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Abstract
Purpose – Assembly sequence optimization is a difficult combinatorial optimization problem having to simultaneously satisfy various feasibility
constraints and optimization criteria. Applications of evolutionary algorithms have shown a lot of promise in terms of lower computational cost and
time. But there remain challenges like achieving global optimum in least number of iterations with fast convergence speed, robustness/consistency
in finding global optimum, etc. With the above challenges in mind, this study aims to propose an improved flower pollination algorithm (FPA) and
hybrid genetic algorithm (GA)-FPA.
Design/methodology/approach – In view of slower convergence rate and more computational time required by the previous discrete FPA, this
paper presents an improved hybrid FPA with different representation scheme, initial population generation strategy and modifications in local and
global pollination rules. Different optimization objectives are considered like direction changes, tool changes, assembly stability, base component
location and feasibility. The parameter settings of hybrid GA-FPA are also discussed.
Findings – The results, when compared with previous discrete FPA and GA, memetic algorithm (MA), harmony search and improved FPA (IFPA), the
proposed hybrid GA-FPA gives promising results with respect to higher global best fitness and higher average fitness, faster convergence (especially
from the previously developed variant of FPA) and most importantly improved robustness/consistency in generating global optimum solutions.
Practical implications – It is anticipated that using the proposed approach, assembly sequence planning can be accomplished efficiently and
consistently with reduced lead time for process planning, making it cost-effective for industrial applications.
Originality/value – Different representation schemes, initial population generation strategy and modifications in local and global pollination rules
are introduced in the IFPA. Moreover, hybridization with GA is proposed to improve convergence speed and robustness/consistency in finding
globally optimal solutions.

Keywords Assembly sequence optimization, Evolutionary optimization, Improved flower pollination algorithm

Paper type Research paper

1. Introduction

Because the assembly cost is estimated to be around 10-30 per
cent of the total manufacturing cost (Hong and Cho, 1995),
proper assembly process planning is of utmost importance.
Typically in mechanical product assemblies, the components
need to be assembled in a definite order or sequence to make
the assembly feasible such that no component interferes with
others, implying that they must comply with certain precedence
constraints. There may be other constraints affecting the
feasibility of a sequence like individual component and tool
accessibility, stability of the assembled components. Again a
product may be possible to assemble in many alternative ways
following different sequences. The optimal assembly sequence
takes the least time and thus results in the minimum cost.
Assembly sequence optimization can be done considering
various criteria like minimizing the number of orientation
changes and the tool changes, stability of the assembly, etc. A
significant amount of human expertise and experiential
knowledge is needed for assembly sequence optimization after

considering all above constraints and criteria. Besides manually
determining the optimal sequence is also laborious and time-
consuming. For automating the generation of optimum
assembly sequence, different computer-aided process planning
approaches had been developed. They included applications of
algorithms and different graph theoretic approaches. With
increase in number of components, the number of feasible
assembly sequences also rises staggeringly, resulting in an
increase in computational complexity. As a result, the assembly
sequence optimization becomes more difficult, and the
traditional approaches may be often computationally expensive
(Gao et al., 2010). Various soft computing-based evolutionary
algorithms like genetic algorithm (GA) and swarm intelligence-
based algorithms and their hybrid have been also used to deal
effectively with this problem of combinatorial optimization.
However, with these algorithms, there are still challenges like
convergence speed, computational time, maintaining
robustness/consistency in finding the global optimal solution,
etc. Keeping this in mind, in this paper, we have proposed two
soft computing-based approaches for discrete optimization
using an improved flower pollination algorithm (FPA) and a
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hybrid FPA-based approach by hybridizing with GA, which
have shown promising results.
The paper is divided into following sections. A brief review of

previous research is presented followed by description of the
assembly sequence optimization problem. Next the basic
principle of the original FPA is given. Then we have presented
our proposed approaches of improved discrete FPA and the
improved hybrid GA-FPA. Finally, a case study is provided to
demonstrate the application of the proposed approaches and
the comparison results with well-known soft computing
algorithms.

2. Review of previous research

The following presents a brief review of previous research on
different strategies used for assembly data modelling,
approaches developed for solving the assembly sequence
optimization problem as well as attempts to integrate assembly
process planning with assembly product development,
scheduling, line balancing and other problems.
Assembly data modelling provides a logical structure for

organizing all the information necessary for solving the problem
of assembly sequence planning and optimization. This includes
input information about the contacts, spatial relationships,
precedence and collision interference relationships between the
components, geometric constraints, assembly stability, etc. as
well as how to represent the assembly sequences. A brief review
of previous research on different approaches for the above
assembly datamodelling and assembly sequence representation
is given below.
For assembly data modelling, mainly graph-based and

matrix-based methods have been used by researchers. The
graph-based methods include mainly liaison graph, directed/
precedence graph and disassembly completed graph (DCG).
Cao and Xiao (2007) used the liaison graph to represent the
contacts between components. To represent spatial and
precedence relationships, directed/precedence graph had been
used by Laperriere and ElMaraghy (1994), Bonneville et al.
(1995), Xie et al. (2007), Tseng et al. (2010), Gao et al. (2014).
To represent components and their disassembly directions, the
DCG had been used by Wang et al. (2005). It is, however,
important to note that one problem with the graph-based
model could be the fact that the nodes of the graph-based
model tend to increase exponentially with increased product
complexity, resulting in difficulty of constructing the graph
automatically and decrease in algorithm efficiency (Yu and
Wang, 2013).
Different matrix-based modelling methods that had been

used by researchers for assembly data modelling include liaison
matrix, interference matrix, disassembly matrix, extended
interference matrix, precedence matrix, moving wedge matrix
and stability matrix (SM). The liaison/connection matrix had
been used to represent contact between components (Cao and
Xiao, 2007; Wang and Liu, 2010; Zhou et al., 2011). To
represent the collision interference relationships along the axes
of Cartesian coordinates (6x,6y,6z), the interference matrix
had been used by Cao and Xiao (2007), Lv and Lu (2010a),
Gao et al. (2010), Zhou et al. (2011), Ghandi and Masehian
(2015) and Li et al. (2016). The disassembly matrix had been
used to reduce the complexity by combining the directional

information of x-, y-, z- of interference matrix (Wang et al.,
2005; Sharma et al., 2008; Zhou et al., 2013). The extended
interference matrix had been used to have directional
information when the assembly directions are other than the
orthogonal Cartesian axes (Yu et al., 2009; Yu and Wang,
2013). The precedence matrix had been used to convey the
information about the precedences between parts and
determine feasible assembly sequences that satisfy precedence
constraints (Tseng et al., 2007; Choi et al., 2009; Tseng et al.,
2010, 2011; Mishra and Deb, 2016). The moving wedge
matrix had been used to describe geometric constraints
between components in an assembly (Chen and Liu, 2001;
Shuang et al., 2008). The SM had been used to represent the
stability values for two consecutive parts (Li et al., 2016). Since
matrix-based assembly models are easier than graph-based
models to store and express the static or dynamic relationships
between components, they are widely used to solve the
problems of assembly sequence planning problems (Yu and
Wang, 2013). In the present paper, matrix-based methods have
been used for modelling the precedence relationships between
components and the assembly stability.
For representation of assembly sequences, different

encoding schemes had been used by previous researchers. For
example, in the work presented by Cao and Xiao (2007), Choi
et al. (2009), Wang and Liu (2010), Lv and Lu (2010a), Li
et al. (2016) and Mishra and Deb (2016), the sequences had
been encoded in the form of an ordered list of only component
numbers, while in the work reported byWang et al. (2005) and
Gao et al. (2010), the encoded sequences contained
component numbers along with their assembly directions.
Tiwari et al. (2005) represented the sequences considering the
assembly operations and the product variant numbers. In the
work presented by Tseng et al. (2007), Chang et al. (2009) and
Gao et al. (2014), the sequences were encoded in the form of
connectors to reduce the complexity of the problem and enable
them to make use of similar data for same type of connectors.
However classification of connectors from assembly models
itself can be a challenging task. In the present paper, the
assembly sequences are encoded as an array of component
numbers.
To solve assembly sequence optimization, previous

researchers had used various soft computing approaches, many
of which are inspired by nature. They include the applications
of various evolutionary-based optimization approaches like
GA, memetic algorithm (MA) and recently a harmony search
algorithm inspired by musical improvisation processes. For
example, Bonneville et al. (1995) developed a GA-based
approach with initial population as valid assembly plans which
then underwent crossover and mutation followed by evaluation
and selection of offspring based on minimizing the
reorientations. For feasibility, liaisons and geometric
constraints were used. TheGA performance was reported to be
slow, not guaranteeing optimum plans. Another approach for
assembly sequence optimization was presented by Choi et al.
(2009), where the assembly time and number of orientation
changes were considered. Precedence matrix was used for
feasibility of assembly sequences. The algorithm started with
randomly generated feasible assembly sequences. Kashkoush
and ElMaraghy (2013) proposed a GA approach for generating
assembly sequences for sequential, non-linear product
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assemblies. Partial assembly tree was used for assembly
representation, and to code the tree information, i.e. sequences
of leaves and topology, matrices were used. Tseng et al. (2007)
developed an MA-based approach, where assembly
components were categorized into different types of connectors
considering fastener types, assembly tools, directions and
connector-based precedence graph. Similarity of engineering
data of connectors was considered for evaluation of assembly
sequences. Partially mapped crossover (PMX) and guided
mutation operator followed by a binary search tree were used. It
has been reported in Li et al. (2003) that although GA can deal
with a complex product assembly planning optimization
problem, during the process the neighbourhood may converge
too fast which can limit the search to a local optimum
prematurely. To overcome this drawback of GA, researchers
have tried to combine it with other local search optimization
techniques. Gao et al. (2010) developed an assembly sequence
optimization approach based on MA where a chromosome
represented an assembly sequence consisting of genes
containing component number and direction variable. They
considered times of the assembly direction changes and
assembly feasibility. PMX and swap mutation, in addition to
local search, were used. Wang et al. (2013) proposed an
enhanced harmony search algorithm for assembly sequence
planning. To strengthen the optimization performance and its
effectiveness for solving assembly sequence planning (ASP),
the method uses the largest position value rule and an efficient
switching strategy of local search. The feasibility was ensured
by interference matrix. Li et al. (2016) proposed an improved
harmony search (IHS) algorithm. A discretization encoding
technique for ASP was proposed that reduced the searching
space followed by an initial harmony using opposition-based
learning (OBL) strategy. A way to improvise a new harmony
and local search scheme was developed. The comparison with
other algorithms like GA and MA was reported on the basis of
robustness/consistency of finding global best solutions.
Various swarm intelligence-based approaches like particle

