons or spiral/torsional
springs at the joints are used for extension motion of the fingers. The spreading of
the opposing fingers is achieved by a DC motor and worm gear system placed
inside the palm. One DC motor for each finger is used to drive the tendon–pulley
system. A total of four DC brushless motors are used to actuate all the eight joints of
the gripper.

An end of a tendon is attached to the DC motor and the other end is fixed at the
distal link. The tendon force generates torque at the middle and distal joints. Pulling
tendons can only generate force in one direction (tendons only can be pulled, not
push), so two tendons are required to control a single joint, one tendon for each

Fig. 9 Model of the robot
gripper
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direction, i.e. a finger having n joints requires a total of 2n number of tendons for
controlling all the joints independently. Although a minimum of nþ 1 tendons can
independently control the joints with limited control capabilities which is implying
that a finger having two joints needs at least three tendons, here, one tendon is used
for finger flexion and two spring-loaded tendons are used for finger extension and
they are called active and passive tendons, respectively.

Let n is the total number of joints, m is the total number of active and passive
tendons, where m ¼ nþ 1, l 2 Rm be the tendon displacements, and q 2 Rn be the
joint displacements. Then, the relation between the two displacements is as follows:

l ¼ Jjqþ l0 ð9Þ

where Jj 2 Rm�n is the Jacobian matrix and l0 2 Rm be the initial tendon dis-
placements vector.

Let s 2 Rn be the joint torques and ft 2 Rm be the tendon forces. Then, the
relation between them is as follows.

s ¼ JTj ft ð10Þ

Let r1 and r2 be the pulley radii. Then, the Jacobian matrix for tendon
arrangement as shown in Fig. 11 can be written as follows:

Jj ¼
r1 r2
r1 �r2
�r1 0

2
4

3
5 ð11Þ

DC motors control the tendon displacements or the tendon tension forces of the
active tendons. The other two passive tendons are not actively controlled. Use of
only one active tendon to control two joints of a finger makes the system
under-actuated. Here, the use of passive tendons ensures that the joint displace-
ments are uniquely determined for given tendon displacements and makes the

Fig. 10 Model of the tendon-driven finger showing the tendon and pulley arrangement
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system controllable in tendon space, i.e. tendon displacements and tendon forces.
As the force in the passive tendons cannot be actively controlled, a limited set of
joint displacements or torques can be achieved.

Control System of the Gripper

In recent times, the control of under-actuated system has drawn a lot of attention in
the robotics field due to various advantages of under-actuated system. Under-actuated
system requires less number of actuators compared to the full-actuated system which
reduces the overall weight. Although the control system for under-actuated system is
lot more challenging than the conventional full-actuated system, object grasping task
is divided into two stages, pre-shaping of the fingers before grasping and gripper
closure. In pre-shaping stage, the gripper adjusts its finger position by spreading the
opposing fingers according to the various types of grasp which depend on the shape
of object. During the pre-shaping, fingers make no interaction with the object.
Gripper closure involves under-actuated control of the last two joints. The dynamic
equation of a finger with three joints is as follows:

M€qþH _q; qð Þ + G qð Þ ¼ s ð12Þ

where M 2 R3�3 be the inertia matrix, H 2 R3 is the joint velocity and position
dependent Coriolis term, and G 2 R3 is the nonlinear gravity term.

A subsystem of the dynamic Eq. (12) with last two joints is considered in the
subsequent section, as tendons are used only for the last two joints of a finger.
Coefficients with bar line are used to differentiate with derived system from the
original system. The joint torque and tendon force relation is as follows:

�s ¼ JTj f t ð13Þ

However, force in the passive tendons cannot be controlled as they are spring
loaded. The force vector ft is partitioned to separate the active component fa from
the passive component fp. Then, the control input is as follows:

Fig. 11 Internal view of
tendons run over the pulleys
and routing points
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�s ¼ JTj fa þ JTp f p ð14Þ

by, putting Eq. (14) in Eq. (12) and rearranging the passive component, the
dynamic equation of motion is obtained as follows:

�M €�qþ �H _�q; �q
� �þ �G �qð Þ � JTp f p ¼ JTj fa ð15Þ

where M be the inertia matrix, H be the Coriolis force, G, be the gravity force, �q
and �s are joint displacement and joint torque of the last two joints, respectively. The
relation between the tendon forces and tendon displacements for the spring-loaded
tendons is as follows:

f p ¼ Kl ¼ KJp�q ð16Þ

where K be the spring stiffness matrix of the spring-loaded tendons.