swarm optimization (PSO), ant colony optimization (ACO),
artificial immune system (AIS) and recently firefly algorithm
and FPA have been also explored for solving the problem of
assembly sequence optimization. For example, Wang and Liu
(2010) developed a PSO-based assembly sequence
optimization approach. The assembly cost was subjected to
geometrical constraints and five assembly process constraints.
However, in this work, the initial assembly sequence should be
selected at first which caused a long running time (Li et al.,
2013a). Lv and Lu (2010a) also used a PSO approach in
assembly sequence optimization. They considered tool
changes, orientation changes, operation-type changes and
interference times in product assembly. Special operators,
namely, subtraction operator, addition operator and
multiplication operator, were used to update the position and
velocity of particles. But their algorithm was easily affected by
the individual optimal fitness value, and the algorithm was easy
for convergence in the starting evolution (Li et al., 2013a). Li
et al. (2013a) developed an improved PSO algorithm for high-
speed trains assembly sequence planning. The position,
velocity and mathematical operations of the PSO were
redefined to solve the ASP problem. A choose strategy of global
optimal position was proposed to overcome the local

convergence problem of basic PSO in the early iteration.
Problem with using original PSO has been reported in the
paper by Yu and Wang (2013) that it is not favourable for the
discrete problem such as ASP, where the solution is in discrete
integer space and another important issue is that PSO is easily
trapped in local optimum. To overcome it, Yu and Wang
(2013) proposed an improved ACO called MMACS, i.e. max-
min ant colony system, in which the multi-objective heuristic
function consists of reorientation, parallelism, continuity,
stability and auxiliary strokes. The pseudo-random
proportional rule and local updating rule of ACS had been
combined. Their approach was inferior in running time and
occupying space than the priority rule screening. It is worth
mentioning that it is desirable to have fast convergence speed of
the algorithm; however, it also gives the problem of premature
convergence. Hence, a balanced convergence speed should be
maintained to achieve the global optimum with robustness
which happens when there is a proper balance between
exploration and exploitation in the algorithm. This also
improves the overall quality of the solutions (Yu and Wang,
2013). In general, this problem of premature convergence and
slow convergence of soft computing-based optimization
algorithms had also been discussed in the paper by Ting et al.
(2015). Wang et al. (2014) developed an ACO algorithm for
assembly sequence optimization. A disassembly feasibility
information graph was generated and extended to retrieve the
relevant data (including constraint relationships) of assembly
and disassembly planning. Tiwari et al. (2005) developed an
AIS approach for assembly configuration planning using
Maslow’s need hierarchy theory and theory of clonal selection.
They attempted to solve the combinatorial problem using few
iterations by making it computationally efficient. Cao and Xiao
(2007) used immune optimization algorithm (IOA) to generate
optimal assembly plan. It was reported that GA, being a global
search method and lacking efficient local search capability,
misses the optimal case and hence is not much robust, and
because of evolution process of population, the diversity is lost,
making it computationally expensive to converge. Assembly
sequences were evaluated based on number of components,
assembly direction changes, tool changes, etc. Bahubalendruni
et al. (2016) developed an advanced immune strategy to obtain
optimal assembly sequence. Two separate immune models,
namely, bone marrow model and negative selection models
were developed as part of their work. Zhang et al. (2016)
developed a discrete double-population firefly algorithm. It
guaranteed the population diversity reducing chances of
premature convergence and enhanced local and global search
capabilities by parallel evolution of solutions. Objectives
including assembly stability, assembly polymerization and
assembly direction changes had been considered. Mishra and
Deb (2016) developed a discrete FPA-based assembly
sequence optimization approach for generating not only the
global best assembly sequence but as many unique optimum
solutions as possible. However, it was reported in the paper that
this virtue of maintaining diversity in optimum solutions came
at the expense of slow convergence compared to other
algorithms like GA, ACO and IHS, which is one of the
shortcomings of their approach.
There had been applications of hybrid soft computing

approaches as well to enhance the performance of the algorithm
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for assembly sequence optimization. For example, Lv and Lu
(2010b) improved the DPSO algorithm by combining it with
simulated annealing as a multi-objective hybrid evolutionary
search algorithm. This improved the search capability and
obtained a better effect thanDPSO. However, the convergence
problem in the initial evolution was not improved notably and
more iterations were required than DPSO. Zhou et al. (2011)
combined bacterial chemotaxis with GA for assembly sequence
optimization. Assembly sequences were encoded as
chromosomes and a gene treated as bacterium. The fitness
function comprised length of longest subsequence, number of
orientation changes, gripper changes. Li et al. (2013b)
proposed a hybrid approach by collaborating discrete PSOwith
an evolutionary operator to produce improved individuals
guided by a series of optimal evolutionary directions belonging
to current population. Interference matrix was used for
geometric feasibility. In the fitness function, the numbers of
components, direction changes, tool changes, and the
operation type changes were considered. Zhang et al. (2014)
presented a hybrid algorithm IPSO, where PSO was combined
with immune algorithm. By effective selection mechanism of
immune algorithm, the IPSO overcomes premature
convergence. The objective function consisted of location of
base component in the sequence, tool and direction changes,
geometric feasibility and the coherence between successive
components.
There had been also some attempts by previous researchers

to integrate the assembly sequence planning problem with
other problems like assembly line balancing and scheduling,
assembly product design, plant assignment. For example,
Tiwari et al. (2005) coupled the problem of assembly sequence
planning with that of assembly line scheduling for different
product variants. An attempt to combine the problem of
assembly sequence optimization with plant assignment was
undertaken by Tseng et al. (2009, 2010) for selection of a
suitable plant to perform assembly operations at least cost.
Tseng et al. (2008), Wang et al. (2012) and Lu and Yang
(2016) attempted to combine assembly sequence planning with
line-balancing which helped to ensure better quality of solution
for assembly operation as well as minimize lead time to launch
the product. Recently, Gruhier et al. (2015) presented an
integrated approach to assembly product design and assembly
sequence planning.
It is worth noting that other than the problem of premature

convergence and slow convergence for complex assemblies, the
areas which need to be focused on are easy encoding, deviations
of the optimal solution after each independent run (least mean
square error), how to choose the weight coefficients of the
fitness function, etc. From the review of previous research given
above, evidently soft computing-based optimization algorithms
hold lot of promise in solving the combinatorial assembly
sequence optimization problem. The researchers, drawing
inspiration from natural phenomena, continue to seek and
develop newer and better algorithms to overcome challenges
like improving convergence speed without getting into local
optima, computational time and robustness/consistency in
finding the global optimal solution. With above challenges in
mind, we have proposed in this paper two new soft computing-
based approaches based on discrete optimization using an

improved FPA (IFPA) and a hybrid FPA based approach by
hybridizing withGA, which have shown promising results.

3. Description of the problem of assembly
sequence optimization

A typical mechanical assembly product is composed of number
of distinct components. For an assembly having n individual
components, where each component is denoted by pi, where i =
1, 2, 3 . . . . n, the assembly sequences can be presented as the
ordered list of components, where the assembly sequence must
contain all the parts of the assembly. These assembly sequences
can either be feasible or infeasible. Feasible sequences are those
sequences that are possible to assemble without violating
precedence constraints, otherwise they are referred as
infeasible. These infeasible sequences are of no meaning to
manufacturing practice. A typical assembly sequence for an
assembly consisting of four components can be written as:

Stypical ¼ p4; p1; p2; p3½ �

This conveys that, at first, the component p4 is selected to
assemble the product and then component p1, followed by
component p2 and so on. In the present paper for the sake of the
algorithm, the assembly sequences have been presented as [4,
1, 2, 3]. If Si be the set of all infeasible assembly sequences for a
product, Sf be the set of all feasible assembly sequences and S
be the set of total number of assembly sequences, then:

S ¼ Si [ Sf and Si \ Sf ¼ U (1)

If a soft computing-based approach is used for assembly
sequence planning, the developed algorithm has to find out
the optimal assembly sequence out of the total assembly
sequences S. This optimal assembly sequence should satisfy
all the precedence constraints (i.e. it must be a feasible
sequence) and also should take least time to assemble with
utmost ease. In a feasible assembly sequence, all the
precedence constraints, which represent a set of components
that must be assembled before that component, are
respected. The precedence constraints between components
are often represented by a directed graph (as shown in
Figure 1) or by n � n matrix (precedence matrix or PM),
where n is the number of components in the assembly, and
each entry PMi,j in the matrix is assigned the value of 1, if a
precedence exists between component i and j, otherwise it is
assigned the value of 0. It is obvious that the diagonal entries
of the matrix would all always be zero as a component cannot
have precedence with itself.

Figure 1 A typical assembly precedence diagram
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PM ¼

PM11 PM12 � � ���� PM1n

� � ���� � � ���� � � ���� � � ����
� � ����
PMn1

� � ����
PMn2

� � ����
� � ����

� � ����
PMnn

2
66664

3
77775
n x n

PMi; j ¼
1; component i should be assemled only after j is assemled

0; no precedence between component i and j

(

This precedence constraint matrix needs to be provided for
assembly sequence planning to check for the feasibility of the
assembly sequences. The assembly sequence must be
generated in accordance with the above precedence
constraints. A typical precedence matrix for an assembly made
up of four components i.e. A = {p1, p2, p3, p4} could be as
follows:

PM ¼

0 0 0 0

1 0 0 0
1

1

0

1

0

1

0

0

2
66664

3
77775

From the above given precedence matrix, it is evident that the
component “2” has a precedence constraint with Component
“1” as p.m.2,1 is 1, while it does not have any constraint with
Components “3” and “4”, as both p.m.2,3 and p.m.2,4 are 0.
This means that to assemble this product feasibly, Component
2 should be assembled only after the component “1” has been
assembled. Likewise, Component “3” has precedence
constraint with only component “1” and Component “4” has
precedences with Components “1”, “2”, “3”. In the present
work, the degree of feasibility of an assembly sequence has been
measured in terms of number of feasibility violations (FV)
present in the sequence. This can be found from the
precedencematrix PM using the following equation.

FV ¼
Xn�1ð Þ

i¼1

Xn
j¼i1 1

PM i;jð Þ (2)

where i and j are the locations of the component numbers in the
sequence and n is the total number of components in the
assembly. This can be understood from the example explained
below, say, an assembly has four components and one of the
infeasible sequences for this assembly is [p4, p1, p2, p3] and its
precedence matrix is given above. For calculating the number
of FVs, for an assembly sequence, the first component is
selected and checked to determine with which components it
has precedence, and whether it is following the precedence or
not. In this example, Component “4” has precedence with
Components “1” , “2” and “3” , as the value in the PM is 1 here
for each of p.m.4,1, p.m.4,2 and p.m.4,3. So because of location of
component “4” in the assembly sequence, it has a total of three
FVs. Next, we move for the second component of the assembly
sequence, i.e. Component “1”, and check its precedence. It
reveals that that it does not require any other component to be
assembled before it, and hence, it has no FV. In a similar
manner, each component of the assembly sequence is checked

to see if it satisfies the precedence criterion or not. For the
solution [p4, p1, p2, p3], Components “2” and “3” also do not
have any FVs. Hence it can be concluded that the number of
FVs for the infeasible solution [p4, p1, p2, p3] is 3. It is obvious
that for a feasible assembly sequence, the number of FVs would
be zero. Hence, it can be written as:

FV ¼ 0; if the sequence is feasible

� 1; if the sequence is infeasible

(

The following presents the details about the various criteria that
have been considered to obtain the optimal assembly sequence.

3.1Minimization of direction changes
As each component of the assembly is assembled along a
direction, it becomes obvious that changing the direction of
assembly of the consecutive components will increase the
handling time resulting in increase in overall cost of the
assembly. Hence an assembly sequence requiring least
direction changes is most preferable to save time. The number
of direction changes (nd) can be mathematically computed as
below.

Total number of direction changes;

nd ¼
Xn�1ð Þ

i¼1ð Þ
dir changei;i1 1ð Þ (3)

where:

dir changei;i1 1 ¼ 0; if assembly diri ¼ assembly diri1 1

1; otherwise

(

dir_changei,i11 indicates the change in assembly direction for
two consecutive assembly operations and n is the number of
components in the assembly; assembly_diri indicates the
assembly direction of component number i (which may be one
ormore of the following directions, namely,6x or6y or6z).

3.2Minimization of tool changes
At times, several tools and grippers (in case of robotic
assembly) are required for performing the assembly or
manipulation. The change in tool/gripper is a nonproductive
task, as it consumes handling time leading to increase in overall
assembly cost. Hence, minimizing the tool changes is also one
of the important criteria to reduce the overall assembly time
and cost. The number of tool changes (nt) can be
mathematically computed as below.

Total number of tool changes; nt ¼
Xn�1ð Þ

i¼1ð Þ
tool changei;i1 1ð Þ

(4)

where:

toolchangei;i1 1 ¼ 0; if tool numberi ¼ tool numberi1 1

1; otherwise

(

tool_changei,i11 indicates the change in assembly tool/gripper
for two consecutive assembly operations, and n is the number
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of components in the assembly, tool_numberi indicates the tool
number necessary for handling/insertion of component number
i (each assembly tool is identified by a unique tool number in
the tool database).

3.3 Base component location in the assembly
The base component in an assembly sequence should be the
first component in the assembly order. This base component
information is provided by the user. The location of the base
component in the sequence is represented by B, whose value is
calculated as follows:

Location of base component;

B ¼ 1; if the base component is in first position in the sequence
0; otherwise

�

It may be noted that whether the base component of the
product is located in the first position of the assembly sequence
is considered as a factor that influences the quality of the
assembly sequences (Cao and Xiao, 2007). This decision is left
to the user as stated above. The selection of the base
component is based on factors like it should be the heaviest
and/or largest of all the components, should have most number
of mating links to other components, should be easy to fixture
and locate in the vise, etc. (Barnes et al., 2004).

3.4Maximization of stability of the assembly sequences
Stability of the components during the assembly is also very
important, which refers to the stability among mating
components during the assembly process. The unstable
situation will require additional fixture to maintain stability,
which might reduce efficiency and increase costs. In an
assembly, the connection types, for defining stability, can be
categorized into stable connection (SC), conditional stable
connection (CSC) and unstable connection (USC). As the
name suggests, SC signifies inseparable contact between
components. Sometimes between components, there is CSC,
which signifies that the connections are not autonomously
stable, but components may separate from each other
spontaneously. For example, in Figure 2, the components will
separate when it is turned upside down. For unstable
connections (USC), fixtures are necessary to hold the
components in place and maintain contact. This classification
scheme and its details can be found in the paper by Li et al.
(2016). Like precedencematrix, the above information can also
be modelled in the form of a matrix, having size of n� n, where
n is the number of components in the assembly and each entry
li,j in the matrix is assigned a value depending upon the

connection type. A typical SM for n-component assembly
could be represented as:

SM ¼

l11 l12 � � ���� l1n
� � ���� � � ���� � � ���� � � ����
� � ����
ln1

� � ����
ln2

� � ����
� � ����

� � ����
lnn

2
66664

3
77775
n x n

where lij represents the stability between component i and
component j. The value of each element of the SM can be 0, 1
or 2 depending on whether the connection type is unstable,
conditionally stable or stable, respectively. Thus, it can be
written as follows:

lij ¼

2; If the connection type between component i and component j is SC or CSC:

It is better to use a fixture to clamp component i than clamp component j:

1; If the connection type between component i and component j is CSC: It is

better to use a fixture to clamp component j than clamp component i:

0; if there is no connection between component i and component j; or the

connection type between component i and component j is USC: Or the

connection type is SC or CSC; and it is desirable to use a fixture to clamp

component j; but not feasible to clamp component i:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

The stability of the assembly sequences is measured in terms of
stability index (SI). Larger the value of SI, more stable the
assembly sequence is. The value of SI can be found out from
the SMusing equation (5) (Li et al., 2016):

SI ¼
Xn
i¼2

Si 0 � SI � 2n� 2j (5)

where Si is the stability of the component “i” and n is the
number of components in the assembly. If there is any element
among lij (1 � j � i � 1) equal to 2, Si = 2; otherwise, if any
element among lij (1� j � i � 1) equal to 1, Si = 1. If all the
elements among lij (1� j� i� 1) are 0, Si= 0.
The problem of assembly sequence optimization involves

determining the best feasible assembly sequence based on one
or more criteria such as minimization of number of direction
changes and tool changes, maximizing the stability of the
components/sub-assemblies while performing the assembly,
avoiding FVs in the sequence, location of base component in
the sequence, etc. Figure 3 shows the different assembly
process constraints and the optimization criteria in assembly
sequence planning. Several evolutionary soft computing-based
approaches were used by previous researchers to solve the
above problem. A new approach based on pollination of
flowers, which was originally developed by Yang (2012) for
continuous optimization, is applied by us after introducing
some modifications to solve the current discrete optimization
problem that we have on hand.