Impedance Control of the Gripper
Diameter of the pulleys is chosen in such a way that generated torque at the middle
joint is greater than the distal joint, i.e. s2 [ s3. Such design makes sure that the
applied tendon force moves middle joint first, once it is stopped by touching object
or joint limit, then only distal joint starts to move. Figure 12 shows finger closure
operation, where initially only first link moves, and then second link starts to move
after first link touches the object.

During the grasping tasks, fingers make physical interaction with the environ-
ment. The generated contact forces due to interaction with the object cause a
deviation from the desired finger trajectory. Impedance control is preferred for tasks
involving interaction with the environment which regulates motion and contact
forces without explicit force feedback. It is not possible to control all the joints
independently due to the under-actuation mechanism (i.e. less number of control
inputs than the total number of joints in a finger), so inspired by the work of Arai

Fig. 12 Finger closure
operation
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and Tachi (1991); a two-phase control approach is proposed for controlling the joint
displacements as well as the contact forces exerted by the links in joint space. In the
first phase, tendon force controls only the middle joint. Then, in next phase, tendon
force controls the distal joint.

Figure 13 shows the impedance-based grasp controller in joint space. In the
presence of contact force, the dynamic equation of motion is as follows:

M q
:: þHðq: ; qÞþGðqÞ � JTp KJpqþ sc ¼ JTj fa ð17Þ

where sc is the generated torque at the joints due to the contact force.
From Eq. (17), the dynamic equation can be rewritten as

m22€q2 þm23€q3 þ v2 � t2 þ s1c ¼ r1fa ð18Þ

m32€q2 þm33€q3 þ v3 � t3 þ s2c ¼ r2fa ð19Þ

where t ¼ JTp KJp�q and v ¼ H q
:
; q

� �
þG qð Þ .

The following are the impedance control laws with feedback linearization.
First phase: Control law is

fa ¼ Kp q2 � qd2
� �� Kv _q2 þ 1

r1
v2 � t2ð Þþ m23

m33
t3 � v3ð Þ

� �
ð20Þ

At equilibrium, generated torque at the middle joint due to contact force is as
follows:

s1c ¼ r1Kp q2 � qd2
� � ð21Þ

Second phase: Control law is

fa ¼ Kp q3 � qd3
� �� Kv _q3 þ v3 � t3 ð22Þ

Fig. 13 Impedance-based grasp controller in joint space
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At equilibrium, generated torque at the distal joint due to contact force is as
follows:

s2c ¼ r2Kp q3 � qd3
� � ð23Þ

3.3.3 Results and Discussions

The impedance control has been implemented on the proposed three-finger gripper.
Table 3 shows all the parameters of each finger of the gripper, where l1; l2; l3ð Þ and
m1;m2;m3ð Þ are the link lengths and masses of the knuckle, middle and distal links,
respectively.

Figure 14 shows the joint displacement responses for implementation of impe-
dance control laws as discussed in previous section. A time step of 10�3 s, pro-
portional gain of Kp ¼ 10 and derivative gain of Kv ¼ 0:1 are used for the

Table 3 Finger parameters of the gripper

l1 (mm) l2 (mm) l3 (mm) m1 (g) m2 (g) m3 (g) r1 (mm) r2 (mm)

60 60 40 50 50 40 10 8

Fig. 14 Results of impedance control
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implementation. From the figures, it is clearly seen that the middle link starts to
move first and once the desired joint values are reached, then only the distal link
starts to move.

Figures 16 and 17 show the grasping poses for cylindrical and cuboidal objects.
The snapshots show the intermediate stages of pre-shaping and fingers closure.
Figure 15a shows the pre-shaping stage where the two opposing fingers spread
sideways. Figure 16b, c shows the implementation of the proposed two-phase
control approach for gripper closure, Fig. 15b shows the closure of middle link and
Fig. 15c shows the distal link closure, once the middle link is stopped by touching
the object. Pre-shaping operation is not required for grasping of object shown in
Fig. 16.

Fig. 15 Finger grasping poses for a cylindrical object
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3.4 Vision-Assisted Robotic Assembly

In the following sections, the key issues and challenges in implementation of the
assembly task-level plan using a vision-guided robotic system will be presented.