4. Proposed approach for assembly sequence
optimization

The FPAwas developed by Yang (2012) for solving continuous
optimization problems. It was inspired by the pollination
process of flowering plants. Through biology, it is established
that the pollination can be abiotic or biotic. In case of biotic
pollination group (accounting for almost 90 per cent of
flowering plants), pollens are transferred by pollinators such as
insects and animals. On the other hand, in case of abiotic

Figure 2 Example of conditional stable connection
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pollination group (accounting for almost 10 per cent of
flowering plants) pollens are transferred through the help of
wind and diffusion. A good example of abiotic pollination is
that of grass. Pollinations can be achieved by self-pollination or
cross-pollination. In case of cross-pollination, pollination
occurs from the pollen of a flower of a different plant, while self-
pollination is the fertilization of one flower from pollen of the
same flower or different flowers of the same plant. Biotic cross-
pollination may occur over long distances; pollination
performed by bees, bats, birds and flies, which can fly over long
distances, can be considered as global pollination. Moreover,
bees and birds may exhibit Levy flight behaviour with jump or
fly distance steps following a Levy distribution.
The FPA consists of two pollination rules, namely, global

pollination and local pollination. Biotic and cross-pollination
can be considered processes of global pollination and pollen-
carrying pollinators move in a way that obeys Levy flights. This
process can bemathematically represented as:

xt1 1
i ¼ xti 1 gL g � � xti

� �
(6)

where xi
t is the pollen i or solution vector xi at iteration t, xi

t11 is
the pollen i or solution vector xi at iteration (t 1 1), g* is the
current best solution found among all solutions at the current
generation/iteration. g is a scaling factor to control the step size.
Here, the Levy distribution equation is represented as:

L ¼ lC lð Þsin pl

2

� �
=p

� �
� 1=s11 l
� �

(7)

where L is step-size parameter, C is the standard gamma
function. It is to be noted that in this work, the value of g is
taken as 1.
On the other hand, abiotic and self-pollinationmake up for the

local pollination process that ismathematically represented as:

xt1 1
i ¼ xti 1 2 xtj � xtk

� �
(8)

where xi
t is the pollen i or solution vector xi at iteration t, [ is a

random number using uniform distribution, xj
t is a pollen from

a different flowers of the same plant species at iteration t. xk
t is a

pollen from another different flower of the same plant species at
iteration t.

Pollinators such as insects can develop flower constancy,
which is equivalent to a reproduction probability that is
proportional to similarity of two flowers involved. The selection
of type of pollination process (i.e. global or local) is decided
using a probability termed as switch probability.
The FPA was shown to give promising results in solving

continuous optimization problems like economic dispatch
problems in electrical power systems (Dubey et al., 2015) and
in the field of design (Sabarinath et al., 2015). However, the
main challenge to apply FPA to solve the given discrete
assembly sequence optimization is the continuous nature of
basic FPA, whereas in assembly sequence optimization, the
solution search space is discrete, comprising discrete assembly
sequences. A discrete FPA approach was proposed by Mishra
and Deb (2016) for assembly sequence optimization, but it was
found to suffer from slower rate of convergence and hence
required more computational time compared to other
algorithms likeGA, ACOand IHS.
Keeping the above in mind, in the present paper, we have

proposed an improved discrete FPA-based approach for
assembly sequence optimization, and to further improve the
performance of this FPA, we have proposed a hybrid GA-FPA–
based approach. These approaches have been implemented for
solving the problem of assembly sequence optimization and the
results have been compared with the previous version of
discrete FPA and also with well-known soft computing
algorithms like GA, MA and IHS. The hybrid GA-FPA
proposed by us has shown promising results in solving the given
discrete optimization problem on hand in terms of higher
global fitness and higher average fitness, improved consistency
in generating global optimum solutions and faster convergence
(especially when compared with the previously developed
variant of FPA and IHS).

4.1 Improved discrete FPA for assembly sequence
optimization
First of all, we shall present the modifications to the basic FPA
in order to develop the improved discrete FPA approach
proposed in this paper. The following are the new data
representation scheme of FPA and new rules for local and
global pollination being proposed by us.

4.1.1 Proposed assembly sequence representation scheme and initial
population generation
In the improved discrete FPA-based approach, an assembly
sequence is encoded as an array of component numbers. Thus,
[1, 2, 3, 4, 5, 6, 7, 8] denotes an assembly sequence of eight
components, where 1, 2, 3 and so on are unique component
numbers and the order in which they appear is the sequence in
which they have to be assembled. It is to be noted that each
component is identified by a unique number and can appear
only once in an assembly sequence. This implies that
repetitions of component numbers in a sequence are not
allowed.
The population of flowers (i.e. assembly sequences) in the

FPA is generated randomly without considering the feasibility
of these sequences. This gives the advantage of maintaining
diversity in flowers during the course of the algorithm and
helping to avoid the local optima. For cases like assembly
sequence planning, the infeasible sequences nearer to the

Figure 3 Assembly process constraints and optimization criteria
related to assembly sequence planning
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optimal solution space can help identify the optimal solution
(Zhang et al., 2016). To expand the field of initial solutions (i.e.
assembly sequences) in the search space, an emerging method,
namely, OBL is used, which was originally proposed by
Tizhoosh (2005). Recently, this method was used in the area of
assembly sequence planning by Li et al. (2016).
After the generation of flowers using the OBL method, they

are evaluated using the fitness function and then based on the
population size of FPA, the best flowers, which will undergo
pollination, are selected. It is observed that the performance of
FPA increases significantly if the initial population is generated
using the OBL method. Suppose that P (x1, x2, x3, . . .., xd) is a
solution vector of D dimensions and xi [ [xi

L, xi
U], i = 1,2,3,. . ..

D, xi
L and xi

U are the lower and upper limits of the variable xi,
respectively. In the OBL method, the opposing solution vector
OP (x10, x20, x30, . . .., xd0) can be defined as follows:

x 0
i ¼ xLi 1 xUi � xi (9)

4.1.2Modified global pollination rule
In case of global pollination of original FPA (Yang, 2012), a
global best flower (g*) found so far is selected from the
population based on its fitness value and thereafter subtractions
of individual flowers (sequences) xi

t are performed from the
aforementioned global best. The resultant (g* � xi

t) is
multiplied with the number L generated by Levy flight. In the
present problem of assembly sequence optimization, the
solution search space is discrete and repetitions of component
numbers in a sequence are not allowed. Therefore, the
following modifications in global pollination are made by us to
make it suited for solving the given problem on hand.
Each flower is, in this case, an assembly sequence xi

t

represented by an array of component numbers that must be
unique. The global best flower (or sequence) g* is selected and
then element-wise subtractions from the array representing
individual flowers (or sequences) are performed from the global
best flower. It may so happen at this stage that some of the
elements of the resulting array (g* � xi

t) are negative numbers,
in which case the absolute value is considered. This array is
then multiplied by an array L of randomly generated numbers
following the Levy distribution. The values of L are generated
from equation (7), which gives an array of whole numbers. The
property of the Levy flight is that it generates most of the time a
small number, and suddenly it jumps to a very large number
randomly thus mimicking the Levy flight behaviour of birds.
The resulting array L*(g*� xi

t) is then added to the flower (or
sequence) under consideration xi

t using element-wise additions
to obtain a new sequence xi

t11. These steps lead the sequence
under consideration to move towards the global best found so
far. The example given below illustrating the modified global
pollination rule illustrates the above steps:

g� ¼ 4 1 6 3 5 7 2 8
� �

xti ¼ 3 2 4 1 6 7 5 8
� �

g � –xti
� � ¼ 1�1 2 2�1 0�3 0½ �	 1 1 2 2 1 0 3 0

� �
L ¼ 1 1 8 1 1 1 1 4

� �
L � g � –xti

� � ¼ 1 1 16 2 1 0 3 0
� �
xti 3 2 4 1 6 7 5 8
� �

xt1 1
i ¼ xti 1L � g � –xti

� � ¼ 4 3 20 3 7 7 8 8
� �

It is to be noted that in the resulting array xi
t11, the values of

those elements, which exceed the maximum number of
components, are replaced following the normal distribution by
randomly generated numbers whose values are less than the
maximum number of components. In the example given above,
the third number in xi

t11 is “20”, which is more than 8, i.e. the
maximum number of components present in the assembly, and
hence this number is replaced with a uniformly distributed
random value, say “2” here. The assembly sequence solution
will become:

xit1 1 ¼ 4 3 2 3 7 7 8 8½ �

A repetition of any component number will also render a
sequence infeasible. To make the sequence feasible, a repair
strategy is adopted to replace the repeated component number
with the missing component number based on precedence
constraints. First, those elements that are missing and the
elements that are repeated in the resulting array are identified;
then their number of precedences is calculated from the
precedence matrix (PM). Now, the components which have
fewer precedences are moved forward in the order so that the
resulting sequence tends to be feasible after repair. This helps
in generating a feasible array, i.e. sequence.
In the above example, if we take the sequence xi

t11 = [4 3 2 3
7 7 8 8] after global pollination for repair strategy, we find that
component numbers “3, 7, and 8” are each appearing more
than once and the component numbers “1, 5 and 6” are
missing from the resulting sequence. Now, from the PM, the
number of precedences for each component is calculated and
whichever component has the least precedence, is moved
forward in the order. Now, if Component 3 has equal number
of precedences as that of Component “1”, then Component
“1” will be placed in place of first “3” in the sequence, and the
resulting sequence becomes xi

t11 = [4 1 2 3 7 7 8 8]. Now, the
component numbers “7 and 8” are appearing more than once
in the solution, and component numbers “5 and 6” are missing
from the sequence. Hence, we check the PM and find that
Component “5” has lesser number of precedences than that of
Component “7”; hence, the first component number “7” is
replaced with Component “5”. The resulting solution becomes
xi
t11 = [4 1 2 3 5 7 8 8]. Thereafter, it is found that only

component number “8” is appearing more than once, while
component number “6” is missing which has lesser precedence
than Component “8”. Hence, the location where the
Component “8” is appearing first time is replaced with
Component “6”. The process goes on until there are no
missing component numbers left. Finally, we find that the
assembly sequence becomes xi

t11 = [4 1 2 3 5 7 6 8]. With the
help of this mechanism, the infeasible assembly sequences start
moving towards the feasible solution space and may randomly
visit the infeasible solution space, neighbouring some good
quality solutions.

4.1.3Modified local pollination rule
In case of local pollination of original FPA (Yang, 2012), two
flowers (or sequences), say xj

t and xk
t are picked up from the

same population to perform the local pollination and then
element-wise subtraction between the arrays representing the
two flowers (or sequences) is performed. The resulting array
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(xj
t � xk

t) is then multiplied by [, which is an array of randomly
generated numbers 0 and 1. This resulting array is further
added to the sequence under consideration xi

t to obtain a new
sequence xi

t11. Because two sequences are randomly picked up
from the same population as that of solution under
consideration, this emulates the local pollination in the
algorithm. The following example illustrating the modified
local pollination rule illustrates the above steps.

xti ¼ 4 2 3 1 5 8 6 7
� �

xtj ¼ 2 3 4 1 5 7 6 8
� �

xtk ¼ 3 2 5 4 6 7 1 8
� �

xtj–x
t
k

� � ¼ �1 1 �1 �3 �1 0 5 0
� �	 0 1 0 0 0 0 5 0

� �
2¼ 0 1 1 0 0 1 0 0

� �
2 � xtj–x

t
k

� � ¼ 0 1 0 0 0 0 0 0
� �

xt1 1
i ¼ xti 1 2 � xtj–x

t
k

� � ¼ 4 3 3 1 5 8 6 7
� �

It is to be noted that in the resulting assembly sequence xi
t11,

some of the component numbers may be repeated. These
repeated numbers are replaced with the missing component
numbers using the same repair strategy based on the
precedence matrix (PM) as already explained in section
“Modified global pollination rule”.

4.1.4 Precedence constraints and evaluation criteria
The fitness function (FF) used here comprises number of tool
changes, number of direction changes, the location of base
component in the assembly sequence, stability of the assembly
and number of FVs. The purpose of considering FVs is to
differentiate the feasible solutions from the infeasible solutions.
This helps in pruning of the infeasible solutions from the
population. The FF for evaluating the sequences (i.e. flowers)
is given in equation (10):

FF ¼ w1
n� 1� ndð Þ

n� 1ð Þ 1w2
n� 1� ntð Þ

n� 1ð Þ 1w3�B

1w4� SI
2n� 2ð Þ 1

1
FV
n 11

	 
 (10)

where w1 is the weight coefficient for the direction changes, w2

is the weight coefficient for the tool changes, w3 is the weight
coefficient for the base component location, w4 is the weight
coefficient for stability and FV is the number of FVs in an
assembly sequence.

4.1.5 Steps to obtain the optimal sequence by the improved discrete
FPA
The steps for determining the optimal assembly sequence by the
improved discrete FPA are summarized in steps to obtain the
optimal sequence by the IFPA.

Steps to obtain the optimal sequence by the
IFPA

Step 1: Enter as input the following infor-
mation about the components of the assembly:
component numbers, their assembly directions
(6X/6Y/6Z), their tool and gripper require-
ments, the base component, the Precedence
Matrix (PM) and the Stability Matrix (SM).
Step 2: Initialize the FPA parameters,
namely, population size, switch probability,
step size and maximum number of iterations.

Step 3: Generate randomly a population of flow-
ers, apply opposition-based learning (OBL)
method to generate opposite individuals and
evaluate them using the fitness function given
in equation (9).
Step 4: Store the best assembly sequence and
its fitness value.
Step 5: Perform the global or local pollina-
tion on the population individuals based on
switch probability.
Step 6: Use the proposed repair strategy to
avoid repetitions of component numbers in the
resulting sequences.
Step 7: Evaluate the population again and
retain those individuals having improved fit-
ness value; otherwise discard them.
Step 8: Update the best sequence and its fit-
ness value; if found.
Step 9: Increment the iteration counter by
one.
Step 10: Repeat steps 5 to 8, until the maximum
number of iterations is reached.

The above improved discrete FPA has been implemented for
solving various assembly sequence optimization problems and
found to give promising results as given in section “Case
studies: results and discussions” that are better than the
discrete FPA proposed by Mishra and Deb (2016) and also
better than some of the well-known soft computing algorithms
like GA, MA and IHS in terms of higher fitness, improved
consistency in generating global optimum solutions, faster
convergence and reduced computational time.

4.2 Hybrid GA-FPA–based approach for assembly
sequence optimization
We have further proposed a hybrid GA-FPA–based approach,
where GA is used ahead of FPA to explore the search space and
then FPA is used to exploit the available good candidates
(solutions) as well as explore the search space further. The
hybrid GA-FPA has been implemented for solving various
assembly sequence optimization problems and was found to
give even better results as given in section “Case studies: results
and discussions”when compared to the improved discrete FPA
that is discussed in the previous section.

4.2.1 Generation of the initial population
The population individuals (or sequences) are generated
randomly without considering their feasibilities and then OBL
method is applied to generate the opposite individuals. The
generated population individuals are evaluated using the fitness
function and the good quality solutions are selected.

4.2.2 Steps to obtain the optimal sequence by the hybrid GA-FPA
The steps for determining the optimal assembly sequence by
the hybrid GA-FPA are summarized to obtain the optimal
sequence by the hybridGA-FPA.

Steps to obtain the optimal sequence by the
hybrid GA-FPA
Steps 1: Generate the initial population ran-
domly.
Step 2: Use the OBL to generate the opposite
individuals.
Step 3: Evaluate the population using the
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fitness function and store the good solutions.
Step 4: Run the improved hybrid GA-FPA.
Step 4.1: Run the GA.

Step 4.1.1: Perform the roulette wheel
selection on the population.

Step 4.1.2: Apply the Partially Mapped
Crossover (PMX) operator to generate new off-
springs.

Step 4.1.3: Apply the Swap mutation op-
erator.

Step 4.1.4: Evaluate the resulting pop-
ulation and compare the offsprings with their
parents; and update the best population indi-
viduals.
Step 4.2: Store the best candidate found so
far and its fitness value.
Step 4.3: Run the improved discrete FPA.

Step 4.3.1: Generate a uniformly dis-
tributed random number and compare with the
switch probability.

Step 4.3.2: Perform global or local pol-
lination on the population individuals based
on switch probability.

Step 4.3.3: Evaluate the population and
replace the parent flowers with those flowers
that are found to be better.
Step 4.4: Store the best candidate found so
far and its fitness function and the average
fitness of the population.
Step 5: Increment the iteration counter and go
to step 3 until maximum number of iterations
are reached.

5. Case studies: results and discussions

Two case studies involving a 15-component generator
assembly (Wang and Liu, 2010) and 26-component worm gear
reducer assembly (Xu et al., 2012) are provided in this section
to demonstrate the applications of the improved discrete FPA
and the hybrid GA-FPA approaches for assembly sequence
optimization. Further their results have been compared with
those of the original FPA earlier proposed by Mishra and Deb
(2016) and also with well-known soft computing algorithms
likeGA,MA and IHS.

5.1 Case study I
The generator assembly (adapted from the paper by Wang and
Liu, 2010) consists of 15 components as shown in Figure 4.
The PM and the SM are also shown that must be provided by
the user. The information on assembly directions and tools/
grippers is given in Table I that must also be provided by the
user. The base component for the assembly is Component 1.

5.1.1 Computational results of application of the improved discrete
FPA
We shall first present the computational results of application
of the IFPA. There are three main control parameters used in
the proposed FPA, namely, population size, switch probability
(between 0 and 1) and the step size s used to calculate the value
of L in the global pollination rule. Initially in our FPA
simulation runs for the given case study, the population size
was fixed at 5, and the step size was fixed at 1, switch
probability (p) was increased from 0.1 to 0.9 in steps of 0.4,
keeping maximum number of iterations constant at 500. It may
be noted that the value of g is 1. The population size was
increased from 5 to 25 in steps of 5. The step size was increased
from 1 to 15. The best sequence obtained by the FPA is [1, 2, 3,
4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], which has least number
of direction changes (i.e. 3) and tool changes (i.e. 8), no FVs in
this assembly sequence, the base component provided by the
user (in this case component number 1) at the first location in
the assembly and the most stable configuration in accordance
with SM. The maximum fitness (corresponding to the best
sequence) obtained is 1.5607 [assuming the weights w1 = w2 =
0.25, w3 = 0.1, w4 = 0.4 in the fitness function given in equation
(10)]. For 500 iterations, the set of FPA parameters that gave
the optimum performance of the IFPA in terms of its
consistency in finding the global best solution is as follows:
population size of 20, step size of 15 and switch probability of
0.1. For the above set of parameters, the consistency of finding
the global best sequence was found to be 50 per cent (based on
20 independent runs of the FPA simulations). Figure 5 shows
the convergence graph of the IFPA for 500 iterations.