3.4.1 Key Issues and Challenges

In accordance with the task-level plan, the robot needs to be programmed to per-
form the assembly operations. The conventional online programming requires, first,
the desired motion cycle to be taught to the robot by manual lead-through technique
or powered lead-through technique with the help of a teach pendant to carefully
define robot end-effector positions and orientations during and at the end of the
motion. Then, it requires the programmer to prepare textual commands, describing
the desired motion of the manipulator, and finally the program is entered into the
controller memory for playback. Obviously, the online programming method is
arduous and time consuming. The quality of motions and the end-effector positions
taught relies on the skill level of the programmer. This exercise may have to be
repeated again for robotic assembly of a new product even with slight variations in
design, and thus it lacks the flexibility and reusability. To overcome the above
drawbacks, a strategy for automatic programming of industrial robots to perform
assembly operations by machine vision guidance has been proposed in this work.
Furthermore, as inspection is important in any assembly process to rule out the

Fig. 16 Finger grasping poses for a cuboidal object
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possibility of erroneous robotic assembly, a strategy for automated assembly
inspection based on machine vision has been also proposed. The aforementioned
proposed system has been demonstrated by performing a mechanical assembly
using a vision-assisted robotic assembly system, comprising of an industrial robot
manipulator, an overhead CCD camera and the National Instrument (NI)’s
LabVIEW graphical programming environment.

3.4.2 Implementation of Assembly Task Plan by Vision-Guided Robot

After the task-level plan is generated using knowledge-based system described in
Sect. 3.2, it is implemented by a vision-guided robotic system that has been
developed. Figure 17 shows the system setup. It consists of a robotic system
comprising of a six-axis industrial robot manipulator (model Yaskawa Motoman
MH5) equipped with a two-finger pneumatic gripper and a robot controller (model
FS100) with open software architecture and a robot control interface (Digimetrix), a
vision system comprising of an overhead-mounted CCD camera and NI vision
assistant utility for image processing, and NI LabVIEW graphical programming
environment for implementing the overall system. The storage bin containing the
parts that are to be assembled and the assembly jig on which the assembly is to be
built up are both placed within the field of view of the overhead camera and within
the robot work envelope.

Recognition of Parts, and Estimation of Position and Orientation by
Machine Vision

To carry out assembly using the robot, it is necessary to first of all recognize all the
parts involved from the storage bin and determine their initial locations and ori-
entations, which are accomplished by the machine vision system. The vision system

Industrial 
Robot

Storage BinAssembly Jig

NI PXI System

Camera 
Stand

Gripper

Display of Image Processing results

Overhead
Camera

Fig. 17 Setup for vision-guided robotic system for assembly
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is used to further determine the target hole (cavity) locations and their orientations
on the base part of the assembly or sub-assembly into which each part has to be
inserted. The vision assistant utility of LabVIEW has been used to accomplish these
tasks. The vision system hardware consists of an overhead camera used to acquire
the image of the parts placed inside the robot work envelope and a PC with data
acquisition board. The camera used is Basler acA1300-22gc GigE camera with
Sony ICX445 CCD sensor of 1.3 MP resolution, 22 fps and with Edmund Optics
lens of 6 mm focal length.

Figure 18 shows the operations performed by the machine vision system.
Following are the steps for recognition of parts and determining their locations

and orientations. First, the camera is to be calibrated to map the pixels of the image
to real world coordinates of the robot. The calibration is done by the point coor-
dinates calibration routine of LabVIEW by feeding the real world coordinates of
any four different pixels from an image taken by the camera in the given workspace.
After the calibration, the setup is kept fixed and images of the workspace, con-
taining the parts to be assembled and the assembly jig, are captured using the
camera for use in robotic manipulation. The captured images are colour images
containing the (R)ed, (G)reen and (B)lue channels at every pixel, and hence, every
pixel can be represented in the RGB space. As changes in the brightness of an
image are more distinguishable than that only in colour (Wang et al. 2001), a
perceived brightness measure from the image simply called the value has been
considered. This is obtained by converting a pixel in an RGB space to that in HSV
(Hue–Saturation–Value) space, where H and S are the chromatic components and
V is the value. V is simply computed as (Solomon and Breckon 2011)