5.1.2 Computational results of application of the hybrid GA-FPA
In this section, we shall present the results of application of the
hybrid GA-FPA. For the GA-FPA simulation runs, initially the

Figure 4 (a) 15-component generator assembly from Wang and Liu (2010). Copyright © 2010 Elsevier Ltd.; (b) its precedence matrix (PM); and (c) its
SM.
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population size was fixed at 5, the GA crossover probability
fixed at 0.9 and the GA mutation probability fixed at 0.1, the
FPA step size fixed at 1 and the FPA switch probability (p) was
increased from 0.1 to 0.9 in steps of 0.4, keeping maximum
number of iterations constant at 500. The population size was
increased from 5 to 25 in steps of 5. The FPA step size was
increased from 1 to 15. The best sequence obtained by the
hybrid GA-FPA is [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15], which has the least number of direction changes (i.e. 3)
and tool changes (i.e. 8), no FVs in this assembly sequence, the
base component provided by the user (in this case Component
1) at the first location in the assembly and the most stable
configuration in accordance with SM. The fitness value of this
sequence is 1.5607, which is calculated using equation (10).
The maximum fitness obtained is 1.5607 [assuming the
weightsw1 = w2 = 0.25, w3 = 0.1, w4 = 0.4 in the fitness function
given in equation (10)]. For 500 iterations, the set of
parameters that gave the optimum performance of the hybrid

GA-FPA in terms of its consistency in finding the global best
solution is as follows: population size of 20, the GA crossover
probability fixed at 0.9, the GA mutation probability fixed at
0.1, the FPA step size of 7 and the FPA switch probability of
0.1. For the above set of parameters, the consistency of finding
the global best sequence was found to be 65 per cent (based on
20 independent runs of the GA-FPA simulations). Figure 6
shows the convergence graph of the hybrid GA-FPA for 500
iterations.

5.1.3 Parameter settings of the hybrid GA-FPA
The three main parameters which affect the performance of the
hybrid GA-FPA are found to be population size, FPA step
size and FPA switch probability. To check the influence of the
above parameters on the performance of the hybrid GA-FPA,
the above three parameters are varied, and each simulation run
is repeated 100 times, and their results shown in the Table II
along with the average of global best solution (or sequence) over
100 independent runs, consistency in finding the global best in
terms of number of runs out of 100 that could find the global
best and the mean square error. It is to be noted that for all the
above simulation runs of the hybrid GA-FPA, the GA crossover
and mutation probabilities were kept fixed at 0.9 and 0.1,
respectively, as this parameter combination was found to give
optimum results. From the above results, it is observed that the
optimum set of hybrid GA-FPA parameters is population size of
20, FPA step size of 7 and FPA switch probability of 0.1.

5.1.4 Comparison between the results of the GA, IHS,MA, original
FPA, improved FPA and the hybrid GA-FPA approaches
To compare the results of the improved discrete FPA and the
hybridGA-FPAwith those ofGA, IHS,MA and original FPA, we
have performed 20 independent simulation runs of each of the
above six algorithms for 500 iterations. For the GA simulation
runs, the set of parameters that gave the optimum performance in
terms of best global fitness that it could achieve is crossover
probability of 0.90 and mutation probability of 0.05. For the IHS
simulation runs, the set of parameters that gave the optimum
performance in terms of best global fitness that it could achieve is
harmony memory considering rate (HMCR) 0.9 and pitch

Table I Information on the assembly directions and tools/grippers
required for the 15-component assembly

Component no. Assembly direction Tool/Gripper no.

1 X1 1
2 X1 1
3 X1 2
4 X1 2
5 X1 2
6 X1 2
7 X1 2
8 X� 1
9 X� 4
10 X� 2
11 X� 1
12 X� 2
13 Y1 1
14 Y� 1
15 Y� 3

Figure 5 Convergence graph of IFPA for the 15-component assembly
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adjustment rate (PAR) 0.1. For theMA simulation runs, the set of
parameters that gave the optimum performance in terms of best
global fitness that it could achieve is crossover probability of 0.80
and mutation probability of 0.02. For the original FPA simulation
runs, the set of parameters that gave the optimum performance in
terms of best global fitness that it could achieve is step size of 20
and switch probability of 0.2. For simulation runs of the improved
discrete FPA, we have used the optimum set of parameters given
in section “Computational results of application of improved
discrete FPA”, i.e. FPA step size of 15 and FPA switch probability
of 0.1. For simulation runs of the hybrid GA-FPA, we have used
the optimum set of parameters given in section “Computational
results of application of the hybrid GA-FPA”, i.e. the GA
crossover probability fixed at 0.9, the GA mutation probability
fixed at 0.1, the FPA step size of 7 and the FPA switch probability
of 0.1. To maintain fairness in comparison of the results, the
population size and maximum number of iterations are kept fixed
at 20 and 500, respectively, for the simulation runs of all the
algorithms. Moreover, the same fitness function given in
equation (10) is used in all the algorithms.
Table III presents a summary of the results of comparison of

all the six algorithms, namely, GA, IHS, MA, original FPA,
IFPA, hybrid GA-FPA for the 15-component example. For
each algorithm, the best fitness value, mean of the average
fitness values, mean of the best fitness values, number of runs
out of 20 independent runs in which convergence to the best
assembly sequence fitness was achieved and the probability of
obtaining the best assembly sequence (per cent) are given. On
comparison of the above results, it is found that out of the six
algorithms, three algorithms including the hybrid GA-FPA and
IFPA proposed by us as well as the MA could find the optimal
or the best assembly sequence, with a fitness of 1.5607
requiring least number of direction changes (i.e. 3), and also
least number of tool changes (i.e. 8). However, it is important
to note that the hybrid GA-FPA could find the best assembly
sequence 13 times out of 20 runs, which gives a 65 per cent
probability (or success rate) of finding the best sequence in 500
iterations. In contrast, the success rate of finding the best
sequence by the MA is found to be only 45 per cent and the

success rate for the same in case of IFPA is found to be 50 per
cent, while the success rate of finding the best sequence by GA,
IHS and original FPA is each equal to zero (it is to be noted that
the fitness values corresponding to best sequence found by GA,
IHS and original FPA are 1.5429, 1.2869 and 1.5429,
respectively, which are suboptimal). Further it is noteworthy to
mention that only the hybrid GA-FPA could reach the best
fitness value of 1.5607 in the least number of iterations.
Table IV shows a comparison of the computational time of GA-
FPA and IFPA proposed by us with that of the original FPA
(Mishra and Deb, 2016) for 15-components assembly. These
simulations were run on a PC having Intel Core i5-3470S CPU
2.90 GHz, 8 GB RAM. The table clearly shows that the
proposed hybrid GA-FPA and IFPA take much less time than
the original FPA due to different representation scheme and
operators used.
Table V lists the best sequences for the 15-component

example that have been obtained by all the six algorithms. It
further gives the corresponding fitness values, number of
direction changes, tool changes, SI, location of base component
in the sequence and number of FVs. On comparison of the
above results, it is found that the best assembly sequence
provided by proposed GA-FPA requires the least number of
direction changes (i.e. 3), and also least number of tool changes
(i.e. 8). Further, the stability of the assembly is found to be the
highest (as indicated by SI 11) in case of the best sequence
provided by GA-FPA. As evident from the comparison results
given in Table III, for the 15-component example, the hybrid
GA-FPA could find the optimal solution 13 times out of 20
runs, which gives a 65 per cent probability of finding the best
assembly sequence in 500 iterations. In contrast, the probability
of finding the best solution by theMA is only 45 per cent.
Furthermore, Figure 7 shows the convergence plots of global

best fitness of the six algorithms, while Figure 8 shows the
convergence plots of average fitness. On comparing the
convergence plots of global best fitness for all the algorithms, it
is found that the hybrid GA-FPA clearly outperforms the other
five algorithms, as it is able to reach the global best fitness value
in least number of iterations (i.e. only 65 iterations), as

Figure 6 Convergence graph of hybrid GA-FPA for the 15-component assembly
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compared to GA, IHS, original FPA, IFPA andMA. IFPA and
MA could reach to that solution in 210 and 365 iterations,
respectively, while GA, original FPA and IHS algorithm could
not attain the global best solution out of given number of
iterations. This again shows that the performance of the
developed GA-FPA is found to be certainly better than that of
other algorithms. In short, the developed GA-FPA could

achieve the global best solution in least number of iterations
with faster convergence (especially when compared with IHS
and original FPA) and withmore robustness.

5.2 Case study II
The worm gear assembly (adapted from the paper by Xu et al.,
2012) consists of 26 components as shown in Figure 9(a). The

Table II Effects of different parameter combinations on performance of the proposed hybrid GA-FPA

Population
Switch

probability Step size
Average of global
best over 100 runs

Consistency in finding the global best
(the global best fitness value)

Mean square
error

5 0.1 1 1.4073 1 (1.5607) 0.0111
7 1.4828 4 (1.5607) 0.0031
15 1.4838 5 (1.5607) 0.0029

0.5 1 1.1435 1 (1.5250) 0.0164
7 1.4348 1 (1.5607) 0.0046
15 1.4265 2 (1.5321) 0.0069

0.9 1 1.0164 1 (1.3216) 0.0183
7 1.3893 2 (1.5250) 0.0067
15 1.3960 1 (1.5429) 0.0053

10 0.1 1 1.5142 17 (1.5607) 0.0012
7 1.5373 26 (1.5607) 0.0004
15 1.5288 21 (1.5607) 0.0007

0.5 1 1.3405 1 (1.5250) 0.0112
7 1.5067 13 (1.5607) 0.0014
15 1.4969 6 (1.5607) 0.0016

0.9 1 1.2084 1 (1.4982) 0.0157
7 1.4612 1 (1.5429) 0.0022
15 1.4595 1 (1.5607) 0.0023

15 0.1 1 1.5346 26 (1.5607) 0.0003
7 1.5446 45 (1.5607) 0.0003
15 1.5481 56 (1.5607) 0.0002

0.5 1 1.4245 3 (1.5607) 0.0073
7 1.5149 9 (1.5607) 0.0006
15 1.5119 5 (1.5607) 0.0005

0.9 1 1.2689 1 (1.5071) 0.0170
7 1.4685 2 (1.5607) 0.0022
15 1.4801 2 (1.5607) 0.0014

20* 0.1* 1 1.5374 31 (1.5607) 0.0003
7* 1.5504 59 (1.5607) 0.0002
15 1.5458 41 (1.5607) 0.0002

0.5 1 1.4432 3 (1.5607) 0.0069
7 1.5298 31 (1.5607) 0.0006
15 1.5246 19 (1.5607) 0.0006

0.9 1 1.3152 2 (1.5607) 0.0153
7 1.4924 5 (1.5607) 0.0013
15 1.4952 4 (1.5607) 0.0009

25 0.1 1 1.5438 46 (1.5607) 0.0003
7 1.5530 59 (1.5607) 0.0001
15 1.5509 57 (1.5607) 0.0001

0.5 1 1.4647 2 (1.5607) 0.0043
7 1.5228 16 (1.5607) 0.00006
15 1.5187 9 (1.5607) 0.0006

0.9 1 1.3644 1 (1.5607) 0.0099
7 1.5039 8 (1.5607) 0.0012
15 1.5039 3 (1.5607) 0.0007

Notes: *Hybrid GA-FPA parameters that gave optimum results; italic values indicates that the optimal parameters and their corresponding values for which
the proposed GA-FP algorithm provides the best result

Improved hybrid flower pollination algorithm

Atul Mishra and Sankha Deb

Assembly Automation

Volume 39 · Number 1 · 2019 · 165–185

177



Table III Results of comparison between GA, IHS, MA, original FPA, IFPA and hybrid GA-FPA for 15-component assembly

Method GA IHS
Original FPA (Mishra

and Deb, 2016) MA IFPA Hybrid GA-FPA

Best fitness value (no. of iterations to reach the global
best fitness)

1.5429 1.2869 1.5429 1.5607 (360) 1.5607 (211) 1.5607* (65*)

Mean of the best fitness values 1.5243 1.1834 1.5001 1.5414 1.5441 1.5527*
Mean of the average fitness values 1.5234 1.0407 1.3037 1.5389 1.5321 1.5368
Number of runs out of 20 independent runs in which
convergence to best assembly sequence fitness was
achieved

0 0 0 9 10 13*

Probability of obtaining the best assembly sequence (%) 0 0 0 45 50 65*

Notes: *Best results obtained; italic values indicate that they are the optimum values given by the proposed GA-FP algorithm

Table IV Computational time of 20 independent runs of algorithms for 15-components assembly

Algorithm Improved FPA Hybrid GA-FPA Original FPA (Mishra and Deb, 2016)

Time (s) 2.884 4.864 24.503

Table V Comparison of best sequences obtained by GA, IHS, MA, original FPA, IFPA and hybrid GA-FPA for 15-component assembly

Algorithm Best assembly sequence

Fitness value (Success rate of
obtaining the best assembly
sequence out of 20 runs )

No. of direction
changes

No. of tool
changes SI

Base component at
the first location FV

GA-FPA [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15];

1.5607* (65%*) 3* 8* 11* 1* 0*

IFPA [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15];

1.5607 (50%) 3 8 11 1 0

MA [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15];

1.5607 (45%) 3 8 11 1 0

Original FPA (Mishra
and Deb, 2016)

[1, 2, 3, 4, 5, 8, 9, 10, 11, 12,
6, 7, 13, 14, 15];

1.5429 (0%) 4 8 11 1 0

GA [1, 2, 3, 8, 9, 10, 11, 12, 4, 5,
6, 7, 13, 14, 15];

1.5429 (0%) 4 8 11 1 0

IHS [1, 2, 3, 4, 5, 6, 8, 9, 10,7, 12,
15, 11, 13, 14];

1.2869 (0%) 7 6 6 1 3

Notes: *Best results obtained; italic values indicate that they are the optimum values given by the proposed GA-FP algorithm

Figure 7 Comparison of global best fitness of GA, IHS, MA original FPA, IFPA and hybrid GA-FPA for 15-component assembly
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PM and the SM are also shown in Figure 9(b) and (c),
respectively, which must be provided by the user. The
information on assembly directions and tools/grippers is given
in Table VI that must also be provided by the user. The base
component for the assembly is Component 25.

5.2.1 Computational results of application of the IFPA
The best sequence obtained by the IFPA is [25, 6, 9, 13, 24,
8, 5, 4, 23, 1, 10, 7, 26, 15, 14, 19, 12, 18, 1, 6, 21, 3, 17, 20,
2, 22, 11] which has the least number of direction changes
(i.e. 7) and tool changes (i.e. 16), no FVs in this assembly
sequence, the base component provided by the user (in this
case, Component 25) at the first location in the assembly and
with a SI of 10. The fitness corresponding to the best
sequence obtained is 1.4500 [assuming the weights w1 = w2 =
0.25, w3 = 0.1, w4 = 0.4 in the fitness function given in
equation (10)]. For 5,000 iterations, the set of FPA
parameters that gave the optimum performance of the IFPA
in terms of its consistency in finding the global best solution is
as follows: population size of 35, step size of 26 and switch
probability of 0.1. For the above set of parameters, the

consistency of finding the best sequence was found to be 0 per
cent (based on 20 independent runs of the IFPA
simulations). Figure 10 shows the convergence graph of the
IFPA for 5,000 iterations.

5.2.2 Computational results of application of the hybrid GA-FPA
The best sequence obtained by the hybrid GA-FPA is [25,
13, 24, 23, 26, 1, 8, 5, 4, 10, 7, 6, 9, 14, 19, 12, 15, 22, 11, 18,
16, 21, 3, 17, 20, 2] which has the least number of direction
changes (i.e. 5) and tool changes (i.e. 15), no FVs in this
assembly sequence, the base component provided by the user
(in this case, Component 25) at the first location in the
assembly, and most stable configuration in accordance with
SM having a SI of 11. The fitness value of this sequence is
1.4880, which is calculated using the equation (10). The
maximum fitness obtained is 1.4880 [assuming the weights
w1 = w2 = 0.25, w3 = 0.1, w4 = 0.4 in the fitness function given
in equation (10)]. For 5,000 iterations, the set of parameters
that gave the optimum performance of the hybrid GA-FPA in
terms of its consistency in finding the global best solution is as
follows: population size of 35, the GA crossover probability

Figure 8 Comparison of average fitness of GA, IHS, MA, original FPA, IFPA and hybrid GA-FPA for 15-component assembly

Figure 9 (a) 26-component worm gear reducer assembly (adapted from Xu et al., 2012); (b) its precedence matrix (PM); and (c) its SM.
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fixed at 0.9, the GA mutation probability fixed at 0.1, the
FPA step size of 26 and the FPA switch probability of 0.1. For
the above set of parameters, the consistency of finding the
global best sequence was found to be 10 per cent (based on 20
independent runs of the GA-FPA simulations). Figure 11
shows the convergence graph of the hybrid GA-FPA for
5,000 iterations.

5.2.3 Comparison between the results of GA, IHS, MA, original
FPA, IFPA and the hybrid GA-FPA approaches
To compare the results of the improved discrete FPA and the
hybrid GA-FPA with those of GA, IHS, MA and original FPA,
we have performed 20 independent simulation runs of each of
the above six algorithms for 5,000 iterations. For the GA
simulation runs, the set of parameters that gave the optimum
performance in terms of best fitness that it could achieve is
crossover probability of 0.90 and mutation probability of 0.05.
For the IHS simulation runs, the set of parameters that gave the
optimum performance in terms of best fitness that it could
achieve is HMCR 0.9 and pitch adjustment rate (PAR) 0.1.
For theMA simulation runs, the set of parameters that gave the
optimum performance in terms of best fitness that it could
achieve is crossover probability of 0.80 and mutation
probability of 0.02. For the original FPA simulation runs, the
set of parameters that gave the optimum performance in terms
of best fitness that it could achieve is step size of 26 and switch
probability of 0.2. For simulation runs of the improved discrete
FPA, we have used the optimum set of parameters given in
section “Computational results of application of improved
discrete FPA”, i.e. FPA step size of 15 and FPA switch
probability of 0.1. For simulation runs of the hybrid GA-FPA,
we have used the optimum set of parameters given in section
“Computational results of application of the hybrid GA-FPA”,
i.e. the GA crossover probability fixed at 0.9, the GA mutation
probability fixed at 0.1, the FPA step size of 26 and the FPA
switch probability of 0.1. Tomaintain fairness in comparison of
the results, the population size and maximum number of
iterations are kept fixed at 35 and 5,000, respectively, for the
simulation runs of all the algorithms. Moreover, the same
fitness function given in equation (10) is used in all the
algorithms.
The comparison results for the 26-component assembly,

presented in Table VII, show that the hybrid GA-FPA could
find the optimum solution two times out of 20 runs, which gives
a 10 per cent probability of finding the best assembly sequence
in 5,000 iterations, while the probability of finding the
optimum solution for all the other algorithms including MA is

Table VI Information on the assembly directions and tools/grippers
required for 26-component worm gear reducer assembly

Component no. Assembly direction Tool/Gripper no.