V ¼ max
R
255

;
G
255

;
B
255

� �
; R;G;B 2 0; 1; 2; . . .; 254; 255½ � ð24Þ

In the next step, a pattern matching approach is applied on the value plane of the
image, to detect the presence of a particular part. This system matches available
templates of parts to the various regions of the image to identify a part in it. The
well-known normalized 2D cross-correlation value (Haralick and Shapiro 1992)
between templates and similar-sized local regions in the captured image is maxi-
mized (best fit above a threshold) to find a part. To make the matching rotation
invariant, finite number of rotations (between 0° and 360°) of a given template is
considered. Scale invariance of the pattern matching is also important and hence
multi-scale processing is performed during the pattern matching. Multi-level

Parts recognition:
X, Y position,
Orientation (Angle),
Matches found

Set up 
Vision  
System  

Acquire 
Image by 
Camera

Machine vision operations:
Value plane extraction and
Pattern matching

Image 
Calibration

Fig. 18 Flowchart of operations performed by machine vision system for part recognition and
determining position and orientation
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Gaussian pyramid decomposition (Gonzalez and Woods 2008), shown in Fig. 19,
of both the template and the image at hand, is considered.

The matching is done across all the scales provided by the pyramid decompo-
sition of both the template and the image. The number of levels in the pyramid has
been considered as 4. The matching operation simply considers the real values from
the value planes of the images (and templates) and works fine even in the presence
of intricate textures with dense edges. It is found that the NI vision assistant utility’s
pattern matching described above is able to accurately locate objects that vary in
size and orientation (0°–360°). To reduce complexity of the processing, a
coarse-to-fine matching is considered. This helps immensely as all possible rota-
tions and locations are considered only at the coarsest level, and then for the finer
level, only a subset of possible rotations and locations are considered based on the
best match orientation in the coarsest level. This avoids exhaustive search at every
level of the pyramid, and actually makes the processing faster than that without
pyramid decomposition, and this is another advantage of using the decomposition
other than the intended scale invariance through multi-scale processing.

Once the pattern matching operation is completed, we have the estimated
locations and orientations of all the parts identified. The X, Y position is then easily
mapped to the world coordinates as per the initial calibration.

Input Image/ 
Template 
(Size N x M) 

Gaussian 
Filtering  [given 
in figure 19 (b)]

Down-sampling
Output Image/ 
Template 
(Size 0.5N x 0.5M) 

Recursion to generate pyramid

Coarsest Level

Finest Level

(a)

(b)

Fig. 19 a Multi-level Gaussian pyramid decomposition, b the pyramid structure. Source The
USC-SIPI image database (http://sipi.usc.edu/database)
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Strategy for Robotic Assembly Under Machine Vision Guidance

After the assembly parts are recognized and their positions and orientations
determined by machine vision system, the decisions regarding motion of the robot
manipulator to perform the assembly operations are implemented in accordance
with the assembly task plan generated earlier by the robot task-level planner. The
robot task-level plan lists sequentially the handling tasks that are to be performed by
the robot to pick up the parts one by one from their initial locations and orientations
in the storage bin, and also the insertion tasks that are to be performed by the robot
to assemble them into the respective positions and orientations of the holes (cavi-
ties) in the base part on the assembly jig. The destination coordinates on the
assembly jig are also obtained from the vision system. The task-level plan also
contains details of the robot motion sequences necessary for handling each part in a
proper order as shown in Fig. 20, starting from moving the robot to a safe height
above the recognized part before picking it up and ending with actuating the
opening of the gripper fingers to release the part on the base part before moving up
to a safe height. After these motion sequences, the manipulator needs to move away
to clear the field of view of the camera and await further instructions for handling
and insertion of the next part. For this, machine vision system is employed
repeatedly as explained earlier. Each of the above-mentioned sequences has been
implemented by developing a sub-VI in LabVIEW. If any part to be assembled is
missing from the bin, the robot will automatically stop the assembly process after
getting a “No match found” signal from the vision system.

Strategy for Assembly Inspection by Machine Vision

In any assembly process, inspection plays a vital role as there is always a possibility
of erroneous robotic assembly due to missing parts. This defect may result from
accidental slipping of a part from the gripper during handling before the robot
reaches the assembly jig. In that case, the missing part from the assembly can be
detected by first taking an image of the intermediate stage of assembly with the
sub-assembled parts, each time after the robot completes an assembly operation,

Move to safe height 
and open gripper 
(sub VI)

Move to grasp 
height and close 
gripper (sub VI)

Move up to safe 
height (sub VI)

Move to safe height 
above assembly 
fixture (sub VI)

Move down to 
height of fixture 
level and open 
gripper (sub VI)