1 Z� 14
2 Y� 4
3 X1 3
4 Z� 5
5 Z� 6
6 Z1 8
7 Z� 7
8 Z� 6
9 Z1 8
10 Z� 7
11 Y� 13
12 Y1 12
13 Z� 2
14 Y1 1
15 Y� 1
16 X1 1
17 X� 1
18 X1 1
19 Y1 1
20 X� 1
21 X1 1
22 Y� 1
23 Z� 1
24 Z� 1
25 Z� 1
26 Z� 1

Figure 10 Convergence graph of IFPA for the 26-component assembly
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equal to zero. This once again clearly demonstrates the
superiority in performance of the proposed GA-FPA in
assembly sequence optimization over the other five algorithms
used in this comparison. Table VIII shows a comparison of the
computational time of GA-FPA and IFPA proposed by us with
that of the original FPA (Mishra and Deb, 2016) for 26-
components assembly. These simulations were run on a PC
having Intel Core i5-3470S CPU 2.90GHz, 8GB RAM. The
table clearly shows that the proposed hybrid GA-FPA and
IFPA take much less time than the original FPA due to
different representation scheme and operators used.
Table IX shows the best sequences for the 26-component

example that have been obtained by all the six algorithms. It
further gives the corresponding fitness values as well as number
of direction changes, tool changes, SI, location of base
component in the sequence, and number of FVs. On
comparison of the above results, it is found that the best
assembly sequence provided by proposed GA-FPA requires the

least number of direction changes (i.e. 5), and also least
number of tool changes (i.e. 15). Further, the stability of the
assembly is found to be the highest (as indicated by SI 11) in
case of the best sequence provided byGA-FPA.
Furthermore, Figure 12 shows the convergence plots of

global best fitness of the six algorithms, while Figure 13 shows
the convergence plots of average fitness. The comparison of the
convergence plots of global best fitness for all the algorithms
shows that the hybrid GA-FPA clearly outperforms the other
five algorithms in terms of convergence speed, as it is able to
reach the global best fitness value in least number of iterations
(i.e. only 2352 iterations), as compared to GA, IHS, original
FPA, IFPA and MA. All the other algorithms other than the
developed algorithms could not reach the global best out of
5,000 iterations. This again shows that the performance of the
developed GA-FPA is found to be certainly better than that of
other algorithms. In short, the developed GA-FPA achieves
global best solution in least number of iterations with faster

Figure 11 Convergence graph of hybrid GA-FPA for the 26-component assembly

Table VII Results of comparison between GA, IHS, MA, original FPA, improved FPA and hybrid GA-FPA for 26-component worm gear reducer assembly

Method GA IHS MA
Original FPA (Mishra

and Deb, 2016) IFPA Hybrid GA-FPA

Best fitness value (no. of iterations to reach the global best
fitness) 1.4400 1.3780 1.4600 1.4460 1.4500 1.4880* (2352*)
Mean of the average fitness values 1.4141 1.2152 1.4255 1.3803 1.3904 1.4152
Mean of the best fitness values 1.4141 1.2730 1.4255 1.4325 1.4349 1.4503*
Number of runs out of 20 independent runs in which
convergence to best assembly sequence fitness was achieved 0 0 0 0 0 2*
Probability of obtaining the best assembly sequence (%) 0 0 0 0 0 10*

Notes: *Best results obtained; italic values indicate that they are the optimum values given by the proposed GA-FP algorithm

Table VIII Computational time of 20 independent runs of algorithms for 26-components assembly

Algorithm Improved FPA Hybrid GA-FPA Original FPA (Mishra and Deb, 2016)

Time (s) 178.046 216.225 840.30
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convergence (especially when compared with IHS, original
FPA, IFPA) andwithmore robustness.

6. Conclusions

Because the assembly cost is estimated to be around 10-30 per
cent of the total manufacturing cost, proper assembly process
planning is of utmost importance. A product may be possible to
assemble in many alternative ways following different
sequences. The optimal assembly sequence takes the least time
and thus results in the minimum cost. However, the assembly

sequence optimization is a difficult optimization problem in
process planning, as it has to simultaneously satisfy various
types of feasibility constraints such as stability, assembly
precedence and accessibility, as well as various types of
optimization criteria such as minimizing number of changes in
orientations, tools and grippers used in assembly, handling and
insertion times, etc. Although a number of different soft
computing-based evolutionary algorithms had been proposed
by previous researchers to solve this problem, there are still
challenges like achieving global optimum in least number of
iterations with fast convergence speed, maintaining robustness/

Table IX Comparison of best sequences obtained by GA, IHS, MA, original FPA, IFPA and hybrid GA-FPA for 26-component worm gear reducer assembly

Algorithm
Best assembly
sequence

Fitness value (Success
rate of obtaining the

best assembly sequence
out of 20 runs )

No. of direction
changes

No. of
tool changes SI

Base component at
the first location FV

GA-FPA [25 13 24 23 26 1 8 5 4 10
7 6 9 14 19 12 15 22 11
18 16 21 3 17 20 2];

1.4880* (10%*) 5* 15* 11* 1* 0*

MA [25 13 24 23 1 5 8 26 4 7
10 9 6 14 15 22 18 16 21
3 19 12 17 20 2 11];

1.4600 (0%) 7 15 10 1 0

IFPA [25 6 9 13 24 8 5 4 23 1
10 7 26 15 14 19 12 18 1
6 21 3 17 20 2 22 11];

1.4500 (0%) 7 16 10 1 0

Original FPA (Mishra
and Deb, 2016)

[25 13 24 23 26 1 5 14 19
18 16 21 3 9 6 17 20 2 22
11 4 8 5 1 10 7 12];

1.4460 (0%) 8 13 7 1 0

IHS [25 13 24 14 15 18 16 19
17 20 2 22 23 8 5 10 7 6 9
4 11 21 3 12 26 1];

1.3780 (0%) 13 14 6 1 0

GA [25 13 24 23 1 4 5 8 26 14
15 22 11 6 9 18 17 16 21
3 19 12 20 2 10 7];

1.4400 (0%) 9 15 10 1 0

Notes: *Best results obtained; italic values indicate that they are the optimum values given by the proposed GA-FP algorithm

Figure 12 Comparison of global best fitness of GA, IHS, MA, original FPA IFPA and hybrid GA-FPA for 26-component assembly.
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consistency in finding the global optimal solution, etc. which
are crucial for solving problems using meta-heuristic
approaches. Keeping the above in mind, in the present paper,
we have proposed an improved discrete FPA-based approach
and to further improve the performance of this FPA, we have
proposed a hybrid GA-FPA–based approach. Two case studies
involving a 15-component assembly and another more complex
26-component assembly are provided to demonstrate the
application of the proposed approaches as well as the results of
comparison with well-known soft computing algorithms. The
following are some of the important contributions of this paper:

 For solving assembly sequence optimization by using the

IFPA and the hybrid GA-FPA, we have proposed an
assembly sequence representation scheme using an array
of unique numbers, each number representing a unique
component in the sequence. The initial population of
flowers (i.e. assembly sequences) in the FPA is generated
randomly without considering their feasibility, which gives
the advantage of maintaining diversity in flowers during
the course of the algorithm and helping to avoid local
optima. To expand the field of initial solutions (i.e.
assembly sequences) in the search space, the method of
OBL that was used earlier by Li et al. (2016) is used. It is
observed that the performance of FPA increases
significantly if the initial population is generated using the
OBLmethod.


 In the improved discrete FPA proposed by us,
modifications have been proposed in the rules for local
and global pollination of the FPA proposed by Yang
(2012) that was meant for continuous optimization. It was
necessary to make the proposed FPA suited for solving the
given discrete optimization problem of assembly
sequencing.


 The parameter settings of the hybrid GA-FPA proposed
by us are discussed. To check the influence of various
parameters on the performance of the hybrid GA-FPA,
the parameters have been varied and each simulation run
is repeated 100 times. A method is discussed for
determining the optimum set of hybrid GA-FPA

parameters based on the average value of global best
solutions (or sequences) obtained over 100 runs,
consistency in finding the global best, and the mean
square error.


 To compare the results of the improved discrete FPA and
the hybrid GA-FPA with those of GA, MA, IHS and the
original FPA (Mishra and Deb, 2016), we have performed
20 independent simulation runs of each of the above
algorithms for both the case studies involving the 15-
component assembly and the 26-component assembly.
On comparing the results, it is found that for both the
examples, the proposed hybrid GA-FPA clearly performs
better than the algorithms GA, MA, IHS, the original
FPA and the improved discrete FPA in terms of its ability
to reach the global best fitness value in least number of
iterations.


 Further it can be found that in case of the hybrid GA-FPA
for the 15-component assembly, in 13 times out of 20
runs, it could find the optimal solution, which gives a 65%
probability of finding the best solution or assembly
sequence in 500 iterations. In contrast, the probabilities of
finding the best solution by the improved discrete FPA
proposed by us and MA are 50% and 45%, respectively,
while the probability of finding the best solution by GA,
IHS and the original FPA is each equal to zero. For the
more complex 26-component assembly, out of the six
algorithms, only the hybrid GA-FPA could find the
optimum solution in 5,000 iterations with more
consistency, while none of the other five algorithms could
find the optimum.


 In the light of the above comparison results, it can be
concluded that for problems involving higher complexity
in terms of number of components, the hybrid GA-FPA
proposed in this paper clearly outperforms the other five
algorithms in terms of achieving global best solution in
least number of iterations with fast convergence speed and
consistency (or higher probability) in finding the best
solution. It should also be noted that the proposed hybrid

Figure 13 Comparison of average fitness of GA, IHS, MA, original FPA IFPA and hybrid GA-FPA for the 26-component assembly
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GA-FPA and IFPA algorithms take lesser computational
time than the original FPA.

It is anticipated that using the proposed approach, assembly
sequence planning can be accomplished efficiently and
consistently with reduced lead time for process planning,
making it cost-effective for industrial applications.
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