Move up to safe 
height (sub VI)

Move to clear the 
field of view of 
camera (sub VI)

Repeat the sequences 
of tasks for the next 
component

X, Y position 
angle from 
Vision Assistant

Enter safe 
Height

Enter grasp 
height

X, Y position and 
angle from Vision 
Assistant

Enter height of 
fixture level 

Fig. 20 Flowchart of the strategy for robotic assembly
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and then performing template matching of that sub-assembly image with the pre-
viously stored correct intermediate stage image. If the match is found to be perfect,
a signal ‘Continue assembly’ is sent to the robot controller to proceed for picking
the next part. Otherwise, robot stops after receiving a ‘Part missing, stop assembly’
signal. This same process is continued at each stage of the assembly to check for
missing parts. Flowchart of the inspection process is shown in Fig. 21.

3.4.3 Results and Discussions

The eight-component assembly shown in Fig. 7 is used to demonstrate the results of
the developed vision-assisted robotic assembly system. Figure 23a–c, shows the
initial, intermediate and the final states of the task environment, respectively,
indicating the positions of the jig as well as other parts and the robot’s movement
for performing the assembly. All the above parts were initially scattered randomly
in the task environment of the robot but placed in a bin within the field of view of
the overhead camera as shown by the initial state of the task environment in
Fig. 22a. Table 4 summarizes the information about the estimated initial positions

No

Match 
found

Acquire image Image Calibration Inter mediate stage template matching

Yes

Continue 
Assembly 

Part Missing. 
Stop Assembly

Fig. 21 Flowchart of operations performed by machine vision for assembly inspection

(b) Intermediate state (c) Final state

Assembly Jig Assembly Jig
Assembly Jig

(a) Initial state

Fig. 22 Initial, intermediate, final states of the task environment showing the robot’s movement
for performing assembly
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of all assembly parts including the holes (cavities) on the jig that were extracted
using the vision assistant utility of LabVIEW. Figure 23 presents an extract of a
typical output from the vision assistant for one of the assembly parts, showing the
stored template, recognized part, estimated initial X, Y positions, angle, score, etc.
Finally, Fig. 23c shows the final state of the task environment after successful
completion of the assembly by the robot.

4 Summary and Conclusions

In an attempt to support the ongoing efforts for developing flexible robotic
assembly system with necessary agility and adaptability to satisfy diverse customer
requirements and capability of mass customization, this chapter has examined some
of the crucial issues and challenges that need to be addressed for its successful
implementation. Some of the significant contributions of the reported research are
as follows.

• A Sexual Genetic Algorithm (SGA)-based approach for assembly sequence
planning and optimization has been developed and implemented. The infor-
mation on assembly directions of the parts, precedence relationships, various
tools/grippers needed and location of the base component in the assembly is
inputted. It is capable of automatically generating the feasible and optimal
sequences based on minimizing the number of reorientations and tool changes,
and maximizing the stability of the components/sub-assemblies.

• Further, a robot task-level planning system has been proposed and its imple-
mentation shown using a vision-guided industrial robot manipulator for per-
forming mechanical assemblies. To accomplish task-level planning, a
knowledge-based system is developed and executed using the expert system
shell CLIPS, which is capable of automatically generating all the assembly tasks
that are to be performed by the robot from a given optimal assembly sequence
generated by the above sequence planner.

(a) Stored template (b) Screenshot display of 
Image Processing result

(c) Calibrated matches  

Fig. 23 Output from the vision assistant utility of LabVIEW
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• Moreover, a multi-finger, tendon-driven robotic gripper for flexible assembly
has been proposed that has necessary flexibility like that of a human hand to
adapt to different geometric shapes of objects and an impedance control algo-
rithm with necessary compliance needed to perform parts mating and insertion
during assembly.

• Finally, a strategy for robotic assembly under machine vision guidance has been
also developed, in which the vision system comprising an overhead-mounted
CCD camera and NI vision assistant utility for image processing has been used
to guide a Motoman industrial robot in performing mechanical assembly
operations in a task environment, where the parts are initially scattered ran-
domly. Further, a strategy for automated assembly inspection based on machine
vision has also been proposed to rule out any possibility of erroneous robotic
assembly. The above system is found to be successfully working with minimal
human intervention. Research work is presently ongoing for use of multiple
sensors in conjunction with machine vision to guide the robot in performing
more complex assembly tasks.
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